
2.2 FILTERING

2.2a THE BASIC IDEAS OF FILTERING:

In section 2.1, we looked at how certain time waveforms offer rich spectra.
We have emphasized however that it is not the details of the spectrum that are
important for musical sound production, but rather, the manner in which these details
vary in time. Thus we still have before us the task of devising systems that allow
us to vary the spectrum. We could consider circuits Chat cause the waveform itself
to vary, and such circuits are used. However, a filter is somewhat more direct,
because it alters the spectrum in a predetermined way, and it is the spectrum we are
concerned with. With the circuit that causes the waveform to vary in its details,
we arrive at a time varying spectrum in general, but essentially this spectrum is
unknown, except upon additional Fourier analysis. In the case of the filter, we
will always arrive at a time varying spectrum, and the new spectrum is known to us
as the component-by-component product of spectral lines times the filters frequency
response at the component frequency. For example, Fig. 2-46 shows the product of
a sawtooth spectrum times a corner peaked low-pass filter. Once we understand that
the filter's frequency response can be made to vary in time, we can understand how
the spectrum varies in time as well.
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We will be shortly looking at some of the theory of filtering, and some practical
ideas with regard to voltage-controlled filtering. We will be taking a somewhat
unconventional approach, omitting much about active filtering, because we have limited
space, and the material is available elsewhere. Thus we will be taking the most
direct route to filter analysis we can find, and then concentrate on the network
structures found in VCF's. The interested reader can find more conventional ideas
on filtering in Laboratory Problems and Examples j.n Active, Voltage-Controlled, and
Delay Line Networks, Electronotes Supplement S-016 (1978)

2 . 2b LAPLACE TRANSFORM NOTATION FOR CAPACITORS :

In order to make a filter in frequency, we need to use a circuit component that
is sensitive to frequency, and basically we have the choice of inductors or capacitor
Inductors tend to be bulky, heavy, and non-ideal at audio frequencies, so we will
be looking at the capacitor. Our procedure will be to develop the necessary
mathematical tools in a manner that will aid intuition, and which will provide a
working knowledge of the methods of deriving filter frequency responses . While the
level of mathematical rigor will be low, the results are nonetheless correct.

Our first job will be to develop a means of working with capacitors in
ordinary network calculations. We will be starting with the circuit of Fig. 2-47a,

transfer of the difficult part
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We

by a second resistor R' . In this case, we know exactly how to find the relationship
between the input and the output, since we have a simple voltage divider. Now we
take the step of supposing that it might be possible to find some value for an
impedance which depends on C, which we will call Zc, and so that we may treat Zc
exactly like a resistor in network calculations. In this case, the relationship
between the input and the output is as in Fig. 2-47c. Note that we have not solved
the problem, just transferred it. We don't know what Zc

 is-

As we warned, the derivation here will be somewhat arbitrary and incomplete.
will find Zc for a single example, that of applying the step function to the R-C
filter. We should also point out that we will be using the Laplace Transform {LT)
methods here, and the equating of certain ratios, some of which are in terms of
time t, and some in terms of the complex frequency s, is justified on the grounds
that we measure frequency responses using sinusoidal waveforms, the common ground
between the time and frequency worlds .

Having made the above disclaimer, we will go ahead with the step function
problem, as illustrated in Fig. 2-48. What is the output voltage given the step

voltage of magnitude V at the input? You may well know the answer from any number
of sources, but we will briefly review the process of obtaining the answer based on
a differential equation approach. We need a few physical facts about the system.
First, Ohm's Law tells us that the current i = (Vin-Vout)/R flows through R.
Secondly, the charge on a capacitor is related to the voltage and capacitance by q = CV,
so here we have q - C Vout . Thirdly, the current i is the time rate of change of
charge, so i - dq/dt - C dVout/dt. Equating the two expressions for the current i,
we get:

C dVQut/dt = vlr/
R - Vout'R (2-44)

which is the differential equation of the system. Solution of equation (2-44) is a
common exercise, and we will not give the details here. Instead, we give the

which is clearly the correct solution, as can be simply verified by plugging equation
(2-45) into equation (2-44), arriving at an identity. The solution is the rising
exponential function shown in Fig. 2-48. [As an aside, this is a basic waveshape of
AR and ADSR envelope generators, to be studies later.] We now know the answer for

As our next step, we will take the LT of the input and the output, asing

2-29



equation (2-43). In taking the LT, we will be obtaining Vin and Vout as functions
of s, rather than functions of t. The integrations involved in the LT's are
simple:

0
dt - „.„-«

0

/V (t)e~StdtJ out"out'"' n
j 'outv^'~ ~J ' *~ ~ s(sRC+l)

then take the ratio, Vout(s)/Vin(s) using equations (2-46) and (2-47)

SRC)

(2-46)

(2-47)

(2-48)

Equation (2-48) is the so-called "transfer function" of the network, arrived at by
a special case. Usually, we will be using a much simpler method of achieving the
transfer function, but for now, we want to get Zc out of the deal, and to do this,
we will refer back to Fig. 2-47c, and equate the voltage divider relationship there
to the transfer function (2-48):

Zc 1

1 + SRC

which is solved for Zc, giving:

(2-49)

(2-50)

So what does this prove? Well, we have mathematically proven nothing, but we see
that if we start with the network, substitute Zc = 1/sC for C, and solve out the
network, treating 1/sC^ _as a. resistor, we get the transfer function in the complex
frequency domain. Thus treating the impedance of C as a function of the complex
variable s, we get rid of differential equations, and get our transfer function
using only common network calculations, and algebra. Thus the LT method essentially
does our calculus for us, reducing it to algebra.

Nearly everything we want to learn about a given filter network is obtained
form its transfer function T(s) = Vout(s)/Vin(s) . After a bit of experience, we
obtain T(s) rather rapidly, and then can go on from there to the interesting things.
Above we have obtained in our example the transfer function of the first-order low-
pass filter, which we can call T]_(s) = l/(l+sRC). We will have occasion to use this
in future developments.

2.2c THE STATE -VARIABLE FILTER:

Two types of voltage-controlled filter (VCF) are common in electronic music
synthesizers. One type is the four -pole low-pass, consisting of four first-order
low-pass sections in series, with overall feedback. The second type is the
state-variable, which has the advantage of offering three filtering functions
(low-pass, high-pass, and bandpass) and lending itself very well to voltage-
control. The disadvantage of the state- variable is that its low-pass function
is only second-order as compared to the four-pole low-pass (fourth-order).
Considering the importance of the low-pass function in imitation of the sounds
of traditional acoustic type instruments, some synthesizer designers prefer to
offer the superior low-pass (four pole) instead of the multiple function filter
(state-variable). Overall however, the state-variable is hard to beat for a
general application.

The state- variable filter consists of two integrators and a summer, in
a structure with feedback, in the manner shown in the block diagram (Fig. 2-49).
The LT of an integrator is 1/s, so we will represent the integrators in this way.
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Fig. 2-49

State-Variable Structure

is greatly eased by using the integrator relationship. First the summer output, VH
is clearly the sum:

at the same time, Vg = (l/g)Vg and VL = Cl/s
2)Vn» since we just have series integrators

acting on VH. Plugging these into equation (2-51), and solving for VH/Vin, we get;

IHW VH/ v±n gZ + (1/Q)s + -L (2-52)

which is a typical high-pass filter transfer function. Using the integrator relations,

TR(s) = Tw(s)/s = (2-53)

(2-54)

which are transfer functions of bandpass and low-pass filters respectively. The order
of the filter, corresponding to the number of "poles", is the highest power of s in the
denominator of T(s), so we have second-order responses (two poles) in all three cases
here. [Note that a notch response is also usually obtained by summing the low-pass
and high-pass functions].

