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GUIDE TO THE MANUAL ~ FOR INSTRUCTCRS AND STUDENTS

This book is neither a text nor a lab experiment manual - it is somewhere
in between, and perhaps could be used as either. It can be read as a text
because there is sufficient experimental data given so that the reader will
get the feel for the experiments even if he dodes not actualily do them. It
i1s also possible for a reader to do his own experiments at home based on
the suggestions in the manual, so an actual classroom setup is not required.
My own preference would be for the book to be used by the lab instructor
before the lab to prepare the experiments to be performed in lab. The
students will use the book in their write-up. It is unrealistic to suppose
that students will have read the experiments before entering the lab, and
much lab time will be wasted unless the instructor prepares some sort of
“recipe” for the experiments. Furthermore, the instructor will be able to
write up the lab instructions to fit exactly his available components and
equipment (and available lab time). "

Some instructors perhaps do not believe in making things too easy for the
student in lab for fear the student will not learn anything. This view is
utter nonsense. The student will learn much more from a well structured

plan that is carefully thought out, one which will give him interesting
results which he will enjoy presenting in his report. The "philosophical”
approach, that things are not easy in the real world, and that the lab should
reflect the real world, is not a valid one. In the first place, the student
- knows things are tough od the outside (that's probably why he is in school),
and ‘even the best laid plans .... so you need have no fear that the lab will
not provide a degree of stimulating adversity. So make things easy for the
student. Give him a reasonable recipe, and all the necessary parts in a neat
little bag (which will also help control the mess in the lab and sticky fingers).

Much of the presentation is organized with a "look ahead" approach. We force the
reader to become involved with something, often by step-by~step example, before
stating the principles involved in a complete manner, This permits the reader to
follow the text and perhaps grasp the principle himself before it is presented to
him, which leads to lasting understanding. In the author’s view, this is more
useful that presenting the principle at one point and making the application

appear later, or using a "mystery story" approach, Accordingly, the reader

should not feel uneasy if his understanding is only superficial at first encounter. .
Complete understanding will often come later in the text, from the classroom, from
other literature, and often, through experiences years later, '

This manval is structured and paced with the idea in mind that the reader will.
also be involved in a classroom course on network theory., This means that there
is much more detail in the presentations of theory in the earlier part of the
manual, and less toward the end. Accordingly, the independent reader may have to
spend more time working out details which the classroom student will get from
lectures. Also, in the earlier part of the manual, exercises are scattered into
. the text and should be considered as the reader encounters them as a means of
checking his understanding. Toward the end, exercises are omitted since the main
Presentation has plenty of details to be worked out as the reader goes along, or
exercise material appears as part of the write up of experimental results. 1In
regard to the lab problems, the first two experiments are fairly easy and are mainly
to familiarize the student with the lab equipment and with IC op-amps. Later labs
are more involved and will take more than one work session, giving the student a
chance to play around the first session, and get the work done in the second or




third session after he gets a feel for what is to be accomplished and knows what
will be required to answer the questions presented. Instructors will probably
want to go over the experiments suggested in this manual and rework the experimental
instructions to fit the particular situatiomn. Certainly some students with superior
ability will be able to omit some of the experlments listed and spend more time on

1ndependent pr03ects.

In addition to standard resistors, capacitors, and op-amps, the only other

components required are the CA3080 "transconductors'" for Experiment 5, and some

sort of delay lines for Experiment 6. The delay lines should probably be available

to the student on an "evaluation board", and not just as the IC's. At the time of

- this writing, it would be tedious to set up the associated clocks, level shlfters,

~filters, and so on that are needed with these delay lines, so this should be done for
the student. The instructor should consult the various manufacturers of delay llnes

to see what is currently available.

Students_and instructors are invited to contact us at Electronotes if they have
need of literature, supplies, problem sclutions, or whatever might be useful which
we can help with.

Bernie Hutchins
Electronotes

1 Pheasant Lane
Ithaca, NY 14850
607-273-8030



CHaPTER 1:  IpeaL Op-Awps AnD Basic Op-Amp CIRCUITS

1A. THE IDEAL OP-AMP

The ideal op-amp is a three terminal device which has an output, and two inputs.

"~ One input is inverting (-) and the other ig non-inverting (+). The reader will note

that the term "non-inverting" is in a semse a double negative, and this indicates that
engineers have come to view 'inverting" as somewhat the normal case, and have come up
with a negative version of this term to describe what would otherwise be considered
the normal case, The fact is that most amplifying circuits use some form of negative
feedback to achieve the desired response and the necessary stability. - Thus engineers
come to think of inputs which cause an inverted response at the output to be the most
useful. In Fig. 1 we show the op-amp as a three terminal device in its most common
representation with a triangular symbol. We also show two additional terminals which
provide the power to keep the device operating. These are commonly +15 and -15 as
shows. It is common practice to leave these power supply terminals out of schemetic
diagrams to keep things simple.

+15 Volt Supply

Inverting
Fig. 1 Input ~——o Output
Non-Inverting® ]
Input

=15 Volt Supply

The ideal op-amp has several additional idealized properties which are approached
to a given degree by any real op-amp of the type you can go out and buy. We will first
consider the property of infinite input impedance. Alternatively, we just say that the
actual inputs (+ and -) of the op~amp draw no current, but just respond to the voltages
applied to them. Still another way of saying the same general thing is to say that
the inputs do not load the circuit driving them in any way. The main purpose of this
assumption is that we can say where current flowing in the circuits around the op-amp
does not go - it does not go in the inputs of the op—-amp . Another assumption about
ideal op-amps that we want to get out of the way is the assumption of infinite bandwidth
and slew rate. This means that the device will work as expected regardless of  input
frequencies. and waveforms. That is, the device has unlimited frequency response and
power driving ability.  Another common assumption is that the output impedance of the

_ ideal op-amp is zZero. That is, we would expect to be able to apply any load to the

output of the ideal op-amp and have it drive that load. The implication is that the
output can source.or sink any necessary current to maintain the output voltage required.
These assumptions are summarized in Fig. 2.

I_=0 :
- Output Impedance = 0
Fig, 2 . 1 =0.—>. :

=

By far, the most interesting property of the ideal op~amp (the one that has the
most important consequences in the analysis of active networks) is the assumption that
the amplifier has infinite gain. Infinite gain is a little hard to accept, and many
designers will not find the actual gains of real op-amps, which may be a million or
more, much easier to conceive of. This is not because the numbers are so large (except
for the infinite one), but because circuits generally require finite gains and in fact,
fairly low ones in the range of 10 or 100 or 1000, - something like that. Thus, using
a very high gain stage may seem like the hard way of doing things. Why not just use
what you need and stop there? Well, the point is that we will be looking at designs
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that use negative feedback to set the desired gains, and where the actual gain of the
device is not important as long as it is large enough, and as long as we are only looking
‘at the gain performance, and not at things like distortion.

Now, the exact meaning of infinite gain is as follows. The output voltage of an
amplifier with a differential (+ and ~-) input, as in the ideal op-amp, is the input volt-
age multiplied by some number A. The input voltage is the "differential input voltage,"
the difference between the voltage applied to the + and - inputs. The meaning of
infinite gain is now seen to be the case where A goes to infinity. Right here it is best
to jump in and say that we are not going to get any infinite voltages out of op-amps, even
ideal ones. The op-amps are powered by real power supplies which have voltages like +15
and ~15. Thus the actual limits of the output, even for infinite gain, are still the
power supply voltages. But this limitation on the output still does not solve the
difficulty with the concept of infinite gain. - Suppose the differential input voltage
is +1 volt as shown in Fig. 3. The infinite gain of the op-amp will drive the output to
the positive supply voltage (+15 wvolts). Fig. 3 also shows the the case where the different-
ial input voltage is negative (-1 volt) and the output is drivem to -15 volts. This is
in fact a useful circuit, although not generally for active networks. It is called a
comparator, or a zero-cross detector in this case. If the differential input voltage is
positive, the output is +15, and if the differential input voltage is negative, the .output
is -15. Thus we arrived at a circuit for making a decision of the either-or type, but
how can this be an amplifier? At this point the reader must consider that since the
output is either +15 or ~15 for any non-zero input, that the output can be at a value _
in between +15 and -15 only if the differentfal input is zerc. This is the most significant
consequence of infinite gain that we will discover. . - '

Fig. 3 _ 1 volt +15

Some may object to the fact that we have multiplied zero by infinity and arrived at
some finite value (zero?) instead of at infinity and insist that to do this evaluation
properly it is necessary to take limits as one value approaches zero and the other .
approaches infinity.  Here we shall approach these limits by looking at what we might
expect from a real op-amp. Let's assume the gain is 1,000,000. Thus, a differential
input of 15 microvolts is enough to pin the output at the power supply limits. Thus
there is a very small linear region around zero differential input. This is indicated
by the curves of Fig. 4. : ' :

: Jrr e m e 135
out}]
v L.

Fig. 4 ' Vin
- S , i
e e PR !

For a real op—amp, it will be virtually impossible to make the op-amp operate in the
linear region by any manual means. If you try to supply small voltages about zero by
turning a knob and varying the voltage, it will just jump away from you every time.

It is likewise even less likely that you could get the amplifier operating in the linear
region by trimming a circuit and then expect the circuit to be stable thereafter. Thus .
even with the real op-amp we are led to the conclusion that the output is either at +15

or - 135, or else the differential input voltage must be zero. We have not as yet devised
a means for keeping the differential input voltage zero. In the real op-amp, we can not
zero the differential input by shorting the inputs together, because there is always some
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real offset voltage between them. In the ideal op-amp, we can get the output to zero
by shorting the inputs, but this is not very useful since we would then have only the
choice of three voltages for the output (+15, 0, and -15). We will soon see that

the differential input voltage can be easily maintained at zero by use of negative
feedback, either in the case of the ideal op-amp, or to a good approximation with a
real op-amp. Before doing this however, it is useful to speculate for a moment as

to whether there is a linear region in the ideal op-amp. In fact, as we take the limit
- as A goes to infinity, we see that a linear region remains (assume the crossover
region in Fig. 4 gets steeper and steeper as A increases). Thus, infinite gain .can be
thought of as implying an infinitesimal 1linear region. In fact, it won't matter
much in what we do below whether we think of the op-amps shown as being ideal with
infinite gain, or just real op—amps with very large gain. :

1B. NEGATIVE FEEDBACK AND THE FOLLOWER CIRCUIT

The basic op-amp "follower" circuit is shown in Fig. 5. This circuit will be
seen to provide at its output the same. voltage that appears at its input. It is thus
useful as a "buffer" since its input will not disturb the circuit it is connected. to
(due to the high input impedance) and the output will drive into whatever load is
required (due to the very low output impedance). This circuit has 100% negative
feedback - the output is connected directly back to the inverting input. We can now
see how this negative feedback is used to maintain a zero differential input voltage.
Suppose first that the output voltage is slightly more positive than the input. Thus a -

e e

Fig. 5 . .' R

[ e —
Vin

out

finite differential voltage appears at the input of the op—amp. Since this is a posi-
tive voltage applied to the inverting input, the very high gain of the op-amp will drive
the input down, removing the small positive excursion. If on the other hand, the output
wanders slightly negative, a similar argument shows how the output is driven positive.

. Thus, the only stable point is where the differential input is zero, and this means

- that the output follows the input. '

It will be left to the reader to show that similar correction processes take place
- in other op-amp configurations employing negative feedback. Thus, we will always
assume that the differential input voltage is zero as long as there is negative feed~
back and as long as the negative feedback is allowed to work properly. There are cases
with real op-amps where negative feedback is not allowed to work properly. For example,
~1if the output must assume a value outside the limits of the power supply voltages, the
negative feedback will fail. Likewise, if the output voltage can not change rapidly
enough to assume the necessary value to zero the differential input, negative feedback =
will fail. We should always keep in mind that the op-amp action is a team effort
between the high gain which amplifies the input differential voltage, and the output
voltage which is thereby adjusted to zero this differential. However, it is the fact
that the output assumes whatever value that is necessary to zero the differential input
that is the easiest to accept. Also bear in mind that the two inputs are not necessar-
ily zero, just that the two voltages are the same, so their difference is zero.

