
SECTION 2

SUBTRACTIVE SYNTHESIS



2.0 INTRODUCTION;

In this section, we wi.11 be looking at subtractive synthesis. There are
several reasons for looking at subtractive synthesis at this point. First, there
is the fact that the technique is very common, and easy to implement with relatively
simple electronics. Secondly, there are several techniques that we will introduce
here which will be important later (for example, Fourier analysis and the use of
controlled gain blocks). Finally, we have to start somewhere, and have mainly the
choice of additive or subtractive synthesis. We feel that additive synthesis is
best viewed in its proper perspective when the capabilities of subtractive
synthesis are understood.

Fhe power of the subtractive synthesis method can be understood from the fact
that on the one hand, selection of a wide bandwidth signal gives us a lot of
frequency components, and on the other hand, a single filter can process a large
number of components at one time. Thus we choose tuo efficient processes at the
heart of our method. fhe selection of the waveforms and filters we are going to
use is, as with, most areas of engineering, a matter of practicality as much as
anything. We choose waveforms that are convenient to generate, even though they
may not be exactly the best choice otherwise. We determine their harmonic content
using Fourier analysis, so we know what we are starting with. It may be as
important to know what we are starting with as it would be to be able to choose
the starting waveform arbitrarily. Practicalities also dictate our choice of
filters. We must choose filters that have the desirable features that we need,
and we must choose them so that we can implement voltage-control. Often the
design of a filter results in a configuration determined by convenient voltage-
controlled filter building blocks.

In order to begin our study of subtractive synthesis, we need to first look at
two important topics: Fourier analysis, and filter theory.

2.1 FOURIER ANALYSIS OF WAVEFORMS:
2.la WAVEFORMS AS THE SUPERPOSITION OF SINUSOIDAL COMPONENTS:

The reader perhaps knows already, or has learned from Section 1, that periodic
waveforms can be thought of in terms of their frequency spectrum, as a collection
of sine waves. A sine wave is the most fundamental of all waveforms. Thp p.varc

) why this should be so is really a philosophical question, be

aside any questions as to why we do things this way, and take the
that it is operationally convenient. Others do their math this w



and so therefore shall we. Perhaps there is something fundamental still to be
discovered. Also, it is probably not incorrect to say that breaking the wavefo
into sinusoidals is the way the ear does it too.

aw how a waveform is formed by adding ha
of and

2.1b A CHOICE OF WAVEFORMS FOR SUBTRACTIVE SYNTHESIS

The sawtooth's musical timbre (tone "color" if you will) is useful musically
as it is "full" and "bright" to use subjective terms. Roughly, full means that no
harmonics are missing, and bright means that the higher harmonics contain a good
portion of the energy of the whole waveform. Since the sawtooth's timbre is useful,
we know that a waveform with harmonics falling off as 1/n is useful, but because the
ear Is essentially phase deaf, any waveform with harmonics falling off as 1/n will
do, and sound essentially the same as the sawtooth. So why not use some other such
waveform? Because the sawtooth is. It already exists, and is easy to generate.

ramp to some initial value when it exceeds an upper limit.

Thus we tend to start with waveforms that are easy to generate, and these are
the ones with relatively simple waveform geometry. Typical waveforms are the saw,
triangle, square, and pulse, which will be discussed in detail. Notice that the
sine wave is not a waveform of simple geometry. In fact, the sine wave is not a
simple waveform to generate, especially if we require one of very high purity. The
usual method is to shape the triangle wave into a sine approximation. As with the
case of filters as mentioned in the introduction to this section, many of our
design choices for oscillators are influenced strongly by our ability to implement
voltage-control. Accuracy of control is much greater when only one control
element needs to be varied. Most true sinewave generators would require two
control elements in parallel to be varied. Also, we do not really want to build a
separate oscillator for each waveform we need. Instead we prefer to generate
accurately one waveform of simple geometry (almost always the saw or triangle) and
then waveshape this to the others we need. Shaping of a sinewave into other wave-
forms is very difficult. Finally, add to this the fact that a sinewave of very
high purity is of very limited musical value in general, and of even less value
in subtractive synthesis (nothing to filter out), and we see that approaches to
Voltage-Controlled Oscillators (VCO's) based on triangle or saw are the only rational
design choices.