The transfer function T(s) is really a basic form leading to the frequency
response function of the filter. The transfer function also tells us where the poles
and zeros of the filter are, and from these positions, we can find the frequency
response function in a semi-geometric manner, often useful directly, or to establish
an intuitive feeling for the filters operation.

The di

What this says is that to get the frequency response, you first substitute into T(s)
the value ju for s, and then take the magnitude of this expression. Actually, since
s is complex, and equal to a H- jai, this "substitution" is really a special case of
a = 0 . Note that T(s) and T{ju) are complex functions, but |T(ju) | , being the
magnitude of a complex number, is a real number. Thus equation (2-55) gives us the
frequency response function we are used to. Given a frequency f, we can calculate
0) = 2irf, and then pulg u into equation (2-55). (Actually, you plug it into the
final simplified version). This tells us, for that frequency, the amount by which
the filter amplifies or attenuates that particular frequency. A typical case might
be obtained from equation (2-54), the low-pass, where the procedure gives for the
frequency response: _,,

straightforward method taking shape. First,
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.
. A pole occurs when the denominator of T(s) becomes zero, and

hence T(s) blows up to a very large value (a "poles" sticking up in the air!). A
zero occurs in a similar manner, when the numerator becomes zero, thus making T(s)
zero. Solving for poles and zeros is often trivial, often relatively simple, and at
other times, it can be quite a chore. Naturally the difficulty is involved with the
order of T(s) . For equations (2-52) through (2-54), we find zeros for s=0, s=0, and
for no s respectively. Since the zero in equation (2-52) occurs for s2=0, it is a

=nd-o
trivial here

zero (tw os on top of each other
. Finding the poles is a matter

solving for s, if by no other mathod

0)
f setting s

ing the quadrati

Pl,p2 = -C1/2Q)

Finding the zeros is thu:
+ (l/Q)s + 1 = 0 and
2 formula, arriving at:

(2-57)

where pi and p2 are the values of s where the poles occur (with 1 and 2 referring to
the + and - signs in front of the square root sign). Study of equation (2-57) will
show that if Q is greater than 1/2, the poles are really complex, while if Q is less
than 1/2, the poles are real. Most cases of interest will involve complex poles,
and this is the reason for writing equation (2-57) with the j showing. Fig. 2-50
shows several things. First, it is an example of the s-plane. Secondly, it shows
the position of poles in the s-plane corresponding to several values of Q using
equation (2-57). Finally, it shows the position of zeros corresponding to high-pass,
bandpass, and low-pass filters.

Q-

Pl»P2(Q=l/2)

s-Plane Showing
poles and zeros
for low-pass,
bandpass, and high-pass

P2(Q=D

"̂ position of zeros
(low-pass - no zeros)
(bandpass = one zero)
(high-pass = two zeros)



A number of points should be made concerning Fig. 2-50, which represents the
situation not only for the state-variable filter under direct discussion, but also
any of the numerous other second-order active filter configurations that are common.
[As active filters of fixed frequency and single function, configurations somewhat
simpler than the state-variable are common and are recommended. For our purposes,
the state-variable is recommended because of its ease in accepting voltage-control,
and its providing three functions at once.]. Note first the positions of the poles
as a function of Q. As Q exceeds 1/2, the poles become complex conjugate pairs
[see equation (2-57)], and they move on a circle from s = -1 to s = ±j. That the
magnitude of the pole position places it on a circle is verified by calculating the
magnitude from equation (2-57) :

The poles reach ±j when Q becomes infinite (thus at ±j where o = 0) . The value 0 = 0
represents the case of sustained oscillation, and if o is positive, the output of the
system not only oscillates but grows without (theoretical) limit. Thus poles for
a> 0 represent unstable networks, and thus we have the rule for stability that poles
should be in the left half plane. Zeros on the other hand could be anywhere and not
affect stability, since a zero is simply a point in complex frequency where the
response goes to zero. In our examples, equations (2-52), (2-53), and (2-54), we
have zeros that either are not present, or which are at s = 0. In fact, we have no
problem placing the zeros anywhere we want using the state-variable approach. We
just need to add weighted versions of the high-pass, bandpass, and low-pass outputs.
Since all three transfer functions have the same denominator (the same poles), we