1C. THE NON-INVERTING AMPLIFIER

Next we want to get a circuit which will provide some actual voltage gain inst?ad
of just following the input voltage. We use the non-inverting amplifier sh?wn in Fig. 6
for this purpose. The analysis of this circuit dis simply a2 matter of applying the
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principle of zero differential input voltage, and using the fact that the actual op-amp
inputs draw very little current (ideally zero). The (-) input is thus at the same volt-~
age as the (+) input, which is the same as the actual input voltage. Thus the current
flowing through Ry to ground is Vln/Rl This current must be flowing simply because
Ohm's Law must be obeyed. This current is certainly not coming out of the (~) input of
the op—amp, so the same current must be flowing into the node associated with the (=)
input, entering by way of resistor Rg.  This means that a voltage equal to Rf{Vin/R1)
nust be developed across the resistor Rg. The output voltage is thus determined by
starting at the (+) input which is at voltage Vj,, and the (-) input is also at Vip.
The output is thus at Vip + Vin(Rg/Ry) so the gain of the ampllfiex is:

4

V. /R
Guy = (1 + Rg/Rp) n" 1

Fig. 6 Non-Inverting Amplifier

Vin
We thus see how negative feedback is used to control the very large gain of the op-amp.
We have only to set a resistance ratio to set the gain we want. Note that the non-
inverting amplifier has a "residual" gain of omne, which is the gain of the follower we
studied above. Thus, gains of less than one are not possible unless an attenuator is
placed on the + input of the op-amp. ‘The input impedaunce of the non-inverting amplifier
is very high since the signal is applied directly to an op-amp input.

1D. THE INVERTING AMPLIFIER

The inverting amplifier configuration of the op-amp is shown in Fig., 7. Note that
in this circuit the (+) input is grounded. Thus when negative feedback is werking
properly, we expect that the (-) inmput will also be at ground potential. Yet it is also
evident that there is no actual current path to ground since no curremt actually enters
the (-) input of the op-amp, and the other two possible current paths go elsewhere
(through resistors Ry and R¢). Thus the (~) input is an unusual structure somtimes
called a "virtual ground" and for reasons which will become apparent, it is also called
a "summing node.” The term "virtual ground" comes from the fact that the (-) input
remains at ground potential even though no current actually flows to ground by this
weans. It should be realized that the "virtual ground" is just a special case of the
more general principle of zero differential input voltage resultlng from negative feed-

back.

Vln/Rl - -
e

Vin

Fig. 7 Inverting Amplifier

Since the (~) input terminal is at ground potential, a current V;, /R, must be
flowing through resistor Rj. This current has no place to go except out through the
resistor Rg¢. Thus, a voltage Rf(Vln/Ql) is developed across Rg. Since it is the usual
convention to regard current as flow1ng from + to -, and one end of Ry is at ground
potential, the output clearly assumes a negative potential, assuming Vip is positive.
If Vi, is negative, the direction of the current shown is reversed. Thus we have an
output voltage of -V;,(Rg/Ry) and the gain is:

- Gi = —Rf/Rl
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It is essential to be very clear about what is actually going on in the inverting

amplifier. Clearly, the (-) input is at virtual ground only because the output takes
on whatever voltage is necessary to make this so. There is no reason to deal with the
difficult impression of a current forcing its way into the (-) input and out through a
feedback resistor, forcing .the output to take on a certain value. It is in faet the
output that does all the work. It takes on a value that keeps things "happy" at the
(~) input, and this means a zero differential voltage. The reader can easily see for
example that if the output voltage wanders positive, this will be fed back to add a

. positive increment to the voltage on the (-) input, and this increment will be amplified
by the very high gain of the op-amp into a negative excursion at the output, thus driving
the output back. A similar negative excursion at the output will be corrected in a
similar manner. Thus, the negative feedback leads to a single stable state - that where
the (~) input is at ground potential. '

The reader will note that since the (~) input is a virtual ground, it is possible
to attach more than one input resistor to it. 1In fact, it is only the current that
enters the "summing node" that matters. This current can enter through resistors, or
from any sort of current source. The total current into or out of the summing node
must of course be zero (as with any node), and the excess current flows out through the
feedback resistor. This makes possible the popular inverting summer configuration

shown in Fig. 8. '
‘ | R3 :
V3 [ Av‘i;'.-‘v‘ . . R V V R f
2 : f = o= —
Fig . 8 v 2 [ PAPAAA AAANA out 1 R1
Inverting Summer V1 . AAAAA v, zf
2
Rf
-vg_g = e e o+ s e

1E. THE DIFFERENTIAL AMPLIFIER

The op-amp by itself is a differential amplifier of very high gain as we have seen
aboveé. TIn many cases, we want to have a circuit which takes the difference between two
input voltages and multiplies this difference by a constant (often the constant is one).
A circuit for this purpose is showm in Fig. 9.

]:2 v ————
. V [ 3 AANAA . AAAAA
Fig. 9
- Differential
Amplifier

Analysis of the circuit is similar to the analysis of the circuits above, The first
thing to note is that the voltage Vy is just determined by Vi and the voltage divider

on the {(+) input. Thus Vy = VlKR/(R+KR). Since there is negative feedback in the _
circuit, this is also the value for V., and consequently a current (Vy-V,)/R is flowing

_through the resistor R attached to V. This same curreant is then seen to be flowing _

. out through the feedback resistor KR, and this allows us to calculate the output voltage
as follows: '
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vV, = ,
T oT+x

V1K 1
1= [vz T+ ] R
Vo = Ve - IZKR

[%2 + KV - KV1| RR
WKl R R
_ K(V1-V2) + K%(V1-Vp)

1+K

ir

‘Thus, we arrive at a structure that gives a scaléd value of the differential input
voltage. Note that this amplifier requires that the ratlo R:KR be accurately maintained
in both the upper and lower branch of the circuit.

1F. THE INTEGRATOR - A FREQUENCY DEPENDENT RESPONSE

In the circuits above, frequency has not entered any of the circuit calculations.
Since we assumed that the ideal op—amp had infinite bandwidth, it made no difference
what the input waveform was. When we get to'testing real op-amps, we will see that they
do have certain limitations that depend on the input waveform. Now, even when we stay
well below these limits of the op-amps, we may have a c¢ircuit that performs in a manner
that varies with the input frequency. In fact, this is the idea we wish to exploit when
we design electrical filters. To develope a filter circuit, it is necessary to add to
the networks a circuit element that has frequency dependent properties. Yet, we want
to restrict ourselves to linear elements since we want only linear distortion (change
of amplltude and phases of frequency components, but no new frequency components). This
means that we shall consider only capacitors and inductors. Then we will generally
“throw out inductors is being too large and expensive (at least at audio frequencies)
in practical circuits. This leaves the capacitor. If we apply an AC voltage (e.g., an
audio signal) to a network containing capacitors, in general the amplitude and phases
of the voltages in the network will depend on the frequencies present. For a low-pass
filter for example, we would -hope the output amplitudes for high frequencies would be
- reduced relative to the input amplitude. Keeping track of phase is tedious at best.

. It is much simpler to declare the existence of a complex frequency "s" (the Laplace
variable) where s = ¢ + juw, where w is the ordinary radial frequency and j is the square
root of minus omne. Thus, s is a complex number. Readers unfamiliar with the Laplace
technique will find that they can still use it by just thinking of capacitors as
resistors of value (1/sC) and working out network funections with the usual Ohm's Law
for resistors. Then when frequency response is needed, jyu is substituted for s in the
equations. This will become clear later on. The circuit for the 1ntegrator is shown ia

"Fig. 10 below:

‘Integrator




In the circuit of Fig. 10, the (-) input of the op-amp is at virtual ground and
hence, as in the inverting amplifier: .

I= vin/R

Just as in the inverting amplifier, the current must be flowing out through the feedback
element, which in this case is the capacitor, and we treat this capacitor like a resistor -

which has a value 1/sC. Hence:

vout = wI(l/sC) = -V /sCR |
It is common practice to write Vour/Vin as T(s) where T(s) is called the "transfer’
function” and the fact that T is a function of "s" means that a frequency dependent
response will result. It is understood in such cases that Vip and Vour are the
amplitudes of sinusoidal waveforms. We thus write T(s) for the integrator as:

T(s) = -1/sCR

Note that in arriving at T(s) all we do is just assign capacitors a value 1/sC and do
‘ordinary circuit calculations (like current sums and voltage loops) to arrive at .an
expression for Vou¢/Vip. . [While we will not be using inductors, we may have to
recognize an inductive response, which would be sL. Thus, if we weére using inductors,
‘we would use a value sL and treat the element like a resistor, just as we do when we
substitute 1/sC for capacitors. Thus we have an s term as an inductor, an s%=1 term
as a resistor, and s_l as a capacitor. ] While it was quite easy to get T(s) for the
integrator, we shall be using the same general procedures for arr1v1ng at T(s) for more
complicated structures.

. Once we have T(s), we can use it to calculate the frequency response. To do this,
‘we have to calculate the magnitude of the transfer function. Since s = ¢ + jw, T(s)

is in general a complex number, so to get the magnitude of T(s), we need to multiply
T(s) by its complex conjugate [for every j in T(s}, you get the complex conjugate by
substituting —-j], and take the square root. In general, we are interested in the
‘magnitude of T(s) along the jw axis since this gives us the frequency response (where
w= wa f being the ordinary frequency in Hertz). To calculate |T(s)| where the | I
mean "magnitude of" we thus take T(jw) and the complex conjugate T*(]w) = T( -jw) and
calculate

T(jw) = ~1/jwRC
T*{jw) = ~1/(-inC) - 1/2 o 1/2

IT(jw)| [T(}m) T*(jw)] [_EZBE%ZEZ“] = [EZE%EZ;"]‘ = 1/wRC = 1/2wfRC

Thus we see that the frequency response of the integrator falls off as 1/f. Doubling the
frequency will halve the response. Doubling the frequency is an increase of one octave
and halving the response is a 6db drop, hence we say the integrator has a roll-off of
6db/octave. This response is shown in Fig. 11, plotted on a log-log plot. A 45° slope
on a log-log plot is 6db/octave, which is the same thing as 20db/decade.

Response “\. :
(db) . 6db/oct., 7
Fig. 11 s ' Frequency Response of Integrator
Log (freq)
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" Another feature of the integrator that is evident from the frequency response
function is that the integrator has an infinite response to DC. This fact actually
can be quite important since generally there is at least a small DC offset voltage
present in any input waveform. Thus, in any practical op-amp integrator, it is
necessary to make some provision to limit the DC response. Commonly, this is done by
placing a very large resistor across the capacitor to "leak off" any DC charge that
starts to accumulate. This in fact changes the circuit from an integrator to a single-
pole filter, but it is a good approximation to an integrator as lomg as the leakage
resistor is very large compared to the input resistor (R im Fig. 10). The circuit with
the leakage resistor is called a damped integrator. ‘What happens if the integrator
is not properly damped is that the DC term in the input is integrated to the point where
the output .of the op-amp hits one power supply limit or the other. At this point,
negative feedback fails, and the differential input is no longer zero.

Above we considered only sine waves into the Integrator. What if we put in a

. square wave for example? When the square wave is at its positive value, a constant
current flows into the summing node. This current causes the output of the integrator

to ramp negative. When the square wave goes to its negative value, the output starts

-to ramp back up in the positive direction. The result, for proper setting of time
constants relative to the input frequency, is a triangular waveform. This is illustrated

in Fig. 12,

Fig. 12 Pr ical Irtegrator - .
| ig ractica egrator *"'"_4F____m | Ry >> R

. c
v ’ AANA \_ . .. /A /\ /
in R o e N W
-~ .
;t,/’ v
'[:“ “out

-
*

damping resistor

$

It is interesting that the conversion of the square wave to a triangle can be understood
at least in part by the frequency response of the integrator. If we look at the
Fourier series for the square wave, we see it has only odd harmonics,.and that the
amplitude of these fall off as 1/n, where n is the order of the harmounic. 1If we apply
this to the input of the integrator, each harmonic is treated separately. The first

- harmonic (F) is attenuated by a certain amount; the exact amount does not concern.us.
There is no second harmonic (2F) in either the input or the output. The third harmonic
(3F) is present in the output, but since the frequency response of the integrator goes
as 1/f, the amplitude of the third harmonic is down by a factor of 3 relative to F,

and since the third harmonic in the square wave was already down by 1/n = 1/3, the third
‘harmonic in the output of the integrator is down by a factor of 1/9 relative to the
fundamental. Similar arguments show that the fifth harmonic is down by a factor of
(1/5)-(1/5) = 1/25, and so on, each of the harmonics is down by 1/n2. In fact, if we
check the Fourier series of a triangle wave, we find that the harmonics do in fact fall
off as 1/n2, To show that the square is actually converted to a triangle by means of
the integrator, we would have to work out the phase response, which we will not do here.

There are two important points about the integrator that carry over to other filter
circuits as well. First we saw that we could break an input waveform into components
that are actually sine waves, and show how the filter acts on these separately. We then
reconstruct the filtered waveform by combining filtered components at the output. This
is -an example of the principle of linear superposition. The second point is that while
the filter alters the relative amplitudes of the components, and also the relative phase
(we did not show this explicitely above), it does not create any additional frequencies
in the output spectrum. This is 'a property of a linear system, as opposed to a non-
linear system which can produce additional frequencies (harmonic dlstoztlon) The
filters we shall be dealing with will bé linear systems.
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CHAPTER 2:  INITIAL EXPERIMENTS WiTH REAL OP-AMPS

2A.  INTRODUCTION

In this chapter, we begin a discussion of real op-amps and reach the point where
the reader will find it helpful to perform a number of the suggested experiments. In
most cases where we list a section as an experiment, we will give the expected results
somewhere, so it is not essential that the reader perform the experiment, but he should
study the results. In other cases, an experiment is not explicitely nentioned, but
‘it should be obvious that one could be done. : - : '

In general, filter networks are designed on the assumption that op-amps are ideal.
When it comes down to actually building a working filter, it is important to know how
the real properties of real op-amps will alter the ideal performance of the network.
In genral, it will be the frequency dependent properties of the op-amps that will be of
the most interest. It is the purpose of this chapter to teach the reader which of the
op-amp parameters to consider, how they are measured, and how to select a different
device or alter a given one when performance falls short of that which. is required.