The table of Fig. 2-1 shows the usual set of waveforms available on a voltage-
controlled synthesizer. Two basic types of VCO are common, the sawtooth based design,
and the triangle-square based design. In the sawtooth based design, the major task
is to convert the sawtooth to triangle. The triangle can be rounded with a non-linear
circuit into a sine, and the square and pulse waveforms are obtained from either the
saw or the triangle using comparators. The square is of course a special case of the
pulse where the "duty-cycle" is 50-50. Most designs will make the pulse width
variable (usually voltage-variable) by adjusting a "reference" level on the comparator.
In a triangle-square based VCO design, the triangle and square waveforms are available
directly from the oscillator. The triangle is rounded to sine, and pulses can be
obtained from the triangle with a comparator. This leaves the triangle-to-sawtooth
as the only major problem to consider. These are the major waveforms that are
expected, and we shall shortly subject them to Fourier analysis.
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_Fig_. 2-1 TABLE OF COMMON WAVEFORMS

The waveforms in the table of Fig. 2-1 offer a wide variety of spectral content,
but we can always find room for a few other possible ones. In particular, there
does not seem to be a waveform with only even harmonics. Well, if we think about it
we see that only even harmonics would mean that frequency components would be 2f, 4f,
6f, 8f, and so on. This is exactly the same as all harmonics of 2f, so nothing new
is gained. Thus the first interesting case of even harmonics is one with a
fundamental and then all even harmonics. Thus it would contain f, 2f, 4f, 6f, 8f,
and so on. If such a waveform is desired, it is available as the half-wave
rectified sine.

O To summarize, any oscillator (VCO) that is to be used in subtractive synthesis
will probably have available various waveforms of varying harmonic content, and these
are chosen based mainly on convenience of generation. Typical waveforms are sawtooth,
triangle, square, pulse (variable width), and sine (approximation). Their basic
properties are summarized in Fig. 2—1.

2.1c THE FOURIER SERIEJ3:

The Fourier Series (FS) of a periodic waveform gives us its spectrum. It is a
formal mathematical development that can take on various forms, all with more or less
the same result of allowing us to say, for example, that the spectrum of a square
wave consists of all odd harmonics falling off as 1/n. In musical work, this is
pretty much all we need. The FS strictly applies only for waveforms that are
perfectly periodic and"which started at time -°s and which will continue to time +™.
There are of course no such waveforms, as we are accustomed to having our waveforms
start and stop over relatively short periods of time. Thus we are mainly interested
in the FS as it may apply in an approximate way. We are interested in the FS as a
spectrum determining tool, and we are interested in the spectrum as it is perceived
by the ear. The ear has a limited time constant - a time after which the perception
fades, typically on the order of 0.05 seconds. Thus if we start a periodic waveform,
after about 0.05 to 0.2 seconds, the ear has forgotten that the tone actually began
only recently - it may have been going on forever! Likewise, the ear does not know
that the tone will stop. During this time there is a good deal of validity to the

We should mention that another Fourier technique, the Fourier Transform (FT) is

model can be used to tell us a good deal about what we hear while a periodic waveform
is being started. We can understand the "click" that we hear if the tone comes on
abruptly in terms of the wide bandwidth of the spectrum during this transition time.



Thus the FT model is probably more realistic for the ear than the FS model. However,
the FS model being simpler and still very useful is the one we will choose to look at
first.

The musical engineer will not often have occasion to actually calculate out a
FS from scratch. He should know however how to use tabulated series, and enough
about the process to work out the untabulated cases when he has to. Thus we will
go over one calculation as an example. We will choose the 1/3 duty cycle pulse.
We will not derive the formulas for the FS, which are derived in just about any book
on engineering mathematics. The FS equation and the equations for the coefficients
an and bn are given below:

f(t) = -̂  + I [anCos (n7rt/L) + bn Sin (n7rt/L) ]

= - - I f ( t ) Cos(mrt/L)dt

1
b = -$- / f (t) Sin(mrt/L)dt
n L -L

(2-1)

(2-2)

(2-3)

Here f(t) is the periodic function to be expanded in a FS, one period of this
function is of length 2L, n is the order of the harmonic, and â  and bn are the
PS coefficients. There are quite a few other equivalent equations for these above,
and there is also a complex form of the FS arrived at through the use of the Euler
identity eJe = Cos 6+ j Sine . In the complex form, there is only one coefficient
(usually cn) and thus we have only a pair of equations, and a relatively easy

The 1/3 duty cycle pulse is shown in Fig. 2-2. The spacing of the pulse within
the interval -1 to +1, or in any other interval of length 2L, is arbitrary as far as
the final line spectrum is concerned. Naturally we choose a spacing that will lead
to the simplest math, and experience shows that if we choose an initial spacing that
has a degree of symmetry, we have a good chance of getting some of the coefficients
(usually either all the an or all the bn) to cancel out. This will be discussed as
the example proceeds.