Ts(s) = V̂(l/Q)t + 1 (A'B'C = summin§ weights) (2-59)

Now the numerator of the transfer function is a general second-order function, as is
the denominator, and the positions of the zeros are available using the quadratic
formula, as for equation (2-57), we get:

zL,z2 = -(B/2A) ± (1/2A)/BZ- 4AC (2-60)

One case of special interest is that where A = C = 1, and B = 0, in which case we get
zeros as ±j, and a resulting notch filter.

A general transfer function, as in equation (2-59), can be written either in its
quadratic form, or in factored form:

v- j::;fl:iff-
where equations (2-59), (2-57), and (2-60) have all become involved. If we now ask
about the frequency response of the filter in terms of the magnitude of Ts(s), we
can write:

|T (a)| = |(s- si)[-[(s-z2)| (2-62)
' s |(s - pi) . I (s - p2) j

Keeping in mind that all the quantities in equation (2-62) are complex numbers, we
have magnitudes of the differences between complex numbers, and these are just the
distances in the complex plane. Thus equation (2-62) is actually saying that to get
the frequency response |TS(S)|, we can first determine the positions of the poles and
zeros, and than get |TS(S)| as the product of the distances from s to the zeros,
divided by the product of the distances from s to the poles. This is true for any s,
and in particular for s = jw, and thus when we choose s as a point ju on the imaginary
axis, we are doing the equivalent of equation (2-55). The result is the same
frequency response. The principle is illustrated in Fig. 2-51. This geometric
interpretation is useful where the poles are known, and can even be used to solve for
the frequency response graphically (actually measuring distances on a graph of the
complex plane). In other cases, the geometric interpretation can be used to lead to
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pole T--.il
Fig. 2-51

Graphical Interpretatlo

pole

a closed form expression for the frequency response based on known geometry, Instead
of just working point-by-point along the jto-axis as is illustrated for a single point
in Fig. 2-51.

A further consideration of the geometric interpretation allows us to get a
rough idea of the frequency response by just looking at the positions of the poles
and zeros. Clearly if we want to know the response, we must travel along the joj
axis from zero on up (we could go down, but everyone goes up!). If on this trip we

pass near a zero, the response will drop. If we find a zero on the jw-axis,
actually run into it instead of just getting close, there will be a complete
cancellation or notch in the response. If we find a pole on the jcu-axis instead
of just getting close, we get oscillation, because the response in infinite, and
even for a very small input (which is always present as noise in a practical setup),
the response will start up. Some interpretations, leading to various filter
response functions, are shown in Fig. 2-52.

In order to understand actual realizations of the state-variable filter, or
just about any active filter for that matter, it is necessary to understand the
operational amplifier or op-amp. The op-amp is basically a high gain differential

various ideal properties, many of which are closely approximated by real op-amp
integrated circuits. One such ideal assumption is that the inputs to the op-amp
draw no current, but instead respond to a voltage applied to them without changing
that voltage in any way. This is really saying that they have infinite input
impedance. A similar assumption with regard to the output is that the output
impedance is zero. Both of these approximations are quite good in the case of
active filter networks built with modern field-effect transistor inputs of various
types. These assumptions are easily placed in the back of one's mind, and taken for
granted.

A more important assumption from a design and analysis point of view is the one
that considers the amplifier to have infinite gain. Most other ideal assumptions
tell us what the op-amp does not do, but this ideal assumption tells us how the op-amp
actually behaves. Fig. 2-53 shows the usual symbol for an op-amp along with its
equation. The infinite gain assumption is that A goes to infinity. This may seem
like a complicating assumption, but actually, it simplifies things, as there are only
two possibilities: either the output is pinned against one of the power supply levels,
or the input must be zero. The cases of interest are those where negative feedback
is present, thus automatically zeroing the input voltage. We will look at two
op-amp setups that are found in the state-variable filter.