2B. THE FREQUENCY RESPONSE OF OP-AMPS

When we speak of an op-amp, a real one that is, we have in mind a single chip
(monolithic) device which is often bought in an eight pin

mini-DIP package in the general form shown in Fig. 13. - Top View
These op-amps cost from something like 25¢ up to a few : 1 fo—pr— 8
- dollars, depending on the type. Other types of op-amps [ ::
. are available, but these are the most common and the &) e [] + Supply’
~most generally used types. Let's suppose that we have (+)'[:"»~E:>”\-j Out
obtained one of these and it is a type 741. How do we - Supply ] u
know it is a type 7417 Well, most monolithic op—amps 4 3
-are made by several companies, one of which originated Fig. 13 Typical Mini-DIP
the thing, and the rest who "'sécond source" it. It is Setup of Op-Amp

the general practice when second sourcing a product to
keep a portion of the type number put on.by the original manufacturer. In the case of
the 741, it is the sequence "741" that is the key, and may appear as pA741 {Fairchild -
the originator), or as LM741 (National), MC1741 {(Motorola), CA3741 (RCA), SN72741 (Texas
Instruments), or in many other forms. The 741 is likely to be very inexpensive, so we
would like to know just how good it is. Suppose we set it up as a follower as shown in’
Fig. 14. 1If the op-amp were ideal, we would expect we '
could put in any voltage (between the supply limits)

Fig. 14 Op-Amp Follower

at any frequency, and. get the same thing out we put in _

with the added advantage of a zero output impedance. [—_ +15

For a real op-amp, we know there has to be some upper -

limit beyond which the frequency response of the op-amp 2 741 -
will drop off. All amplifiérs have some upper limit o , Out
beyond which their active elements will begin to fail, 1In 3 ;//11‘15

and in the case of the monolithic op—amp, these limits
will be reached at relatively low frequencies. There
are several reasons for this. For one, this "poor" response may have been built in as
a means of compensating the op-amp so that it does not oscillate in a region where we
would not expect to use it anyway. Also, even if the device is not intentienally
compensated, there will be stray capacitances that will "short out" high frequency
signals. The fact that the chip of silicon on which these amplifiers are fabricated is
so small means that these capacitances will in general be significant. This is the
reason that relatively simple op-amps made of discrete transistors may perform as well
or better than many monolithic devices because the devices in them are widely separated.
0f course, these discrete op-amps will be larger and more difficult to assemble, so it
is often better to live with the limitations of the monolithic devices.
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2C. EXPERIMENT NO. 1, OP-AMP BANDWIDTH

The basic procedure of this experiment is as follows. First, we restrict the
input signals to the op-amp so that the output signal level is always quite small. The
reason we do this is so that we can avoild any complications that would arise from the
limitations of the output stage, and can concentrate on inherent frequency response
limitations of the op-amp as a whole, With this provision made, we will be setting up
the op-amp for a certain gain, and then testing it to see what frequencies can be
amplified to that gain, and where the amplifier starts to fail. The basic test
circuit is shown in Fig. 15. Note that when B goes to :
zero, this circuit converts to the follower circuit of
Fig. 14 (with the two R resistors acting as loads on
the driving stage and the amplifier under test). Thus,
by changing B, the circuit makes it possible to examine
many different gain conditions. Note that the circuit
is basically a non-inverting amplifier of gain 1 + B.
There is also an attenuator on the (+) input of the op-
amp which gives a loss of 1/(1+B) so the net gain of the
circuit of Fig. 15 is one. Thus, as long as we input
a small signal, we can be sure that the output will also
be small. Input signals should have an amplitude of :
about 80mV in this experiment (that's 160 mV peak-to-peak). Fig. 15 Test Circuit
The value of B:R should be kept in the range of 10k to ' :

C 100k, and R is calculated back from the desired gain

—
Cut

value. In practice, convenient resistor values are ' Qutput

chosen, since the exact gain values measured are not too ~ |Amplitude
important., With this setup, the frequency response is e ———
measured. It should be relatively flat at low frequencies Response Yy
and at some upper frequency it will begin to fall at a : Curve *,

- relatively rapid rate. Plot these curves, and note the
frequency at which the gain drops to about 0.7 (down 3 db)
of its low-frequency value. An example curve is shown

in Fig. 16, . - Freq.
: Fig. 16 Typical Response Curve

Keep in mind that although the circuit of Fig. 15 has

an overall gain of unity, the amplifier is working at a

gain of 1+B. We have just added the input attenuator as a means of av01d1ng tedious
settings of input signal level during our experiment. Select one op-amp, say a 741

or an LM307, and make a set of curves of the type shown in Fig. 16 for various gains
such as 1, 2 5, 10, 100, 500, 1000, 5000, and so on. Plot these all on the same
. graph, being sure to plot the level portion (low frequency end) of the curves starting
at the gain of 1+B, not at 1. If it is more convenient, plot the curves on log-log
paper, using the actual voltage readings, and then trace these curves on a fresh piece
of log-log paper, starting each at the appropriate, gain 1+B by sliding the ‘sheets up

or down relative to each other. A full set of curves will look something like the
one shown in Fig. 17. This is typical of the internally compensated, 1 MHz bandwidth
type amplifiers of which the 741 and 307 types are the best known. The meaning of the
1 MHz bandwidth (also called more properly the "unity-gain bandwidth" or "gain-bandwidth
product™) will be clear if you 31mp1y multiply the gain (1+B) by the bandwidth, which is
the flat portion of the response (from DC up to about the 3db points on the curves).

For this type of internally compensated op-amp, this product will be approximately
constant. This means that the gain-bandwidth product and the unity-gain bandwidth
(Bandwidth x 1} are the same number. By quickly measuring the 3db peints of other
op-amps, determine the gain-bandwidth product of some other newer and improved
internally compensated op-amps such as the MC1456, CA3140, LF351, etc.

EXERCISE: Using only a type 741 or type 307 op-amp, and resistors, build a low-pass
filter that has a 3db frequency of 1000 Hz, and a DC gain of one. .
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Before going any further, we should say a few brief words about the need for
compensation, At the moment, it might seem to the reader like the designer of op-amp
integrated circuits have gone to a lot of trouble to obtain what seems to be a very
poor frequency response. It should be realized that in many op-amp applications, mno
compensation is needed, and in fact, op-amps work better in these applications if they
are not compensated (comparators, for example). However, in active circuits, we are
generally using negative feedback to obtain the desired gains or just to make the
network work. Negative feedback is obtained by feeding back a portion of the output
to the inverting input. There is an assumption here. We assume that the inverting
input is inverting relative to the output with an instantaneous transfer across the
op-amp from inputs to output. In all practical op-amps, there must be some delay, S0
the signal at the output is an inversion of the inverting input within a delay that
can be represented as a phase shift #(f), a frequency dependent phase angle. This
phase shift is due to the small parasitic capacitances that are present in the chip,
and as you might expect, this phase shift is greater at higher frequencies than at
lower ones, because the parvasitic capacitances are small enough to only be important at
high frequencies. Thus, #(f) starts at zeroc for f = 0 and increases as f increases.
At some frequency, #(f) will reach 180°, and this means that the inverting input is now
a non-inverting input, and if the gain at this frequency is greater than one, you are
going to get oscillation. - One way to make sure there will be no oscillation is to
make sure the gain of the op~amp is less than one at the frequency where the phase
reaches 180°, and this is the putpose of the compensation. :

While circuit oscillation is normally associated with high-gain, it is not high
gain (but rather phase shift and feedback) that cause an op-amp to oscillate. It
also seems strange at first that it is the lowest gain, unity gain, that presents the
case requiring the most compensation. This is easy to understand if we realize that
a unity gain follower uses the most feedback (to squelch the op-amp high gain) of any
other case, and there is thus more of the output féd back.  Thus if the output is
badly phase shifted across the chip, it will do the most damage at unity gain.

As long as we are working well within the gain-bandwidth product, this unity

gain compensation is a good idea, since the op-amp will be stable in most appllcatlons
(not all applications - sometimes there is something in the feedback loop which changes
things). However, internal unity-gain compensated op-amps will generally provide the
fewest unpleasant surprises of any type. At other times, uncompensated (to be
_externally compensated) op-amps have an advantage. When only gains greater than one
are to be used, less compensation and more bandwidth can be achieved. Perhaps more
importantly in audio-frequency circuits, while more bandwidth may not be needed, less
compensation results in higher slew rate, which in turn can lead to higher signal
amplitudes and an 1mprovement in signal— o-noise ratio. We will discuss slew rate in
the next experiment. :

2D. EXPERIMENT NO. 2, OP-AMP SLEW RATE

In experiment 1, we saw some of the limitations of real op-amps, the ones due to
the small size and parasitic capacitances which make it necessary to compensate or
"roll off" the high frequency end of the response:. This was related to the delay
‘across the op-amp. Here we want to consider the delayed response of the output, not
1-elatn’.ve to the input, but relative to how fast it would "like" to go. Suppose the
op-amp's inputs are telling it to go as fast as possible, and we want to know how fast
it is actually going. This is what we call the maximum slew rate. The main thing
‘that limits slew rate is how fast the output stage can come up with the necessary curreant
to drive whatever it needs to. In general, the actual load will not matter much, or
at least if the load does slow the output down, it is probably a bad application. The
major limitation is in the part of the output stage that compensates the op-amp. This
contains a capacitor (internal or external) which must be charged by a finite current
source, and this means that it can only go so fast. This slows down the entire output.
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This is bad in that it causes a lower value of slew limiting than we might like to
see, but it is good in that lower slew and compensation go together (as we shall see
in the case of the 301 and 748 type op-amps), and we have to have the compensation

in closed loop applications (which includes all the active circuits we will be looking
at).

Perhaps'the idea of slew rate limiting can be made clearest by describing three
different ways in which it can be measured: the trapezoid method, the triangle method,
and the sine wave method. The trapezoid method is straightforward, and is the one the
reader would dream up himself if asked to test slew rate. The idea is to apply to
the op-amp follower circuit a square wave
from a generator that is known to have fast
rise time. The setup is shown in Fig. 18.
It is a simple matter to observe the out- Square-Wave
put of the follower with an oscilloscope Generator
with an accurate time base, and essentially
just read the slew rate of the edges in :
volts/second. Typical rates will be in ' Fig. 18
the range of 0.5 volts/microsecond (types

. 741, 307) to 2.5 volts/microsecond (MC1456)
and to 10 volts/microsecond and above for
CA3140, L¥351, etc. While this is an :
obvious way of measuring slew rate, there -
are several reasons it may not work well in : +
a student lab, These reasons include the —
possibility that scopes may be too slow, or Op-Amp
their time bases may be inaccurate, and . Under
signal generators may not have rise times Test
much faster than the fastest op- amps to
begin with.