Fig. 2-2 f(t) = 1/3 duty cycle pulse

1

The equations for the coefficients involve integrals, and in general in order to
form the FS, we must be able to integrate f (t)Cos(mrt/L) and f(t)Sin(mrt/L), which
is usually fairly simple if f(t) is a simple function. Here f(t) is a pulse taking

Sine and Cosine functions themselves, and that the integral is zero over part of its
limits, so we can bring the limits in. Thus for our example, equations (2) and (3)
become: L/3

a - 4- / l-Cos(mit/L)dt (2-4)

l-Sin(mrt/L)dt

2-4

(2-5)



.sy to integrate if

L/3
Cos(nitt/L)

Sin(nut/L)

which become: r
I-1/3

,L/3

- — [sin — ] ' = — [sin(mr/3) - Sin(-nit/3)l
mr L L J ,, mr L J

-L/3

Now, because the Sine is an odd fun
even function [Cos(-x) = Cos(-x)],

ion [Sln(-x) = -Sin(x)] and the Cosine is an
find that equations (2-8) and (2-9) become:

(2-10)

(2-11)

Thus we have only the an coefficients, and we can calculate them using equation
(2-10) which gives the an in terms of n.

There could be a special problem in connection with a0. This can be avoided by
doing a separate Integration, where the Cos(nirt/L) term in equation (2-4) becomes 1
for n=0, and we get from equation (2-4) ao = 2/3, and thus from equation (2-1), the
DC term is ao/2 = 1/3, which is the appropriate DC term for a 1/3 duty cycle pules.
The problem with using equation (2-10) is that when n goes to zero, both n in the
denominator and Sin(mr/3) in the numerator go to zero, and it is necessary to take
the limit, as otherwise we have the meaningless 0/0. Fortunately in this case it is
a well known limit, as can be seen by writing equation (2-10) for n = 0 as:

Lim _2_ Sin(mr/3)
n->0 3 nir/3

(2-12)

and it is well known that the limit as x goes to zero of Sinx/x is one. Thus we
get a0 = 2/3 as by the direct method. So the equation (2-10) is correct even for
n=0 as It should be. Equation (2-10) is also obviously equal to zero if n is an
integer multiple of 3, since in this case Sin(mr/3) = Sin(ttnr) = 0. Using equation
(2-10), we can calculate other an as given below:

0
1
2
3
4
5
6
7
8
9
10
11
12

2/3
0.5513
0.2757
0

-0.1378
-0.1103
0
0.0788
0.0689
0

-0.0551
-0.0501
0

2-5
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Fig. 2-5 Harmonics 1,2,4,5,7,8,10,11,
13,14, 16,17,19,20, as in Fig.
2-3-E except here random phase
rather than cosine phase is used.



We have now determined the FS coefficients of the 1/3 duty cycle pulse, and_
have also determined the phase of the components as being all cosine phase for the
positioning about zero that we chose. Consider why we got only cosine phase here.
The pulse as we chose it is an even function [f(-t) = f(t)]. When we tried to get
sine phase, the bn coefficients, equation (2-3), we had to integrate this even f(t)
as multiplied by the odd function Sin(nirt/L). This product of an even function times
an odd function gives an odd function, and in the integration from -L to 0, we gain
a certain amount which is then cancelled out by the remaining part of the integration
from 0 to +L. Thus there is an advantage to setting up the function f(t) with as
much symmetry as possible (it is not always possible of course). If we had set up
f(t) so that it was an odd function (not possible with the pulse), we would have
obtained bn coefficients, but no an. Now, if we had positioned the pulse within
the interval -L to +L in an arbitrary manner, it would be neither even nor odd, but
would be composed of an even part and an odd part. There would then be both an and
bn coefficients in the FS. The a^ coefficients would represent the cosine phase
(the even part) while the bn coefficients would represent the sine phase (the odd
part) of the function f(t). Sine and Cosine are 90° out of phase. Thus when there
is an an coefficient and a bn coefficient for the same frequency (same n), what is
really being said is that there is a single component with magnitude:

(remember Pythago
by:

) and phase (s Fig. 2-6) given

(2-14)

To get some ideas about the effect of the number of components in a FS and
their relative phases, the reader may study the drawings in Fig. 2-3, Fig. 2-4, and
Fig. 2-5 on the previous two pages. Fig. 2-3 shows the addition of the FS
components of the 1/3 duty cycle pulse one at a time for the first four non-zero
components, and then the sum of the first 14 non-zero components. For reference,
the full 1/3 duty cycle pulse is also drawn. Thus it is possible to appreciate
how each additional component improves the approximation. The importance of phase
is shown in Fig. 2-4 and Fig. 2-5. Each of these has the same harmonics and in
the same proportions as Fig. 2-3-E. In Fig. 2-4, instead of using the cosine
phase required for the original pulse, sine phase is used. Note that the resulting
waveform is in fact odd (ignoring the DC term, which is really an a term ao) as we
would expect from the sum of sine terms only, the sine function being odd. The
resulting waveform certainly does not resemble the pulse. Fig. 2-5 shows the
same components, but here an arbitrary or random phase has been assigned to each
of the components. This waveform not only does not resemble the pulse, but has
lost all symmetry.

We have thus seen that different phase choices for the components of a FS can
result in extreme differences in the resulting time waveform. What we have
suggested however, is that these phase differences make little or no difference to
the ear. Each of the waveforms, Fig. 2-3-E, Fig. 2-4, and Fig. 2-5, have exactly
the same amplitude spectrum, and they sound almost exactly the same to the ear.
We can discuss this a bit. This "phase deaf" property of the ear is pretty well
verified by experiment. Any ability we may have to detect phase is residual to some

Fig. 2-4, and Fig. 2-5, and play them through a loudspeaker into a room, it is
doubtful that any listener would be able to hear any difference between them, let
alone be able to consistently identify them. If instead we play them to a
listener through headphones, the listener may be able to hear very small differences.
From the headphone experiments, we can suggest that perhaps the fact that Pig. 2-4
has a larger peak amplitude, or some secondary effect of this larger peak, may allow
us to tell it from the others. The results from playing into a room can also be
understood. Inside the room the sound that actually reaches our ears consists of
a direct sound and numerous reverberations. Thus any initial phase arrangement is



greatly scrambled by the time it reaches our ear. Thus we would expect either
great confusion (which would seem to have been removed by human evolution - when
the sabre tooth tiger roared in the caves of our ancestors, the last thing they
needed was confusion!), or the ear-brain must have evolved to make some consistent
sense out of the mess. The latter seems to be the case, and the sense seems to be
to just work with the amplitude spectrum.

While these points about the effects of relative phase are interesting, there
is perhaps an even more important point that we can infer at this point. Suppose
you were asked to predict which of the three waveforms, The 1/3 duty cycle pulse,
the sine-phased waveform of Fig. 2-4, or the random-phased waveform of Fig. 2-5,
would be the most musical (or let's suppose equivalently, the least electronic
sounding). Well, from the above, you know the answer. They are all very much the
same, and are very electronic sounding, each being a perfectly periodic waveform.
[Keep in mind that each of the drawings of Fig. 2-3, Fig. 2-4, and Fig. 2-5
represent only one cycle of a periodic waveform.] If you have spent any time at
all looking at musical waveforms from acoustic instruments on an oscilloscope, then
you know that they look a lot more like Fig. 2-5 then they do like Fig. 2-4 or like
the 1/3 duty cycle pulse. One this basis, you might have supposed that Fig. 2-5
would be more musical. Since this is not so, you are aware of the danger of trying
to infer anything from the actual structure of the time waveform.