= A(V, - V )



Filter Types, Pole/Zero Plots, and Interpretations

Description

LOW-PASS formed with two complex
poles, no zeros, and poles not
too close to ju>-axis. Response
begins to roll down asupasses

far from the two poles (high
frequency), the response
continues "downhill". Y°u can
consider this is due to two zeros
at infinity if you like.

CORNER-PEAKED LOW-PASS is formed
by raising the Q, bringing the
poles closer to the jiu-axis.
This causes the Low-Pass to take
on more of a Bandpass response
as Q increases. Peaking begins
when Q exceeds its maximally
flat "Butterworth" value of
1//2.

Frequency Respo

BANDPASS is formed by adding to
the poles a zero at s = 0. This
means that the response at DC is
zero. Moving away from the zero
at zero up to the "high ground"
near the pole, the response peaks.
Beyond this pole, the response
drops again (one zero still at
infinity if you like).

HIGH PASS is formed with two zeros
at s = 0 instead of just one.
Again we have zero response at

the pole is approached more
closely, but the response does
not drop back at high frequency.
Looking back from high frequency,
the poles and zeros tend to cancel.

NOTCH is formed by realizing complex
zeros right on the jot-axis. When
the frequency hits the zero, the
response goes to zero. The poles
serve to support the response on
either side of the notch, making
the notch sharper as pole Q



Fig. 2-54 shows the implementation of a summer (inverting summer in this case).
The circuit has a negative feedback link, R3 running from the output hack to the (-)
or inverting input. Thus we will assume that the input voltage to the op-amp
itself, meaning here the differential input between (+) and (-) inputs, is zero.
[More on this later.] Thus the (-) input and the (+) input must be at the same
voltage. The (+) input is grounded, and thus the (-) input must also be at ground
potential. This arrangement, (+) input grounded with negative feedback operating,
is commonly encountered, and the (-) input in such a case is called a "virtual
ground" or a "summing node." With the (-) input assumed at ground, we can
find three currents through Rj_, R2, and R3 as VI/RI, V2/R2, and Vout/R3 respectively.
No current flows into the actual (-) input of the op-amp, and thus the currents
through the three resistors must sum to zero. Setting the sum to zero and solving
for Vout:, we get the sum as shown in the equation of Fig. 2-54. A few words should
be said about how the (-) input is maintained at zero voltage. Consider that if
any one of the three voltages V^, V2, or Vout in Fig. 2-54 should go up for any
reason, the voltage at the common junction point, the (-) input, must go up as well
by some amount. This would cause the (-) input to become positive relative to the
(+) input, and the very high (assumed infinite) gain of the op-amp would cause the
output Vouc to move in the negative direction. On the one hand, this tells us
why the output takes on the value indicated by the equation in Fig. 2-54, and on the
other hand, it tells us why the output responds to the changes in V^ and V2-

Fig. 2-56 One of several popular active
filter configurations of state-variable

Fig. 2-55 shows the second op-amp setup that is part of a state- variable
filter: the integrator. We will analyze this to illustrate several principles.
First we will show how our use of Zc [from equation (2-50)] can be used to get the
response of the integrator with little trouble. Recall that we have said that we
can replace C in any network with 1/sC, and treat it just as we would a resistor.
This done, we can see that Fig. 2-55 is a special case of Fig. 2-54, with Rĵ  - R,
R2 = «, R3 = 1/sC, and Vout = Vo. We then apply the summer equation from Fig. 2-54

If we now wish to describe a transfer function for the
Ti(s) and write:

T(s) = V^sJ/V^s) = -l/sCR

(2-63)

all this

(2-64)

This is the transfer function of a negative integrator. As we said above, the
integrator is represented in LT notation by 1/s, and here we have 1/sCR. Thus our
earlier example has to be considered a "normalized" case where RC = 1. We will
discuss this a bit more later.