>
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The second method we will discuss relies very little on an accurate scope (as long:
as the voltage scale is accurate or can be calibrated (perhaps with a 15 volt power

supply). It does require a known frequency, so an accurate genexator d1al or frequency -
counter is needed. This method uses the

fact that an op-amp can be driven at a high - -.__w-hA
enough frequency that it is constantly being - Square-Wave L//A\\\
driven to its slew limit. Such a situation Generator /

results in a triangular waveform. The setup _ _

is shown in Fig. 19. In a sense this triangle
method is an extension of the trapezoid method,
except here the time factor is determined from frequenc i 19 n
the known frequency of the driving waveform. 4 y FAB. - _"GEED

The basic procedure is to just turn up the £ Slew~Rate
frequency until a triangle waveform is obtained, T Test
and measure its amplitude and frequency From .
Fig. 19 it is easily seen that the triangle -
covers a full voltage swing of 4A (where A is : *"——-—-4—1
the amplitude) during one pexriod (llf) Thus
the slew rate is: Op-Amp
_ LA - .Under
SR = wolts/sec =3i/f = LAF Test

+*

/:\

This is a very simple method and has several advantages. First, it is relatively
independent of inadequacies in the scope and in the driving waveform (which could in
fact be a sine, sawtooth, or even triangle if you think about what you are doing). You
only need to know the frequency with some degree of accuracy. Typically the amplitude
of the triangle should be down to 1/3 or so of the input waveform amplitude.
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The third method of measuring slew rate (the sine method) is a little more subtle
and probably less accurate than the first two methods, but it shows the practical
consequences of slew limiting much better than the other two since we see the effect of
slew limiting on a sine wave, and can better guess at the resulting distortion. We start
by determining the maximum rate of change of ocutput voltage needed to handle a sine wave
of frequency f and amplitude A (that is, V(t) = A Sin 2wft). The rate of change of
. output voltage is just the derivative dV/dt = 27fACos 2rft and this function in turn has

an extreme where its derivative equals zero, :
This occurs at:

7 ' Fig. 20
d2v/dt? = -4n2f2A Sin 2nft = O,
Sine and Slew

a-Sléw  kinky
Limited :

Thus dv/dt has its maximum at the zero crossing
points of the sine wave, which is probably
obvious from a study of Fig. 20. At the points

Limited Sine

where the Sine is zero, the Cosine has magnitude /-
one, so the value of the slew rate is dv/dt 3
evaluated with the Cosine = 1. Thus:

dv/de = 2nfA
max

The trick is to detect the slew limiting from
an experiment. The procedure is to input a
sine wave of about 10 volts amplitude and turn up the frequency until some s1gn of slew
limiting 1s seen, and then to apply the amplitude and frequency to the equation for
dv/dtypax. The first sign of slew limiting will likely be a slight kink in the relatively
straight portion of the waveform just before the zero crossings, and a corresponding nick
as the voltage moves on up toward the peak, and the slew limited output catches up, and
slows down to a following mode. This behavior is sketched in Fig. 20.  Another way

of using the sine method is illustrated by Fig. 21.

Here we use a fairly sensitive scope scale to ,

S , : Fig, 21
monitor the voltage on the (-) input of the op-amp . _
which is this time configured as an inverter. As Slew-Rate

we discussed above in Chapter 1, this voltage
should be zero since the (+) input is grounded.
However, this assumes the feedback is from an ideal
output. However, during slew limiting, the output Y
is not where it should be relative to the input,
and the (-) input will jump slightly off ground.
These nicks as slew limiting sets in are thus the
indication that the maximum frequency has been
reached, and the amplitude and frequency can be ' =
plugged into the dv/dtpay equation. '

b J

Test

e AP e d

Once you understand the different methods of measuring the slew rate, try a few of
them and compare the results against each other and against book values for slew rate
from op-amp data books. A 741 or 307 type op-~amp is suggested for this initial test
since these slower op-amps will be easier to start,with. Once a method is mastered,
vou can then try measuring other op-amps as well. Op-amps such as the MC1456, CA3140,
and LF351 are good choices for additional measurments, although just about any op-amp
will suffice.

In order to investigate the effect of compensation on both slew rate and on gain-
bandwidth product, we have to start with an op-amp that can be custom compensated.
 Here types LM301 or 748 will be good choices. The compensation in these op-amps is

accomplished by inserting a capacitor between pins 1 and 8. Start with a 30pf capacitor
in this position with either the 30l or the 748 and verify by testing the slew rate,
bandwidth, or both that the op-amp behaves very similar to the internally compensated
types 741 or 307. [In.fact, it is essentially an internal on-chip 30pf capacitor that
is used in the 741 and 307].
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Thus there is really no point in using a 748 plus an external 30pf capacitor

- just to get the performance of a 741 back. [All the expeximents we are discussing
here that use a 748 can also use a 301 with about the same results.] What happens
when we remove the capacitor? Well the op-amp will take off into a nasty oscillation
(high frequency and full amplitude). If we cut the compensation to about 10pf, we
have a more (but not fully)stable situation. To see the real advantage of custom
compensation, we have to consider something like the circuit of Fig. 15. Set up
this circuit using a 748 with B = 1 (op-amp thinks the gain is 2) and 15pf for the
compensating capacitor. Check the slew rate and bandwidth. Repeat this for B = 9
(gain of op~amp is 10) and a compensating capacitor of 3pf. In general, you should
find that the compensation can be decreased from 30pf by a factor equal to the gain.
This should extend the gain curves at the set gain so that they extend beyond the
~region reached in Fig. 17 (i.e., you can increase the gain bandwidth product,

- effectively sliding the 45° downslope of Fig. 17 to the right). You won't be able

to use lower gains however unless the compensation is increased again, so a portion
of the previously usable region is no longer usable. The slew rate at the same time
increases by a factor proportional to the decrease in compensation.

Another interesting case is to compare the
748 with 30pf compensation (which you examined
above and found to be essentially a 741) with
the 748 with 15pf compensation used in the unity

gain inverter of Fig, 22, While both of these Fig. 22

circuits have unity gain, the 748 in the inverter

slews twice as fast because it has half the Unity-

compensation.  This is often a useful trick to Gain

keep in mind. inverter 15pf

A brief explanation of what is going on seems in order. We want to see why we
can use less compensation with higher gain. We
. begin by considering the typical negative feedback
stage as shown in Fig. 23. This consists of a
~ voltage divider with the op-amp output at one end,
the (-) input at the center, and something else at
the other end:. This "something else" may be a
ground (non-inverting amp) or a signal input
(inverting amp), but the important thing is that
it is not the output voltage. The voltage

Negative

divider thus attenuates the output signal fed Fig. 23
back to the (=) input. If Rl is 100k for example Feedback Voltage
and R2 is 200k, the signal fed back is attenuated _ Divider

to 1/3 the value it would be if a full feedback unity gain follower were being used.

- Thus, when we consider the possibility of oscillation, the 31gnal'at the output would
have to be three times as large when the phase shift equals 180°. This means that we
can achieve stability with only one third the compensatlon. '

It might be supposed that additional slew rate can always be obtained at the
output if we just attenuate signals and use additional gain in the op-amp. This is
. true up to a point, but there are always trade-offs. For example, attenuating the
input signal before reaching the op-amp input means that the op—amp input noise level
is going to be more important relative to the signal, and the signal-to-noise ratio
will suffer. There are many considerations that come in when it comes to applylng
op-amps to the processing of high quality audio signals, and we will not attempt to
cover these here. We just want to warn the reader that things can be a little
trickier than they might appear at flISt. :

EXERCISES:

1. Discuss the harmonic content of a severely slew limited waveform of any type.
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2. Most modern op-amps will withstand a full supply voltage as the differential
input voltage. That is, you can apply +15 to one input and ~15 to the other without
damage. Older opramps could be damaged if the differential input were too large.

If the maximum allowable differential input is something like 1 volt, tell how the
op~amp could be damaged by slew rate limiting if the circuits described in this
chapter are used directly. Tell how two simple diodes can be used to prevent damage.

3. Tell how the circuit of Fig. 15 or a simple modification of the basic structure can
be used to make a simple test for adequate bandwidth and adequate slew rate

simultaneously.

4, The circuit of Fig. 24 is apparently indaequately In L0k
compensated since it is a unity gain inverter and the 100k
compensation capacitor is only 5Spf. Compare this’ WA AP
with Fig. 22. Tell why this circuit is in fact = 15k

stable. What is the expected slew rate. Discuss
any limitations of the circuit.

Fig. 24

- Circuit for
Exercise 4
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CHAPTER 3:  S-PLANE AnaLYsis TecHniques Anp AcTIVE FILTERS

3a. ~INTRODUCTION

In this chapter, we will be giving you some procedures that you will often use
in the analysis of active networks. While there is a firm mathematical basis for the
things we will be giving, we will not go into that here. Instead, here you will find
more of a "cookbook" approach. You probably already have the general ideas about
Laplace transforms and s-Plane analysis, or you can find it in many standard references
With even a very sketchy idea about these methods, you will be able to follow our '
procedures and get useful answers.

3B. FREQUENCY SENSITIVE NETWORKS AND THE s FREQUENCY VARIABLE

In Chapter 1, Section 1F, we looked at the integrator, and found that while its
behaviocr was erquency sensitive, the analysis could be handled in terms of a math-
ematically "complex" frequency which we call "s". Perhaps it would be a good idea
if the reader goes back to that section for a review before going on here.

- The steps in the ana1y31s of a frequency sensitive active network, which is often
called an "active filter" are as follows:

1) 'Each capacitor in the network should be considered mentally to be a
resistor with value 1/sC, where C is the capacitance.

2) The op-amp should be considered ideal. In active networks, this means
two things: (a) The input currents are zero, and (b) The differential
input voltage is zero.

3) ldentify by appropriate symbols all unknown currents and voltages. You
should also make sure you know which voltage is the 1nput Vin and which -

is the output Vout.

4) Using standard Ohm's law type calculations, solve out the network. Of
course you can set up n equations corresponding to the n unknown volt-
ages and currents, and solve by standard methods for simultaneous’
equations, but it is usually the case that several of the equations

are rather trivial. This makes the "by gosh and by gully" method more.
useful in most practical cases. In any case, you are trying to obtain
an expression for the transfer function T(s) = Vg,,./Vip in terms of

s, the resistor values, and the capacitor values, with no unknowns.

5) From T(s), determine the network characteristics you want to know such
" as type of filter, cutoff frequencies, frequency response, Q, and so
on. The way this is done will become clear later. For now we just

want to point out that when the transfer functlon is obtained, you have

essentially solved your problem.

3C., = EXAMPLE 1, SINGLE-POLE LOW-PASS FILTERS

Fig. 25 shows a simple RC series circuit which is Single-Pole
tapped in the center, and an op-amp follower has been ‘TLow-Pass
added on to "buffer" the output. . Here the op-amp is T —e
used because it has a high input impedance and a low f;-- ﬁ B Out
output impedance. Without the buffer, we would expect - 1 b
our measuring instruments or following stages in our’ : I C Fig. 25
circuit to disturb the performance ef the RC series.
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This network is somewhat trivial, but trivial networks are the best for illustrating

a methed.

1)

2)

3)

4)

5)

~ The curxrent I is equal to the voitége Vin divided

We shall follow the steps above in 3B one by one.

We consider the capacitor C to be gone and Fig. 26 I T
replaced with a resistor 1/sC as in Fig. 26, -

- The op-amp is ideal, the unity gain follower, ..En

The voltage V,,; is the same as V,. V.

The unknown current is I and the unknown ;T\\¢

voltage is Vi.

by the series '"resistance" R + 1/sC. The voltage
V, is the current I times the "resistor™ 1/sC. Also the voltage V4 is the
same as Vout 80:

. 1/sc 1
T(s) = Vout/Vin = g ¥7/5¢ " T ¥ stk (3¢-1) .

We note from T(s) that at low frequencies (s is small), T(s} approaches 1, and
at high frequencies (s is large), T(s) approaches zero, hence we have a low-pass
filter. If we want, we can get the frequency response function |T(s)] by
substituting jw for &, and taking the magnitude of the complex number by
multiplying T(jw) by its complex conjugate T(-jw).

T(jw) = /(1 + jwCR) - - and T(-jw) = 1/(1 - jwCR) (3C-2)

IT(s)] = [T(jw)-T(—,jw)]”2 = [/ + w2c2R2)11/2 (3¢=3)

With this, we can make a plot of the frequency response as a function of

frequency f where f = w/2w. If we take R to be 10k and C to be 0.01 mfd (107%) we
arrive at a plot as shoun in Fig. 27. . .

4

Fig. 27 Frequency Response

of Circuit of Fig. 25 with
= 10k, € = 0.01 mfd

4

A frequency response graph of the type shown in Fig. 27 probably tells us more that we
want to know about the filter than anything else. We can tell from this graph that
the filter is low-pass and for example that a 100 Hz signal will be passed essentially
unattenuated while a 10 KHz signal will be down by about 0.157,
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EXERCISE:  Analyze the circuit of Fig. 28 :
following the steps in Section 3B just as Fig. 28 4{}
"was done in the example in Section 3C. c
- Show that the magnitude of the transfer . AMAA AN —_—1
function is the same as the magnitude of Vin R Vout
the transfer function of Fig. 25. Relate ‘
these results to the integrator and damped ——s
integrator of Section 1F. Discuss the '
differences between and relative advantages of

the two circuits (Fig. 25 and Fig. 28), -

3D. EXAMPLE 2, SECOND-ORDER SALLEN-KEY LOW?PASS NETWORK

An extremely popular'iowupass structure is the 2nd order "Sallen-Key" (named after
the discoverers} low-pass filter. The structure is shown below in Fig. 29..

Fig. 29
Sallen-Key Low-Pass
. v .
t
R1 ou -
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We will follow the procedure of Section 3B.

1) We consider capacitor Cl to be replaced with a resistor 1/sCl and capacitor
C2 to be replaced with a resistor 1/sC2. It should not be necessary to
redraw the network as was done in Fig. 26, but you can if you wish.

2) The ideal op-amp in this case is used to form a non-inverting amplifier with
gain = K = 1 + Ry¢/R", and this amplifier has infinite input impedance.