There are important points here. First, all periodic waveforms, regardless
of the actual features in their time waveform, are electronic sounding. Thus there '
is little point in arranging circuitry or systems to control this detail to a large
degree. Simpler easy to generate waveforms will do as well. Secondly, if we go
back to the idea of observing waveforms from acoustic instruments, you probably
recall your difficulty in obtaining a stable trace on the scope. You were perhaps
thinking that if you could only get a stable trace, you could figure out how to
duplicate the sound. Yet the whole story is being told by the scope. It is
telling you that the waveform is not stable, but rather changing on a cycle by cycle
basis. The scope is telling you ("warning you") not to try! If you succeed in
isolating any one waveform cycle, and then play it back repeatedly, you will obtain
only a periodic waveform, and regardless of its origins and details, it is going to
sound electronic. The scope "knows" that the game can't be won. People perhaps
have to learn the hard way.

This leads to the further point of trying to cause the time waveform to evolve
on a cycle-by-cycle basis as a means of synthesis. This is possible, can be useful
(perhaps more for animation of steady state than for full synthesis), and has been
studied to a degree. Yet this scheme does ignore the fact that it is the spectrum
that really matters, and by changing the details of the waveform, it is the spectrum
that we are changing. Thus the waveform modification method may lead to the exact
same result, but the control of the process is less obvious than it is in a more
direct form of spectrum control.

2. Id LISTING OF WAVEFORMS AND THEIR FOURIER SERIES:

This part will be a listing of waveforms that are often encountered in musical
engineering. Along with the name and shape, we will give the FS, and then make som
comments on the timbre (tone color) of the waveform and its method of generation or
likely occurrence.

, -\--+l
1. Waveform: Sine Wai

Shape: Fig. 2-7



Fourier Series: f( t) = Sint (2-15)

Harmonics and Timbre: Contains only one component, the fundamental. Timbre
is very mellow. Virtually inaudible below about 100 Hz for normal amplitude
levels. Thin and "flute-like" at high frequencies.

Spectrum of a Sine

10 15

Origins: Sine wave generators are common for fixed frequencies. For
variable frequencies (including VCO's), the sine function is usually
obtained by shaping a triangle wave with a non-linear circuit, and perhaps
using some filtering. Acceptable distortion levels for most music
synthesizers are in the range of 1% to 2%.

Waveform: Sawtooth

Shape: Fig. 2-9

Fourier Series:

f(t) =—[ Sin(t) - (l/2)Sin(2t) + (l/3)Sin(3t) - (l/4)Sin(4t) + . . .] (2-16)
IT

Harmonics and Timbre: All harmonics present, falling off as 1/n. Timbre
is generally "bright" and "full". May be "buzzy" at low frequencies, and
"oboe-like" or "trumpet-like" at middle frequencies.

1.0
Fig. 2-10

Spectrum of Sawtooth

Origins: Sawtooth based VCO's are common,
and thus the sawtooth is directly available.
A common sort of generator is shown in Fig.
2-11 where a current source charges a
capacitor. When the linear ramp thus
produced exceeds a peak reference level, a
comparator closes an electronic switch,
discharging the capacitor to ground, thus
starting another sawtooth cycle. The one-
shot assures that the switch is closed long
enough to discharge the capacitor sufficiently.
Triangle-to-sawtooth methods are available
for triangle based oscillators (see Triangle)

3. Waveform: Square

Shape: Fig. 2-12



Fourier Series:

f(t) = -J-f Sin(t) + (l/3)Sin(3t) + (l/5)Sin(5t)

Harmonics and Timbre: All odd harmonics, falling off as 1/n. The lack
of even harmonics gives the waveform a "hollow" or "clarinet-like" sound
over much of its range.

l.Oj.
Fig. 2-13
Spectrum of Square

| l i i . ,
5 10 15

Origins: The square wave naturally occurs in a triangle based VCO as
it is part of the generation process (see Triangle). When the square
is not available directly, it is easily obtained by simply using a

+ls\
4. Waveform; Triangle -ir /X0^\ ~'"!T

Shape: Fig. 2-14 ^-^/^~ "\ , Fig. 2-14

Fourier Series: ~1

£(t) = yrl Cos(t) + (l/9)Cos(3t) + (l/25)Cos(5t) + . . . .] (2-18)

Harmonics and Timbre: Contains (like the square) all odd harmonics, but
here they fall off as 1/n2 instead of as 1/n with the square. This more
rapid fall-off means that there is very little actual harmonic content
present. Timbre is very mellow, much like the sine except at low
frequencies where the triangle's harmonics make it more audible.