We now have all the elements of an active state- variable filter. If we want
to realize the block diagram of Fig, 2-51, we can do it. One problem would be that
the integrator we have looked at is inverting. The cascade of two inverting
integrators is thus non-inverting, but the output Vg is inverted. We could use
an inverter (Fig. 2-54 with R^ = R-j, R2 = M) , but this would add an op-ainp. A
three op-amp version is still possible, as in Fig. 2-56, where the negative VB
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is fed back to the (+) input of the summing op-amp, thus achieving the needed
negative input to the summer. With this voltage divider on the (+) input of the
summing op-amp, the (-) input is not at virtual ground. Yet it is still true that
the (-) input and the (+) input are at the same voltage, and the analysis goes
forward on that basis. We will not pursue this further here however.

We need to say a few words about the denormalization of the transfer function
so that we can not only set the shape of the frequency response, but also set the
cutoff frequency (or other characteristic frequency point) where we want it. To do
this, we can go back to Fig. 2-49, and instead of 1/s for the integrator, use 1/sCR,
a positive integrator, which is what we can often obtain using voltage-control
elements. This done, we would replace equation (2-52) with:

Tu(s

and equations corresponding to (2-53) and (2-54) are achieved by dividing equation
(2-65) by 1/sRC and l/s2R2C2 respectively, achieving:

s/RC

1/R2C2

L ' ~ s* + (l/Q)(l/RC)s + l/R^C*

These equations are denormalized, and also show us a "dimensionality" that was not
obvious in the earlier normalized equations. That is, the dimensions of s, a
frequency, are I/time. Also, the product of a resistor times a capacitor, RC, is
a time. Thus we can see that numerator and denominator in all the transfer functions
of equations (2-65), (2-66), and (2-67) have dimensions of I/time2.

In attempting to arrive at a characteristic frequency, we need to realize that
s is really the frequency variable. All sorts of exact and elaborate relationships
can be worked out, but we will not do this here. Instead, we will just observe that
the characteristic frequency is m = 1/RC, or f = 1/2-nRC. By characteristic frequency
we mean generally, the peak of the bandpass response, and a frequency in the vicinity
of the cutoff of the low-pass and high-pass responses. If we solve for the poles
of equations (2-65), (2-66), and (2-67), we find that they are now on a circle of
radius 1/RC when they are complex, instead of a radius of 1 as was the case with the
normalized equations [see equation (2-58)]. Thus if the poles are complex and of
a Q somewhat in excess of 1/2, they lie somewhere in the vicinity of the point co=l/RC
on the imaginary axis. This is why significant changes in the response function,
which occur near the poles (or zeros), occur near 1/RC, and why we find characteristic
frequencies near 1/RC, or closely related to it. Since we find it fairly easy to
change resistors, either manually with a pot, or through the use of voltage-controlled
resistors, it is by varying R that we control the frequency of the filter.

'> In controlling the R of the integrator, we can use a pot (Fig. 2-57a) for manual
control, but for voltage control, we can consider the use of a multiplier (Fig. 2-57b)
or a transconductance multiplier (Fig. 2-57c). The use of the multiplier and the
transconductor are quite similar. However, the multiplier we have in mind is a four-
quadrant voltage-output type, and thus requires a voltage to control it, and a
resistor as shown (Fig. 2-57b). A simple, less expensive, and more direct approach
is to use the transconductor (Fig. 2-57c). The transconductor is a two-quadrant
multiplier, has a current output (avoiding the integrator resistor), and is current
controlled (as we shall see, voltage-control is what we have externally, but because
of the need for exponential control functions, modules are internally current rather
than voltage-controlled). Thus we might expect that the transconductor is acting in



the manner of a voltage-controlled resistor. In fact, we can look at the equation
of a transconductor, or OTA (Operational Transconductance Amplifier) as they are
also called. A typical equation would be:

(K = constant) (2-68)

Let's suppose that the OTA is being used to form ...