3) There are three unknown currents (Il’ 12 and 13) and three unknown voltages
V', V4, and Vou¢ in this network, so we“would expect to need six equations
to solve the network. However, rather than setting up six equations, we .
can get rid of two just by the way we represent our variables. This is a
good example of the "by gosh and by gully" method. First note that with
the ideal non-inverting op-amp gain stage, we can just write Vi as Vout /K-
Secondly, summing currents at the V' node tells us thar I3 = Iy - Ip. These
substitutions are useful because they replace one unknown (and the need for
an equation) with at most two other symbols. It is a good idea to stop

- this sort of simplification with steps which replace one symbol with no more
than two others, although the whole network could be solved by this method.

4) We now have to make some observations (i.e., write some equations). Our
~simplification in step 3 above has left us with only "Ohm's Law" type of
calculations. These are:

Ii = (Vin - V/Ry

=t
[y*]
i

V'/(R2 + 1/5C2) = (Voue/K)/(1/sC2)

Ip = Iz = (V' = Vou)/(1/sCl)



This is really 4 equations, since the i, equation can be represented

as two different equations. It is probably easiest to solve the two
right hand members of the I, equation for V' in terms of Vg ;. Then the
equations for Iy and Iz can be plugged into the one for I - I, (using
right most member of the Iy equation). Solving for Vout/v in We get:

K/ (R1R7C1C0) (3p-1)
2 o, e, o, 2], 1
RyC2 R0y R9Cq RjR2C1C2

A useful simplification that is almost always used is to let Ry = Ry = R,
and C; = Cy = C, in which case T(s) becomes:

g/R2¢2

T(s) = (3D-2)

Er3 . . 2p02
s” + RC[3 K] + 1/R“C

S} As before, we can find the magnitude of the transfer function T{s) by
substituting jw for s and then JT(S)[ =[T(jm)°T(~jm)]1/20 This done, a
little algebra gives: _ ' .

1/2

1 .
IT(s)| = K (3D-3)
R¥C* + R2C%w?[7 - 6K + K?] + 1

In order to plot ‘the magnltude of the transfer functlon, we have to select a value
for X. To obtain appropriate values for K, designers generally use certain tables of
filter parameters for different filter charactprlstlcs. Here we will just say that
we have taken from these tables a value of K = 2.233, which is supposed to give a "3db
Ripple, Chebyshev" characteristic to the filter. We can also choose R = 1 Meg and

= 1 mfd, so that RC = 1 and this will make our math easier. This done, the equation
for the magnitude of the transfer functioun becomes:
' 1 1/2 _
Jreed] = 20233 _ (3D-4)
_ e 1.4102 + 1

A plot of this function is shown in Fig. 30, where we have plotted |T(s)] as a function
of f = w/27. We note that the response is basically low-pass, but there is a "bump" on
the upper corner. This sort of bump can be useful because it results in a sharper
initial cutoff. The bump is possible with this second-order structure, but need not
be there for all values of K. The principal advantage of the second-order over the
first-order is the sharper final cutoff rate (12db/octave as compared to 6db/octave for
first-order), and the ability to control the bump on the corner.
The filter response of Fig. 30 is in fact that of a practical filter. It has a

" sub-audio cutoff frequency [usually taken to be the frequency 3db (0.707) down from
the top of the bump, about 0.19 Hz in this case]. Such a filter would be useful for
_removing noise of say 5Hz and higher from a slowly varying DC level that we want to
- monitor. To. construct the practical filter, we would have to set up the amplifier
‘to give the gain K, and this is accomplished for example, with R,f = 27k and R' = 22k
because 1 + Rpf/R' = 2.227 in this case which is within resistor tolerance of K = 2.233
~for most practical circuits. A final consideration is to select components for the
filter compatible with the low frequency. Clearly we do not need much slew rate at
all here. But due to the low frequency, we have to keep bias currents and leakage
currents to a minimum. Thus, we would choose a low bias current op-amp such as the
CA3140 or LF351, and low leakage capacitors (not electrolytic) for the capacitors C.
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Fig. 30 Caleculated 3db

-Ripple Chebyshev Response

0f course, in many cases we need to design filters with many different parameters
and would like to avoid long calculations in each individual case., It is fortunate
that in network design it is often possible to just transform available data into a
new form. One good example is frequency scaling. The filter of Fig. 30 for example
has a much lower cutoff frequency than is needed in many applications, and is not
ideally suited for teaching purposes in labs due to its low frequency and the resulting
need for special equipment. Suppose we want to have a higher cutoff, 1230 Hz for

example. To scale a frequency up, we decrease the resistor R, or decrease the
. capacitor C, and the frequency scales upwaxrd inversely as the RC product. If we

3db Chebyshev

Fig. 31

=-0.0511

s,
e

[ T

—==1000 Hz -~




wanted to make the scale from 0.19 Hz to 1230 Hz (a factor of 6474 up), we could
-decrease the capacitor to 154 pf down from 1 mfd. This capacitor is a little small
for active filters because stray capacitances can easily amount to 5 pf or so. We
could alsoc change R to 154 ohms, but this is alsc a little small in op-amp circuits
where we would prefer resistors in the range of 1k to 1 Meg. Thus, in this case, as
in many cases, it is desirable to change both R and C. We know that in the case of
Fig. 30, the RC product is 1, so to get the 1230 Hz cutecff, we need an RC product of
1/6474 = 0.000154. If we choose R at 3k for example, we would get C = 0.0514 mfd,
wiich is a reasonable value. An experimental approximation to this filter is shown
in Fig. 31 while the frequency response is shown in Fig. 32.

3E. GRAPHICAL INTERPRETATIONS

It is probably somewhat evident to the reader that things can get a lot more
complicated very fast as we start to go over to more and more complicated networks,
The math becomes so extensive that we need a computer to get our calculations done
within a reasonable length of time. Conceputally, we would have a more and more
difficult time telling just what is going on as the math passes from our direct grasp.
Fortunately, there are some graphic ‘aids that are a great help in letting us get a
feel for what is g01ng on.

So far, we have been looking at transfer functions that are of the general form
{(for the second order case):

B
32 + Ds + E

T(s) = (3E-1)

Where B, D, and E are constants. This is characteristic of a low-pass second-order
filter. If it were a second-order bandpass, the numerator would be of the form Bs
and the denominator would be the same. If it were a second-order high-pass, the
numerator would be of the form Bs2 and the denominator would be the same. A general
response function would be of a form that combines high-pass, bandpass, and low-pass:

Asz +Bs+ C . (3E-2)

32 +Ds + E

T(s) =

It turns out that this general form is to a large degree all we need to know how to
‘handle, because higher order filters are generally built out of second~order sections
because such structures are less sensitive to component variations than are their
realizations with unique structures for the given order, The second-order numerators
and denominators can be factored into two first order terms (by the quadratic formula
if by no simpler means) such as:
' ' (s - z1)(s - zp)

(s - py)(s = py)

T(s) = (38-3)

Consider what happens when s takes on the value of any of the special numbers pj, pj,
zZ1, Or Z). If it takes on a z value (a zero), the numerator of T(s) becomes zero and
hence T(s) becomes zero. If it takes on a p value (a pole), the denominator of T(s)
becomes zero and T(s) becomes infinite. These are thus values of s that are of

special interest to us. Consider also the. solution to the quadratic equation:
ax2 +bx+ec=0 ' (3E-4)
which is by the quadratic formula:
| _ =b * /bZ- 4ac
Xx= 2a (3E"~-5)

If we are using this quadratic equation to find the poles of a transfex function such
as that of the Sallen-Key low-pass (setting RC = 1)3
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Denominator = sz-+ s{3-k] + 1 ' | (3E-6)

The roots of the denominator are the poles of T(s), and the quadratic formula gives:

_ -[3K] * /5-6K + K? | 357
pl’pz = : 2 ( )

Thus, the poles have an imaginary part (the square root is taken of 2 negative number)
when K becomes greater than one. Also, such complex poles must exist because we have
already demonstrated an experimental filter (Fig. 31 and Fig. 32 where K = 2,233) where
such poles are mathematically present. We can also note that the real part of the
pole is negative until K becomes greater than 3. It will turn out that in order for
a filter to be stable, the poles must have a real paxt that is negative. Thus, K in
the Sallen~Key filter must be less than 3, : '

Since the poles and zeros of T(s) may be complex, and we know by our example that
they can exist in a practical filter, we have to graph our poles and zeros as complex
numbers with a real axis and an imaginary axis in a complex plane. This is called the
complex frequency plane or the "s-Plane" in the literature. Note also that where
poles and zeros are complex, they occur in complex conjugates as a result of the %
square root part of the quadratic formula. We can now make a two dimenmsional plot of -
the complex frequency in terms of a.real part (¢) and an imaginary part (jw). Fig. 33
below shows such a plot, and we have added to the plot the pole positions for the
3db Chebyshev filter which are at: ,

Py» P, = =0.384 $j(0.924) | (3E-8)

If we now take another look at
equation (3E-~3) for T(s) and think bt L
about how we take the magnitude of T(s), S R R e
the frequency response, we can write: A YA

-2yl [s-2,| B B R
fs=pyils-p,l (B9

1) =

Also, the magnitude of a complex numbet : ERREREANE i
a + bj is given as [a2+b211/2 yhich is ORI B O O SO
just the hypotenuse of a right triangle. o S TR
It is the length of the line on the - b R ]

g-plane. ¥or the 3db Chebyshev low-pass N 0 L N O T O O
filter, we would have: T

Ol T O R

Thus if we want to know the value of
T(s) at any point in the s-plane, we =TT T T
just measure the distances on the s-plane L.t iwﬁmq

L

(with a ruler!) and do the division .of Tl i .
equation (3E-10). The usual frequency : : ;
response is obtained as the value of B VIO O O 4 O D

1T(s)| along the jw-axis from zero on up. mﬂﬁ 1o f""f{, it NN
[Remember that to obtain |T(s)l by direct NE : 1 ! '; i !
mathematics we substituted jw for s]. "iﬁffl‘” i BN B I I

We choose a point (j/2 in Fig. 33 for U [

example) and measure the distances to et !
the poles (dotted lines in Fig. 33). We -mi' Ny .
then divide 1 by the product of these ST
two distances. We record this value and
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go on to the next point that we need. When we have enough points, we can sketch in
the full curve. It matters little exactly what units we measure the distances in

(a centimeter ruler, or a strip of graph paper cut from the edge of the plot will
work), as long as we plot our data on log-log graph paper. The curve that results
from a complete graphical calculation on Fig. 33 will exactly overlay either Fig. 30
or Fig. 32, Often times it is possible to calibrate the response scale exactly by
some observation on the filter structure being considered. In the Sallen-Key filter,
we can easily see the DC gain is K (just pretend the capacitors are removed and see
what the gain is). Thus, whatever number we obtained graphically for s = 0 in Fig. 33
corresponds to a gain of K. Another point to be made about the graphical interpret-
ation is that it may be easier to write down a closed-form mathematical solution for
the frequency response based on a graphical setup using standard methods of geometry
and trigonometry than it is to calculate[T(s)[ [T(Gw) T(- Jw)]l/Z_

A graphical interpretation of phase response is also possible and useful. To
obtain the phase response, we measure angles relative to the real axis as seen from
the poles and zeros of the network, looking at the point on the jw-axis where the
phase response is to be evaluated. The angles as seen from the zeros are added and
the angles as seen from the poles are subtracted. The method will be illustrated in.
the next example. :

3F. EXAMPLE 3, BANDPASS FILTER

A bandpass filter structure is shown in Fig. 34. Here we will derive the
transfer function of the network and then use the
graphical means of determining frequency and

phase response. - In our previous examples, Fig. 34 C,
we used op-—amp structures that were examined _ %}
in chapter 1 (buffers and non-invertiag Bandpass f/;

amplifiers), but here we go right back to

basic ideal op-amp properties. We will be
using the procedure of Section 3B but will
not be numbering the steps.