1-°+ Fl&̂ lS

~~T~ ~ZT~ ~~TTn

a
jf^^\^

M b_
Schmitt ,

~ Integrator Trigger c X| s^\

• [/ Ix"
Fig. 2-16 Most basic form of a
"Triangle-Square" or "Integrator- d
Schmitt-Trigger" oscillator

Fig. 2-17 Waveforms in a
triangle based oscillator

2-11



Origins ; In a sawtooth based VCO, the triangle can be obtained by full-
wave rectification followed by a level shift of -1 as a sketch will show
the reader. Another (the other) popular VCO design method is the triangle
based design. This design is basically that of an integrator and a
Schmitt trigger in a loop (Fig. 2-16).

In Fig. 2-16, the output of the Schmitt trigger (b) is either at its positive
limit or at its negative limit. This causes the negative integrator to ramp
in response. When the ramp (a) reaches the upper or lower threshold of the
Schmitt trigger, the Schmitt trigger reverses, going to its other limit, and
thus causing the ramp to turn around an go the other way. A triangle is
thus produced, and the phase relationship between the triangle and the square
is as shown in Fig. 2-17. Because of this relationship, it is possible to
form the double frequency sawtooth (c) by using the square to invert (or not)
the waveform (a). For example, when the square is low, we will not have our
inverter working, but when the square is high, it will invert. Summing the
square and the double-frequency sawtooth and dividing by two gives a sawtooth
at the original frequency (d) .

Wavefor Puls

Shape ; Fig. 2-18

Fourier Series^

Cos(nt)
n=l

Harmonics and Timbre: The harmonics of the pulse depend on the parameter "a
where a/ir is the so-called duty cycle (time high divided by total time for
one cycle). The parameter a can be voltage-controlled resulting in pulse-
width modulation. The term immediately following the summation sign is
the most important for determining the spectrum. It tells us first that the
harmonics fall off as 1/n, but superimposed on this fall off is the Sin(na)
term. When the duty cycle is a rational fraction, na is a multiple of TF
and Sin(na) is zero. Weak regions in the spectrum are centered around
values of n where na is near a multiple of IT. In general the spectra are
rich and bright, containing many significant harmonics.

0.5- •

um of a Typical Pulse
(1/7 duty cycle shown)

Origins: The pulse is usually derived fr
a comparator (see Fig. 2-20). In a stati

another waveform by simply using
ondition (constant a), it makes

reference
(modulation)

Pulse Output

r-A-A--A—
/ V V \

no difference what the driving waveform is as long as a is set properly.
In the dynamic condition (Pulse Width Modulation), it does make a
difference, as not only will the driving waveform determine how a changes



with changing reference level, but it will determine how the different
edges of the pulse will move, resulting in significant and audible
differences.

NOTE: The above five wavefor
synthesizers. The ones belo
equipment .

are the standard ones for most voltage-controlled
are less common, but can be implemented on home-built

"ir/2
I — , Fi

,Q | | +.TT

Waveform: Equal Spaced Double Pulse

Shape: Fig. 2-21

Fourier Series:

4
f(t) = — [ Sin(a/2)Sln(t)

- (l/3)Sin(3a/2)Sin(3t) + (l/5)Sin(5a/2)Sln(5t) - . . . . ]

Harmonics and Timbre: Spectrum consists of odd harmonics only. The Sin(na/2)
terra serves to place a spectral envelope over these components similar to
that of the regular pulse (see Fig. 2-19). The example spectrum below is for
a = Tr/4. It is thus missing every 8th harmonic from the Sin(na/2) term.
These terms are also missing because they are odd, so the actual null at n=8,
16, 24, etc. is an indication of a null in the spectral envelope. Components
also go as 1/n. Timbre is quite hollow except for very small a.