Here the (+) input has been grounded, so equation
(2-68) becomes: --

Zout - -̂ in̂ c C2-69>

This same current Iout must be flowing through i \^Op-Amp out

1/sC, and at the same time realizing that the
(-) input of the op-amp is at virtual ground, the Fig. 2-5!
output of the op-amp must take on the proper value
to "collect" the current lout- Thus a simple extension of Ohm's law give

Vout = ~(Iout)(1/sC) = " C-K'Vin'V^3^ = v
in[(

KIc)/sC]

and this may be written as:

T(s) = Vout/Vin = 1/sCRe

where: R£ - 1/KIC (2-71)

is an equivalent resistance for the OTA. Thus the characteristic frequency of a
state-variable filter formed from OTA integrators would be:

(D = l/ReC = K-IC/C = (K/C)-IC

Thus we have the frequency of the filter controlled directly by a controlling current
Ic. Since the OTA offers both (+) and (-) inputs, we are able to form here a
positive integrator. We also have a negative summer (Fig. 2-54) to fill out the
basic block diagram (Fig. 2-49), and a final basic state-variable VCF would have the
form of Fig. 2-59.

Control Voltag.



-3db Bandwidth

log-log plot

The state-variable VCF should be pretty
well understood at this point, with the
possible exception of the function of the
Q control. Comparing Fig. 2-49 with Fig.
2-59, and using the summer of Fig. 2-54,
we are able to identify the quantity Q
with the inverse of the feedback gain from
the bandpass output back to the input, and
this gain is R'/Rq, so the Q - Rq/R1 . Thus
we can set the Q as desired by making RQ a
pot as shown. Note that Q is limited by
the maximum resistance of the pot. It
would also be good practice to add a

value of Q. A value for this series resistor
of R'/2 might be a good choice, making Q take on values of 1/2 or greater. What is
the physical meaning of Q? This is shown in Fig. 2-60 which shows the bandpass
response. If we graph the response and determine three frequencies, fc, f^, and fu,
(the center frequency, lower 3db frequency, and upper 3db frequency respectively)
then Q is equal to the center frequency divided by the 3db bandwidth, thus:

= f f

Thus Q is a measure of the sharpness of the bandpass function. Note however that as
Q goes up past 1//2 = 0.7071... in the second-order case, the low-pass and high-pass

low-pass, bandpass, and high-pass are sharply peaked and look very much like the
bandpass function.

2.2c THE FOUR-POLE LOW-PASS VCF:

We have seen with the state-variable how the numerator of the filter's transfer
function pretty much determines the basic filter function, and the the Q determines
the details of the behavior in the vicinity of center frequencies or cutoff
frequencies. There is one more area to consider, and this is the final roll-off
rate. That is, in the area where the signal is being rejected, how fast is this
rejection changing with frequency? This is where the number of poles will have a
major effect.

How fast does the state-variable low-pass roll off at high frequencies? This we
can easily answer using equation (2-56), which for large u becomes 1/u2. Thus if to
doubles, a one-octave change, we would get a change in response in decibels of:

(2-73)

and thus we say that the second-order filter rolls off at 12 db per octave. We can
attribute this to the major term of the denominator at high frequency, which is the
s2 term in this case. It is not difficult to show in a manner similar to that of
equation (2-73) that if the highest term in the denominator is sn, then the final or
"asymptotic" roll-off goes as 6ndb/octave. Put another way, in an octave distance
at high frequency, a single pole filter (s in the denominator) falls by a factor of
1/2, while a two pole filter (s2 in the denominator) falls by a factor of 1/4, and
an n-pole filter (sn in the denominator) falls by a factor 1/2".

A two-pole filter, falling by a factor of 1/4 per octave is adequate for many
purposes, but not all that spectacular. Fixed frequency active filters of 4th,
6th, 8th, and even 10th order and higher are sometimes encountered. Thus we might
look for another approach other than the state-variable. In fact, a different
approach, the four-pole low-pass, actually came first, being the principal filter
used in the early Moog synthesizers. This filter, being four-pole, offers 24 db/
octave, or a factor of 1/16 drop in one octave. Yet just getting four poles total
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