. : vout

The first thing to note is that negative S
feedback is working, so it must be the case
that the (=) input of the op-amp is at ground
potential since the (+} input is grounded. This immediately tells us that the
current I3 must be -Vg,+/Rp. This same current must be flowing through capacitor C
since there is no current into the actual inputs of the op-amp. Thus we can get the
voltage V' as:

V' = I3(1/sC1) = ~Youe/sCiRp

It is then easy to see that Ij = (Vy, - V')/Ry and I, = (' - Vout)sCa, and since
I = 12 + I3, we can solve for the transfer function:

—s/Rlbz

T(s) = 5 - (3F - 1)
s” + s[1/RyCy + 1/R202} + 1/R4R,C1C2
It is easier to take Cj = Cy = C in which case T(s) is given by:
~-3/RiC
T(s) = — 3/R] (3F - 2)

+ [28/RC] + 1/R1R,C2

Unlike the low-pass transfer functions we have been discussing, the numerator of this
transfer function has the first power of s in it.  Suppose that frequency (s) is very
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small. In the low pass case, this meant that the sZ and s terms in the denominator
could be disregarded, and a constant response was the result. Here, this is still

true as far as the denominator is concerned, but the s in the numerator will cause the
transfer function to be zero at zero frequency. Thus, the response begins low at low
frequency. At very high frequencies, the s2 term in the denominator dominated the
low-pass. and caused the response to fall off. In this bandpass case, the s2 still has
its effect, but the s in the numerator means that the roll off is as 1/s and not as 1/s2
so it is more gradual, In between, there is a region (a frequency band) where there is
- significant response, and this is the bandpass reglon. :

We have already argued that there is a zero at s = 0, and it is easy to find the
poles by factoring the denomlnator, solving the quadratic formula in this case:

1

pl,p2 = -ﬁ;c' [ -1 :|: Y1 - RZ/R], ] |
As long as Ry is greater than Ry, then we have a pair of complex conjugate poles. Letfs
take an example whexe R2/R; = 37 in which case the poles lie at: 7
_ ' X |jw
P = (1/R20)[ -1 %63]

1-P2 2 Fig. 35
A pole-zero plot for this set of components

is shown in Flg 35. Pole~-Zero Plot

of Bandpass
Filter

Let's suppose we follow the jw-axis starting
at 0 and moving in an upward direction. At s = 0,
we are right on top of a zero. As we move away,
we feel less infulence from the zero, and begin - — Dusnarams
to feel higher ground due to the "mountain" '
.ahead and to the left. When we are even with
the pole, we are about at the point of maximum
-response. Moving even higher, we go down the
slope and look back to see far in the distance
two poles and one zero, all approximately at the
same far away distance. If there were as many
poles as there were zeros, they would cancel and _
we would be on flat ground (a high-pass filter) X
but since there is an extra pole back there, we
are still going downhill (but not as fast as we
would be if that zero weren’t back there).

To graphically determine the frequency response, we select a point w on the jw-axis
and measure the distance to the zero (which is Just w of course),-and the dlstances to
the two poles we plotted in Fig. 35. We then NS i RN R -
divide the distance to the zero by the product
of the distances to the poles, and this is the
relative value of the response. We repeat
this until we have enough points to sketch in
the curve. Fig. 36 shows an experimental
eircuit. Fig. 37 shows the experimental data
on this filter, and the theoretical, gxaphlcally
determined points are plotted as laxge dots.

It
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To determine the phase response of the bandpass filter, we can use the graphical
interpretation as applied to the pole-zero plot of Fig. 35. It is not difficult to
set up analytical expressions for the phase response based on a graphical model, but
here we will just lock at three special cases as illustrated in Fig. 38. - In 38a, the
point of interest is assumed to be just slightly on the +i side of the jw-axis. If we
take the position of the zero at s = 0, the point of interest is directly above, or at
an angle of 90° relative to the +v-axis. The angles of the point of interest as seen
from the poles are +81° in the case of the lower pole, and -81° as seen from the upper
pole, We add the angles as seen from the zero (+90°) and subtract the angles as seen
from the poles (+81° and -81°) so that the total angle is +90°. In -38b the point of
inteérest is even with the upper pole, and the total angle is about +5°. TIn 38c, the
point of interest has moved far up the jw-axis, and the result is that all three angles
are effectively 90°, and the total phase shift is -90°.

Often, bandpass fllters are analy7ed by comparing the denomlﬂator of T(s) w1th a
standard denominator: s2 + (w /Q)s + wo . By comparing this with equation (3F-2), we
determine that for .the bandpass filter of ¥ig. 34:

(3F7¥ 3>

fo = .EEVRlRZ
= (1/2) VR /R, - . - 3F - 4),
where £, = wo/2rm. These two equations have a useful physical interpretation. The
value fo is the center fregquency (maximum response) of the bandpass characteristic, and
Q is a "quality' factor that tells us how sharp the bandpass is. We can show that @
is equal to: . ' .
¢ . .
Q= 2 o . @GF -5

E3qbu ” F3ab-£ | | |
where f3db_u and f3db £ are the upper and lower 3db frequencies - the frequenc1es on

either side of the peak at f, where the response falls by 3db (down to O. 707) below the
peak response, The difference between these two 3db frequencies is called the 3db
bandwidth. ' ' ' :
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CHAPTER 4:  CHaARAcTERIzATION OF AcTIVE FILTER RESPONSES

4A. - INTRODUCTION .

In this chapter we want to gather some of the ideas that we have touched on by
means of example in the previous chapters. In particular, we will concentrate on
terminology and the general relationships that exist among filter performance
parameters. '

4B. . SOME TERMINOLOGY IN ACTIVE FILTERING

There are many terms that are used to describe active filters, and these can be
confusing at times. Here we will list the more important terms and will attempt to
describe their most important aspects and their interrelationships.

> BASIC TYPE OR BASIC FILTER FUNCTION' Selection of the basic filter type or
basic function is determined by the application. : That is, there is some basic job we
want done. These may include low-pass, bandpass, high-pass, band-stop, all-pass, and
notch. These basic response shapes are illustrated in Fig. 40. Note that the all-
pass has a flat amplitude characteristic and is used for its phase properties.

i A 4 Z/WW/ |
Low-Pass Bandpass High-Pass
: , Fig. 40
1. AL
~ Band-Stop  All-Pass ' " Notch
'p. . FILTER CHARACTERISTIC: The characteristic of the filter response 1is lérgely a
matter of the amount of damping the filter has. This is determined by the positions

of the poles of the network, which is in turn determined by the denominator of the
transfer function. Certain types of filter responses are associated with certain,
mathematical polynomials that appear in the denominator of the transfer function,. and
since these special polynomials are named after mathematicians, the filter
characteristic is given the same name. Thus we see filters with names like Gaussian,
Bessel, Butterworth, and Chebyshev, These filter characteristics are associated with
a certain desirable property of signal processing. The highest damping is generally
that found in the Gaussian filter, which is "eritically damped" (settles to a new
voltage level as fast as possible without any overshoot at all). The roll-off corner
of a Gaussian filter (or any filter damped more than Gaussian)}) is xe]atlvely poor.,

- A much better cormer is obtained with a Butterworth response, which is "maximally flat"
The Butterworth filter does result in some overshoot however.  In between Gaussian and
Butterworth we find the Bessel characteristic, which has the useful property that it
has linear phase (constant delay). This response is most useful when the shape of a

~desired waveform passing through must be preserved. There are a series of Butterworth-

‘Thomson characteristics which lie between Butterworth and Bessel, and are a trade-off

~ between the advantages of both. When damping is less than the Butterworth case, there
is a series of characteristics called Chebyshev and this term is prefixed by the ripple
in db. Chebyshev filters are those which give up the requirement that the passband
response be f£flat. Instead, the poles are brought up close to the jw-axis and cause

- bumps or ripples in the response. The advantage is that if a final ripple occurs at.
the corner before cutoff, the response initially rolls off much faster than it would
with other types of filter characteristic. The disadvantages of the Chebyshev filter
are, in addition to the ripple, rather large overshoots when the voltage level changes.
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TRANSFER FUNCTION: The transfer function, usually denoted T(s) or H(s) is a
general output/input relationship. It relates the output Vgupr(s) [the Laplace trans-

form of the time output waveform Vyyc(t)] to the input V; (s) [the Laplace transform

of the time input waveform Vi,(t)]. The transfer functlon is obtained simply by
considering all capacitors in the network to be "resistors'" of "resistance' 1/sC. The
usual circuit laws are then used (sum of currents into a node = 0, sum of voltages
around a loop = 0, and Ohm's Law) to arrive at T(s) = Vgour{(s)/Vip(s). The mathematical
form of T(s) determines the basic type of filter and its characteristic. Most if not
all useful transfer .functions are in the form of ratios of polynomials in s, where the
order of the numerator is equal to or less than that of the denominator. The simplest
second-order forms are summarized by:

o

T(s) = 7 2 n=0,1, or2
+Ds+ 1

where D is related to the damping of the response. When n=0, the filter's response
for small s (low frequency) is just 1/1 because the s and s? terms in the denominator
can be disregarded. For high frequencies, large values of s, the response is dominated
by the 1/s2. Consider what happens when s doubles. The l/a term decreases by a
factor of 4. Now we know that 3db is l//ﬂ 0.707, so 6db would be 1/2 and thus 1/4
would have to be 12db. Slnce a 2:1 frequency ratio ig called an octave, we $2y that

a roll-off domirnated by 1/s2 is l2db/octave. Note that a 1/s roll-off would be 6db/

octave, Thus the n = 0 case corresponds to a low-pass response with a final 12db/octave

roll-off. In the region between the low frequency response (where the 1 in the
denominator is important) and the high frequency response (where the s in the
denominator is important), the Ds term has its effect. Thus the damping texrm is most
important in the transition region between low and high frequency response. Fig. 41
illustrates these points.

T(s) = ————
[T(s) | T(s)’-“l/lD ¥ 2

-~

s\\(....al; Figo 41
Region where ° ’
s

Ds is importa Low~Pass Response

o T(s) = 1/s2

freq.

The case where n =2 gives a high—pass response in a very similar manner. (see Fig. 42).

The bandpass case when n = 1 is similar as well (see Fig. 43) but note that the roll-up
goes as s/l and the roll-off as 1/s, and are 6db/octave slopes, not 12db/octave as we

had in the low-pass and high—pass cases,

Fig. 42 B Fig. 43
High-Pass Response Bandpass Response
.. 2 | | |
| | T(s) = —5—>—— R T(s) = ————
4+ Ds + _ + Ds + 1
IT(S)! gs Ds 1 ]T(S)I & s s _
' . o : ~ :

Ré§&on
where Ds
ig important

\\3 ,)’ T(s)=52/s2 =1 &a

Region where
Ds is important




FREQUENCY RESPONSE: The frequency response of a filter is the type of curve
we get in a lab by putting in a sine wave of a certain frequency and seeing what
portion of the signal comes out. The process is repeated until enough points are
measured to plot a smooth curve. Mathematically, the frequency response is the
magnitude of the transfer function denoted by |T(s)| and we can substitute for s the
value jw where w is radial frequency which is equal to 2mf where f is ordinary freq-
uency like we read on the dial of a function generator. Since s 1is in general a
complex number, and it certainly is when we set s = jw, a pure imaginary, to obtain
the magnitude it is necessary to take the product of the complex number with its
complex conjugate, and then take the square root. The complex conjugate of a complex
numbex is obtained by replacing j by -j wherever it occurs. Hence, T(s) evaluated at
s = jw is obtained by substituting jw for s in the expression for T(s), and the

" complex conjugate of T(s) is obtained by substituting -jo for s. This is denoted as

T(jw) and the complex conjugate is T(-jw). Hence, the frequency response is:

ir(s)| = {T(jm)fT(-j@)ll/z

PHASE RESPONSE: The transfer function T(s) is a complex number in general and
it can be written as a magnitude and an angle in a complex plane. The angle is the
phase shift which is a function of frequency. We can determine the phase angle ¢(w)

.. by knowing the real part of the transfer function and the imaginary part, and taking
~the inverse tangent, as with any complex number. Thus:

' -1 Im[T(jw)]
w) = Tan = —3 PR
4@ Re[T(jo)]
where Re means real part and Im means imaginary part. These are usually obtained
simply by substituting jw for s and separating out terms with j (imaginary) from those
without j (real). Bear in mind that Im means a real number which when multiplied by
j is imaginary. Thus Im[5 + 7j] = 7, not 7j. For example, we can look at the phase

" response of the first-order low-pass function of Fig. 25 with its transfer function:

>

T(s) = 1/[1 + sRC]

T(‘m) - 1 I | L1 - JwRC _ _1 - juRC
J I+ JuRC - 1 + jwRC 1 - jwRC T + w?R2CZ
Re[T(jw)] = 1/(1 + w?R?C?) _ Im[T(jw)] = -wRC/(1 + w?R2C?)
¢ (w) = Tan 1 [-wRC] ='-Tan—1(w/mo) where wy, = 1/RC
_ o _ tw

Note that a graphical interpretation of the first-order : P Fie. 44
low-pass phase function would give the phase as minus ' e &
the angle of the point w as seen from the pole at -w, !
as shown in Fig. 44. This is clearly the same ' 'ﬁ-¢
answer we got by the mathematical procedure involving : _Jg

the real and imaginary parts of T(juw).

IMPULSE RESPONSE: The impulse response of a filter is, much as the name implies,
the response of the filter to a sharp impluse or spike. This response is a function
that varies in time, and is thus an ordinary type of waveform, unlike V,,,,(s) which is
a Laplace transformed output of a time function. . Mathematically an impulse is a
delta function §(t) and the Laplace transform of §(t) is §(s) = 1. Since
Vout {(8)/Vin(s) = T(s) and in this case Vip(s) = 8§(s) = 1, we get the Laplace trans-
formed version of the response of the filter to an impulse as: .