1.0

Spectrum of Equal Spaced Double
Pulse for a = Tr/4

5 10 15

Origins^ The equal spaced double pulse is generated in a manner similar to
that of Fig. 2-20 for the regular pulse, except a second comparator,
referenced to a negative version of the original reference, and driven by
the same driving waveform, is added. The sum of the original pulse and the

from the added comparator are summed (and scaled as needed) .puls

Waveform: Common

Fourier Series:

Edge Double Puls +1

-1

f(t) = -£-[ Sin2(a/2)Sin(t)

+ (l/2)Sin2(2a/2}Sin(2t) + (l/3)Sin2(3a/2)Sin(3t) + . . . ](2-

Harmonics and Timbre: Here the spectrum contains all harmonics, falling
off as 1/n, and at the same time, there is a Sin2(na/2) term multiplying
each of these. Thus there may be missing components if na/2 is a multiple

Spectn
..-, Pulst

m of Common Edge Double
for a = Tr/3

5

2-13



of IT, and weak regions of the spectra appear where na/2 is close to a multiple of IT.
In the example spectrum of Fig. 2-24, a is ir/3 so na/2 = mr/6, so we have nulls
for each 6th harmonic, as can be seen. Note however that the spectrum here is
different from that of the pulse in that we have a decreasing spectral envelope as
n=0 is approached (compare Fig. 2-19 to Fig. 2-24). The timbre of the common edge
double pulse is "pulse-like" except the fundamental is weak, particularly for smaller
values of a.

These spectra for the two double pulses thus supplement the regular pulse in that the
equal spaced version supplies a pulse-like spectral envelope with only odd harmonics,
while the common edge version supplies a pulse-like spectral density that decreases
for low harmonics. Note that these pulse spectra can be obtained as the sum of
spectra of the two pulse components taken individually. Thus frequency components
that would be missing from individual pulses are missing in the sum. Study will show
that the basic pulse duty cycles for Fig. 2-19, 2-22, and 2-24 are 1/7, 1/8, and 1/6
respectively. Thus we are able to understand the missing 7th, 8th, and 6th harmonics
respectively. The other alterations of the shape of the spectra are the result of
components of the same frequency as generated by the separate pulse components
Interfering with each other.

Origins: The common edge double pulse is simply generated
by the same method as the equal spaced version, except
for the common edge, the driving waveform is a sawtooth
instead of a triangle or sine. Fig. 2-25 shows the way
this comes about.

Symmetrized Ram
Cl-a)

Shape: Fig. 2-26

Fourier Series:

f(t) = -^ [ 2(l-2a)Sin(t) - Sin(2t) -Cl-aj

+ (2/3){l-2a)Sin(3t) - (l/2)Sin(4t)

+ (2/5)(l-2a)Sin(5t) - (l/3)Sin(6t)

+ (2/7)(l-2a)Sin(7t) - (l/4)Sin(8t) +

Harmonics and Timbre: The symmetrized ramp has two different sets of harmonics,
the even ones which are a fixed set corresponding to a double frequency sawtooth,
and a set of odd harmonics whose amplitude depends on the value of the parameter
a. The even harmonics, being sawtooth, fall off as 1/n. The odd harmonics also
have a 1/n dependence in addition to their dependence on the parameter a. The
timbre of the symmetrized ramp is quite similar to that of the sawtooth over much
of the range of a, but in the range of a=0.3 to 0.4, where the second harmonic is
somewhat stronger than the fundamental, the timbre has a strong octave cue.

1.0+

Spectrum of Symmetrized Ramp
for a = 0.35.

10 15

Origins: Generation of a symmetrized ramp can be accomplished by adding an
appropriate portion of an appropriately phased square wave to the sawtooth. The
usual way this can come about is through the process of triangle-to-sawtooth
conversion suggested in Fig. 2-17. If the mix is right, we get a sawtooth,
and if not, It is easy to get the symmetrized ramp, a useful byproduct.

2-14



Shape : Fig. 2-28

Fourier Series:

f ( t ) = — I(-l)n"

Harmonics and Timbre:

U x

'4 JT 1 Sin(nt) -i

(2-23)
The waveform contains all harm

! Sin(t/2)

: V^1+1

•^'0 :„
: L--
' Fig. 2-28

onics, and is s^ ilar
to a sawtooth except it has less harmonic content. For large values of n,
the harmonics fall off approximately as 1/n. The timbre is bright and rich,
but less harsh than the sawtooth.

+1.