= T(s) Vi, (s) = T(s)+8(s) = T(s)+1 = T(s)

V°“t(s)impulse impulse
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We have thus determined that the Laplace transformed version of the output which is in
response to an impulse input is T(s). Stated another way, the inverse Laplace trans-
form of T(s) is the impluse vesponse, Thus, much as we see that T(s) is a description
of the general response of a filter, so might the impulse response h(t) = LT~1[T(s)]

be a complete description. In fact, this is true, and we might wonder why we don't
just use the characterization of the fllter as h{t), a time domain description, rather
than jump to the less familiar Laplace or complex frequency s-domain. The answer to
this question lies in the simplicity of an expression like Vg,.(s) = T(s)-Vin(s), which
is a simple multiplication. According to Laplace transform theory, a multiplication in
the s—domain corresponds to a convelution in the time domain, and convolution is more
difficult to use than multiplication. To make the point in a slightly different way
and at the same time give you some idea what is involved in convolution, let's think
about how we would use the impulse response function to determine the response to an
arbitrary input. We would do this by assuming the arbitrary input to be composed of
an infinite set of different impulses, calculatlng the response to each input, and then
summing all responses. Since the summation involves a continum of impulses, thlS must
be done with integral calculus. The integzal would look like:

o

Ve () = ._o{ v, () h(t - x) dx

This may nétfbe so bad, but if you use tables of trénsforms, it is usually easier to
use T{s). Also, the determination of T{s) is straightforward, while the calculation
of h(t) other than as the inverse Laplace transform of T(s) may be difficult.

S GROUP DELAY: Group deélay may be defined as t(w) = -d¢(w)/dw. The group delay is
in units of time, and an important case is where t(w) is a constant. This is the case
of a Bessel filter. Note that if T(w) is a constant then ¢(w) must be a linear

function of w. This means that phase shift increases with frequency, and higher
frequency components are shifted by larger phase angles. Linear phase thus appears
as a constant time delay does.

-2 FILTER ORDER: The order of a filter is determined by the highest power of s that
appears in the denominator of T(s). If the highest power is s, then the oxder is n.
The numerator may have a power of n or any lesser powets, but none greater than n.
Generally, a high-pass or low-pass filter of order n rolls up or off at 6én db/octave
once it gets well beyond the corner (asymptotic roll-off as it is called)@ A bandpass
filter must be of even order, and the response on either side of the peak (called the
skirts of the bandpass) roll off at 3m db/octave. The filter order is also generally

_equal to the number of capacitors in the network. This means network capacitors and
not any extra capacitors such as those that are for op-amp compensation. If the number
of capacitors equals the order, the network is called canonic. A filter of order .n
also has n poles, some of which may have the same value. Often times a filter of
order greater than two is realized by a cascade (series connection) of first and’
second~order sections. This generally gives a performance that depends less on small
variations in component values than a "direct" realization does. The first-order
sections realize any real poles whlle the second-order sections realize pairs of

. complex conjugate poles.

b - CONFIGURATION: The configuration of a filter refers to the actual circuit that

is comprised of resistors, capacitors, and op-amps that is used to realize a transfer
function. The configuration generally determines the basic filter type, and a2 variation
in some component or components within the configuration varies the characteristic.

More than one configuration can be used to realize the exact same transfer function.
Thus the advantage or disadvantage of one configuration or another has to do with such
matters as the number of components involved (the cost and space required) and the
- sensitivity of the configuration to component variations. Sensitivity is a very
important aspect of filter performance. It has to do with how much the filter's
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performance changes in proportion to a change in the value of certain components such

as the variations due to the tolerance of a resistor or capacitor. The lower the
sensitivity, the better. Direct realizations of order greater than two, functions

with large passband ripples, and sharp bandpass or notch responses tend to. present the
‘greatest problems with sensitivity. When realizing higher order networks with
combinations of second-order sections, some schemes called "leapfrog" structures which
are based on passive ladder networks offer a lower sensitivity than the standard cascade.

4cC. FILTER DAMPING AND ITS EFFECT ON CHARACTERISTIC

We have seen that the performance of a filter at extremes_of frequency depends

- mainly on the basic type and the order, and relatively little on the characteristic of
the filter. Here we will take a closer look at the effects of damping. It is the
damping that controls the filter characteristic, and this characteristic is usually
-quite important as many frequencies of interest enter the filter and pass through a
region where damping effects make a great difference. :

First, we need a general idea of damping. Damping is basically just the reciprocal
~ of resonance. While a resonant system tends to favor certain frequencies, a damped
system tends to have a smoother response. It all depends on what you need for a certain
application. At times you want more damping, and at others, you want more resonance.
If you are familiar with the "Q" of a system, you will gain by realizing that essentially
Q = 1/D where D is the damping. We want to consider how damping relates to the positions
of the poles of a system. We will look at the second order transfer function:
n .
T(s) = —E : n=20,1, or 2 (4C-1)
: .8+ Ds+ 1 :

The poles of the system are obtained by factoring the denominator, and are thus at:

Py» b, = D/2 % (1/2) Y IR (4~2)
A plot of pole position as a function of D is shown in Fig. 435. By comparison with

equation (3D-2) with RC=1 for the Sallen-Key low-pass, we see that D = 3-K in this case.
Thus, we add to Fig. 45 the corresponding values of K which control the damplng in the

SallenwKey filter. .
7 ' =0.5 [K=2.5] D=0

D=1 [K=2]~2

Fig. 45 Dampingﬁ D=1.5 [K=1.5]->

- - D=2.1 [K=0.9] |
: o D=2 [K= 1]\ Q 2.5 [K—O.S]
D=4 ' D=2.5 n—z 1 D=4
> ' & §f‘1]
. 4
Overdamped'”””e
' Gaussian (critially damped)

Bessel~+

Characteristic-J%: Butterworth =3
1db Chebyshev ——»

3db Chebyshev —"
Oscillator-;”




Fig. 45 should be studied carefully. Let's begin at the top of the semicircle at
D=0. Here we have a pole at +j and a corresponding pole at -j at the bottom of the
semicircle. This is a totally undamped system (Q = infinity) and corresponds to
oscillation, If we add some damping (D=0.5), the poles move back from the j-axis
and oscillarion stops, although the system remains quite vesonant. By the time
damping rxeaches 1.4, resonant behavior has ended and there are no bumps in the response.
Between D = 1.4 and D = 2, the main difference in performance is seen in the step
response which shows less and less overshoot and finally becomes critically damped
at D = 2, Note that for D =0 to D = 2 there are two complex conjugate poles, and that
these come together at D = 2. Beyond D = 2, the system is overdamped. The two poles
separate again and move in opposite directions but always on the real axis. According
to equation (4C-2), one pole approaches but never reaches s = 0 while the other one :
moves out almest to ~D as D gets very large. This results in what looks mainly like
a one pole system except for very high frequencies. There is seldom any reason to
use an overdamped filter, so we are mainly interested in filters which have complex
conjugate poles on the semicircle between D = 0 and D = 2.-

In order to give some meaning to the filter characteristics that are named after
mathematicians, on the lower part of the semicircle we have labeled regions not by
their D or K values (which are the same as the complex conjugate poles directly
above) but by the filtex characteristic. These regions are marked with hexigons.

The extremes go from overdamped and critical damping (Gaussian) to oscillation. The
main area of interest rums from Bessel (linear phase) through Butterworth (maximally
flat) to 3db Chebyshev (which is about the maximum ripple that can be tolerated).

It may seem to the reader that filter characteristic is simply a matter of
damping, and it might seem strange that there are 4 whole slew of names for character-

istics that seem to differ only by the amount of one parameter. This is because we
have only locked at second-order cases. [If we looked only at first-order, all the
filter characteristics become the same ~ Gaussian.]  In the case of fourth-order

filters for example, a characteristic is determined by three parameters: the

damping of the first two poles, the damping of the second two poles, and the ratio

of the radii of the circles on which the poles lie. Thus, while saying that a
characteristic is second-order Butterworth is saying only that the damping is a
certain value, saying that it is tenth-order Butterworth tells us eight more
parameters, and so on. While a second~order case may appear as a simple, trial-and-
error setup, a tenth-order system is clearly not something we can adjust to our needs
without aid of a mathematical theory, and this is where the mathematics pays off.
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CHAPTER 5: Low-Pass Active FILTER EXAMPLES AND EXPERIMENTS

5A. SECOND-ORDER LOW-PASS'FILTERS

At this point, we are familiar with the second-order Sallen—Key low-pass filter.
Basically, all we need now to realize a given filter characteristic is the required
value of damping, and some means of determining where the cutoff frequency falls
relative to the RC time constant of the filter. The table below provides the
necessary design data, : :

) . —_1 1 eg ' e 1
CHARACTERISTIC | D | k 3D | £/ | Rye/R Best 5% R . | Best 52 R'
Gaussian 2,00 | 1.00 1.55 0 . -0 omit :

: , : TABLE
Bessel 1.73 1 1.27 1.27 0.268 15k 56k
Butter-Thomson | 1.56 | 1.44 | 1.13 0.435 T 27k 62k 1
Butterworth 1.41 1 1.59 1.00 0.586 . 30k - 51k
%db Chebyshev |1.22 | 1.78 0.93 | 0.784 30k | 3%
1db Chebyshev |1.05] 1.95 0.86 0.955 30k+1. 5k 33k
2db Chebyshev |0.90 1 2.10 0.85 1.105 62k . 56k
3db Chebyshev | 0.77 | 2.23 0.84 1.233 27k _ 22k
- The data given in Table 1 refers to low-pass Fig. 46 _ "
filters in general and the Sallen-Key configuration : al

of Fig. 46 in particular. The transfer function
of the Sallen-Key is: B

. 2.2 ' o
K/R -
T(s) = — /re S—  (5A-D) out
: s+ == [3 - K] + 1/r°C? _ In
. c-_-;“_L‘A'A‘A
If you only intend to use the Sallen-Key, the only R

other thing you need to know is that fgq is the.
"section design"” frequency, and:

fsd = 1/27RC _ {5A~2)
We first choose the 3db frequency of the filter we need, and then select a character-
istic we want to use. The ratio fggq/f3qp from the tables gives us fgq and the :
associated RC product. It is then only necessary to use the suggested resistor values,
or other similar choice, to set the gain factor K (set the damping) to the proper value
for the characteristic.

In the case of a low-pass filter with a different conflguration, 1t is p0551ble to
put the transfer function in a form:

T(s) = 3 a/1? : _ {5A-3)
s° + (D/t)s + 1/12 . '

It is then possible to identify fgd with 1/2wr. Then the fgq/f3dp values and the D
values are obtained from Table 1, and the design can be completed. The factor A is
an overall gain factor which is a constant, much as K is a gain constant in the case
of the Sallen-Key filter.
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_ At this point, an example will serve to clarify the design procedure. We will
choose the design of a 2db ripple Chebyshev filter with 3db cutoff frequency of 1220
Hz. From Table 1 we see that we need (for the Sallen-Key configuration) K = 2,1 and
= 1220-0.85 = 1037 Hz. Thus we need RC = 1/(2n+1037) = 154 microseconds. If we
cﬁoose C = 0.0511 mfd (just an arbitrary selection of a part on hand), we get R = 3k.
Also from Table 1 we choose R,¢ = 62k and R' = 56k, The circuit is shown in Fig. 47
and the experimentally measured response is shown in Fig. 48.

.
56k 62k -
In 3.0k —3—o
G AAAN g Qut
it
I'O 0511 T e Rt ot T
0.0511 I . 48  2db Chebyshev .i.0
—_ Example aER
) Ckt of Tig. 47 11
Fig. 47 SN
2db Chebyshev
. _ TABLE 2
There are several important points to note about the +0.5db = 1.06
results shown in Fig. 48. First, the low frequency gain ~0.5db = 0.94
is 2.1, the same as the gain factor K. This can be under- ’ !
- stood if we realize that at low frequencies, the capacitors +1.0db = 1.12
are effectivély out of the circuit, and the two 3k resistors -1.0db = 0.89
simply feed the signal through to the (+) input of the +2 0db = 1.26
non-inverting amplifier which has gain K. UNext note that . —2I0db - 0'79
the relatively low damping (0.9) leads to a peaking as we ' ‘
approach the corner. The peak is at 2.59, which is +3.0db = 1.41
approximatley 2db above 2.1. It is this 2db of peaking -3.0db = 0.71
that is called "ripple". In the case of higher order
Chebyshev filters, there will be more than one ripple, but
they are all of the same amplitude. For convenience, a table of decimal equivalents

of the db values commonly used with Chebyshev filters is given in Table 2. Now, the
data which we have given here give the 3db frequency as being down 3db from the peak
value. Thus, the response has fallen to 3db below the peak when it reaches
2.59:0.707 = 1.83, and examination of the graph of Fig. 48 shows that this in fact
does occur at approximately 1220 Hz, which was our design goal. Some tables of
filter data may give different standards for the cutoff frequency. For example, it
is also common to find the cutoff frequency of Chebyshev filters defined in terms of
the ripple amplitude. For example, in such a system a 2db Chebyshev would have a
cutoff frequency defined as being down 2db from the peak, and so on. -We shall always
use here 3db for all filters.