Spectrum of Saw Driven Sine Shaper

I 1 I I I 1 I i

15

Origins: The Pi-Sine is composed of half a sine wave, and thus one ir of
the possible two TT of the sine waveform. It is easily generated by
extending the usual triangle-to-sine conversion process. The triangle to
sine converter consists of a non-linear circuit that bends over slightly
for higher voltages. This has the effect of rounding the peak of the
triangle to a sine-like waveform. Many non-linear circuits can be used,
including certain characteristics of FET's and of BJT differential
amplifier input stages. The generation of the Pi-Sine is just a matter
of driving this converter with a sawtooth wave instead of with the

Waveform: Full-Wave Rectified Sine

Shape: Fig. 2-30

Fourier Series:

The spectrum
Because thoff as 1/n2 for lar;

would sound like a waveform wi
harmonics. [That is, a wavefo
The spectrum is shown in Fig. 2-31, n

interest.

ly even harmonics, falling

itch corresponding to 2ri containing all
rith only even harmonics makes no sense],

icting the DC term. Timbre is

of F.W.R. Sine



Origins: The FWR sine can be obtained with an ordinary FWR or absolute
value circuit. Note that it is the function assumed to be the input of
many power supply filters, although this is not always what the actual
waveform looks like.

Waveform: Half-Wave Rectified Sine

Shape: Fig. 2-32

Fourier Series:

fw = i
" n=l ^

Harmonics and Timbre: The spectrum of the HWR sine contains all even
harmonics, and also contains a fundamental, so it, unlike the FWR sine,
maintains the pitch of the fundamental (n). Note that the even harmonics
have the relative amplitudes of the FWR sine case, but are only half
as strong. The HWR sine has slightly more perceived harmonic content
then the FWR sine (with both at the same pitch). This is the first
waveform considered that consists of a fundamental and then even rather
than odd harmonics. There is somewhat of a feeling of a hollow space
between the fundamental and its harmonics, perhaps because the even
harmonics group to form what is really an octave. [All second harmonics
are octaves of course, but without odd harmonics interleaving the even
ones, reference back to the true fundamental may not be so solid.]

'ig. 2-33

Spectrum of H.W.R. Sine

Origins: The HWR sine is obtained by a half-wave rectifier which may be
precision source with an op-amp or two, or may be obtained with a simple
resistor and diode.

12. Waveform: Double Clipped Sine W,

Shape: Fig. 2-34

Harrno .e exact amount of harmonic content, here
"harmonic distortion" (or a sine wave) will

Sin(t0). Only odd harmonics are
properly referred
depend on the clipping pi
present however. A typical spectrum, for t0 - Tr/4 is shown in Fig.
2-35. As t0+ 0 , the spectrum becomes that of a square wave.

Origins; Clipping on both top and bottom occurs typically when the
input signal to an amplifier is too large, and the amplifier clips

*treat the n=l cas lanner similar to equation 2-12



at the power supply levels. Intentional uniform clipping for the purpos'
of generating harmonics can be done with a clipping circuitt typically
implemented with two series back-to-back zener diodes in parallel with
a feedback resistor in an op-amp inverter.

Spectrum of Double Clipped
Sine for to = ir/4 (a = 0.7071)

13. Waveform: Top Clipped Sine Wa-

Shape: Fig. 2-36

Cos(t)

f(t) = (l/Tr)[t0Cos(tD) - Sin(t0>]

+ (l/ir)[ir - t0-*Sln(2t0) + 2 Cos(to)Sin(to) ] Cos(t)

./,,.? 2 Cos (to) 0. , , Sin(l-n)tn 5in(l+n) tn^ , _,
+ (1/ir) I Sxn(t0) - (1_n) - (1+n) "jCos(nt)

onicas and Timbre : The harmonic content and th

two-sided clipping. A typical spectrum, for t0 = T/2, is shown in Fig.
2-37. Because of certain difficulties due to limits on the terms of the

individually above. Fig. 2-37 neglects the DC term.

Spectrum of Top Clipped Sine
for t0 = iT/4 (a = 0.7071)

Obviously this game of listing waveforms and their spectral content could go o
much longer, but here we will stop since we have covered the major cases. Other
cases can be worked out as needed. The reader will note however the complexity of
actually writing down some of the later series on the list. While we have found a
good variety of spectra, we should not forget one thing. All of these, being
perfectly periodic, are all roughly equally boring, and compared to the wide variet
of sounds available to human ears, there is relatively little variety here. Thus w
will need to look at ways of creating dynamic spectra. We will go on a bit more t
some other aspects of Fourier analysis and related transform methods, and then move
on to filtering. Some additional materials on Fourier Series are found in Append!
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