Before going on to fourth~order filters it will be useful to set up the equations
- for another second-order low-pass configuration commonly called "infinite gain,
multiple feedback'. The configuration as illustrated in Fig. 49 is not completely
general because we find it simpler to just use equal valued capacitors. The points
we want to show will be evident however. The analysis becomes very simple when we
recognize that the op-amp, the capacitor between the output and the (-) input, and Rp
form the standard inverting integrator we studied in Section 1F. Hence we can easily see
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that the output is just the negative integral
of the unknown voltage V', and thus:

V= -y .SCRy (54-4)

With the unknown node voltage identified
4n this way, it is possible to write the
current summing equation for the V' node:

v, - V' vt -V

An . o _out ¥ v (5A-5)
Ry : Rg Ry _
and substitute equation (5A—4) into equation (5A-5). This done, we can solve for
T(s) = Vout (8}/V;,(s): .
- ~1/R3R,C?
s 42 =+ 2+ = o —
: Rl _ RZ Rg C R2R3

In order to read the characteristic frequencies, damping,:and overall gain off the
equation for T(s), we must achieve the form of equation (5A-3). With a little
manlpulatlon, equation (5A~6) takes on the required form:

-{(R3/R;) (1/R2R C )

6% + —S— | /R2R3 + /R3/Ry + /RZ/Rj ] e
C/R2R3 TRy RoR3C2

(54-7)

T(s) =

While the form of equation (5A~7) seems much more complicated than (5A-6), it is

possible to read off the important parameters directly from (5A~7). The section design
- frequency is just 1/(27vRyR3C), the gain is ~(R3/Ry), and the damping D is equal to

the quantity in the square brackets [ ] in the denominator.

EXERCISE: Show that if the gain of the circuit of Fig. 49 has a DC value of -1 that
the filter is alwavs overdamped. Rework equations (5A-4) through (5A-7) with all
resistors of equal value, and capacitors oC and C/e (where o is a constant, so that the

product of the two c¢apacitances is ¢2 Y. Determine how the damping is controlled by
the factor o. Discuss any advantages of this arrangement.
’ D2/2
o ' PR S
5B. FOURTH-ORDER LOW-PASS FILTERS : . et
It is the usual practice to form fourth-order Fig. 50 Qr“’"
filters by cascading two second-eorder sections. In - - v"D .

such a case, it is generally necessary that the two z
sections be different from each other, and the P
problem reduces to determining the parama;exs of the H
- two individual sections, and then constructing them i
' H
H
L]
%
[]
s

just as we did in the second-order case. We can
visualize the basic process by examining Fig. 50

which shows a four-pole system. These poles could Y fsdl

be placed, as shown,by a direct fourth-order filter, 3 ‘x

but as shown by the circles, it is also possible to b o

place the poles by two second-order pole sets each SN “‘-,_n“
with its own section design frequency (also called "

pole frequency) and its own damping. : : Weennnd
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CHARACTERISTIC D K=3-D fsd/f3db Rnf/R' Best S% R . Best 5% R'
Gaussian 2.00 | 1.00 2.30 0 0 omit
Bessel 1.92 1.08 1.44 0.084 4.7k 56k
Butter-Thomson | 1.88 | 1.12 1.20 0.119 5.6k 47k
Butterworth 1.85 1.15 1.00 0.152 15k 100k
%db Chebyshev | 1.53 | 1.47 0.71 0.466 5.6k 12k
1db Chebyshev | 1.28{ 1.72 0.50 0.725 24k 33k
2db Chebyshev | 1.09| 1.91 0.47 0.912 62k 68k

| 3db Chebyshev | 0.93] 2.07 0.44 1.071 16k 15k
TABLE 3 7 SECTICH 1 . ‘f ¢ SECTION 2 4th ORDER LOW-PASS
CHARACTERISTIC | D | K=3-D fsd/deb' Rnf/R" Best 5% R . | Best 5% R'
Gaussian 2.00] 1.00 2.30 0o 0 ' omit
Bessel 1.26 1 1.76 1.61 0.759 47% 62k
Butter-Thomson | 0,95 | 2.05 1.27 1.051 100k+5.1k 100k
Butterworth 1 0.77 | 2.23 1.00 1.235 27k 22k
%db Chebyshev | 0,46 2.54 0.971 1.537 20k 13k
1db Chebyshev | p.28 | 2.72 0.943 1.719 62k 36k
2db Chebyshev |0.22 | 2.78 0.946 1.776 91k - 51k
3db Chebyshev |0.18 | 2.82 0.950 1.821 20k 11k

As an example, suppose we want to design a fourth-order 3db ripple Chebyshev
filter with a 3db cutoff frequency of 325 Hz.  From the data in Table 3 we see that
the first section should have a section design frequency fgq = 0.44-325Hz = 143 Hz
and a damping of 0.93. The second section has fgg = 0.95-325Hz = 309 Hz and a
damping of 0.18. ~ With all capacitors taken to be 0.0511 mfd, equation (5A-2) gives
the resistor values of 22k for the first section and 10k for the second section.

The proper damping for each section is set using the suggested best 5% resistors from
Table 3. The complete circuit is shown in Fig. 51. - The pole-zero plot for the
circuit is shown in Fig. 52 while the experimentally measured frequency response
curveé is shown in Fig. 53. Note from Fig. 53 that the low-frequency gain is
approximately 5.8, the product of the two K values of the two sectioms. The ripple
is also seen to be 3db and the 3db cutoff frequency falls very close to 325 Hz.

N VY VY R

15k 16k

;MW[MM—— 20k - Fig. 51

22k 22k MO | 1o
: — ' _ e Fourth-Order -
- In -' ' ¥ 0.051L 0.0511 3db Chebyshev

. . /! " ; | S - | N

_ -~ e el 325 Hz Cutoff

L o.os11 = 0.0511 |

4 =
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Fig. 52

3db Chebyshev
4th Order

. Tl Fig. 53

Experimental Curve
From Fig. 51 Circuit

Note that the 4th-Order 3db Chebyshev represents about the limits of the Sallen-
Key configuration. From Fig. 52 we see that the poles are quite close to the jw-axis
and it is a factor of 3-K that moves the poles away from the axis. In the case of the
poles on the outer radius of Fig. 52, K has reached 2.82, which is within 6% of 3.00,
so we see that we are approaching the limits of ordinary component tolerances. In fact,
the results shown in Fig. 53 are much better than we would expect with the 5% resistors
used, and this can probably be attributed to the 1% capacitors that were used. Unless
components with tolerances of 2% or less are available, the 4th«Order 3db Chebyshev is
not suggested as a lab project. Butterworth and 1db Chebyshev are probably better
choices for lab experiments. ' : -

5C.  EXPERIMENT NO 3, LOW-PASS FILTERS |

l._ Build and test the first-order low-pass filter in Fig. 28 of Chapter 3.
Verify the cutoff frequency and the final roll-off rate.

2. Build and test two or more of the second-order low-pass filters according
to the data in Table 1 of this chapter using the circuit of Fig. 46. Verify
the cutoff frequencies, final roll-off rates, and ripple (if any}. By
applying a low frequency square wave, measure the amount of overshoot of
the filter relative to the level of the square wave peak-to-peak amplitude.

3. Build and test a fourth-order Butterworth filter according to the data in
Table 3 of this chapter. Test each of the two sections separately. Compare
the response of section 2 w1th your results for a 3db Chebyshev (or use the
3db Chebyshev of Chapter 3). Plot the response of the two cascaded sections
and verify that it is the product of the response of the two sections taken
individually. Build two second-order Butterworth filters, cascade them, and
show that the resulting response, while fourth~order, does not have as sharp
a corner as the true fourth-oxder Butterworth.

4, If 17 components are available, build and test a fourth—oxdex 3db Chebyshev
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filter and verify that the results are as predicted. Now,

intentionally
disturb one or more of the components by an amount in the range of 5% to

10% and remeasure the response curve. Describe the changes.

components seem to be the most sensitive?

Which

TYPICAL RESULTS: Some typical results for these experiments can be found in flgures
27, 32, 48, 53, and in Fig. 54 below for the Butterworth case.

jEREER

:'Flg 54

Butterworth Experiment

- wmewSection 1 (K=1.15)
- Section 2 {K=2.23)
sssoseTwo cascaded 2nd-0rd.
Butterworth

True &th-Ord Butterworth’

EXERCISES:

Show that the configuration in Fig. 55 with the

component value relationship shown is a second~order
Butterworth. Discuss the advantages and disadvantages

of the circuit compared to the Sallen-Key structure
used earlier.

Show that if the input resistor R of a Sallen-
Key filter is replaced with a voltage divider R*-R**
as shown in Fig. 56 where:

R* = KR

_KR
(X-1)

that the response curve remains the same, except the
low-frequency gain is now unity instead of K. In a
fourth~order Sallen-Key filter, would there be an
advantage to using this technique on each of the two
stages separately rather than just using it on the

- first stage to compensate for the product of the

two gain factors?

R?’C* =

2C

Fig. 55

|




CHAPTER b: HieH-Pass, Banp-Pass, ALL-Pass, Anp NotcH FILTERS

. BA. INTRODUCTION

Having now completed an extensive study of the low-pass active filter in various
forms, we can now take up a study of filters of other basic types. A brief review of
Chapter 4 might be useful at this point. Because much of the analysis of these other
basic types is very similar to that of the low-pass, a good deal of detail can be left
out here. Also, the bandpass filter was discussed in some detail in Chapter 3, Section
- 3F, so no additional analysis is needed here. Thus, we will be mainly concerned with
the transformation of a low-pass to a high-pass filter, and will treat the all-pass and
the notch filters as special cases. Finally, experiments on all four types of fllters
listed in this chapter title will be outlined.

6B. THE HIGH-PASS FILTER .

It is a relatively simple matter to transform a
low-pass filter to a corresponding high-pass filter. Fig. 57A
A simple example is shown in Fig. 57. Fig. 57A shows
our standard Sallen-Key low-pass set for a second- Low-Pass
order 3db ripple Chebyshev characteristic. Fig. 57B
shows the low-pass response. In Fig. 57C we ghow the '—jﬁﬁﬁ:
same circuit with the resistors and capacitors inter- ’
changed (leaving the resistors determining K the same).
The response of Fig. 57C is also plotted in Fig. 57B,
and we can see that we have achieved a mirror image
of the low-pass response. This is essentially all
there is to it in this and many other cases, but we
- do want to be sure we know where the cutoff frequencies
appear. From Fig. 57B it is clear that both filters
have different 3db frequencies. The 3db frequency of
the low-pass is about 180 Hz while the 3db frequency
of the high-pass is about 130 Hz. What the two must
have in common is the section-design (pole) frequency
which is given by 1/27RC = 152 Hz, which is nearly in
the middle of the two 3db cutoff frequenc1es, and by
no coincidence, at the intersection of the two curves, ' AMAA
In the low-pass case, the 3db frequency and section- Fig. 57C _ 20.5k
design frequencies are related according to a constant '
(0.84) as given in Table 1 of Chapter 5. In the high~ High-Pass| _IT
pass case, the relation between 3db frequency and the ' i
sectlon design frequency is just the reciprocal of - I i
the corresponding low-pass case. Thus we would expect 0.0511 0. 0411
the high-pass 3db frequency to be at 0.84 times the.
section design frequency or at 0.84-152 = 128 Hz. In 20.5k
the low-pass case, the section design frequency is ' !
0.84 times the 3db frequency or at 0.84-180 = 151 Hz.
There is no need to construct tables such as Table 1 and ' .
Table 3 that appeared in Chapter 5 when we need data for the high-pass case. We can
Just use the low-pass data, inverting the relationship between 3db frequency and section
design frequency. For example, suppose we want a ldb Chebyshev second-order high-pass
with 3db cutoff frequency at 1000 Hz. Using Table 1 from Chapter 5, we see that we need
K =1.95. The low-pass case has fgq/f3gp = 0.86, so for high-pass, f3db/f = .86,
which means that we need a section-design frequency of 1000/(0.86) = 1163 Hz in this
case,.

EXERCISE: Consider what happens when the inpdt of the high-pass in Fig. 57C is allowed
to float, and compare this to what happens when the input of Fig. 57A floats.
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6C. THE ALL-PASS FILTER -

The basic idea behind an all-pass filter design 1s that if we place a zero in the
right half-plane that is the mirror image of a pole in the left half-plane, the frequency
response due to this pair is a constant. This is because for any point on the jw-axis,
the distance to the pole is exactly the same as the distance to the zero. Thus, since
the frequency response can be determined by multiplying all distances to the zeros and
dividing by all distances to the poles, as long as all poles and zeros exist in paixs
mirrored about the jw-axis, the respomse is constant with frequency. :

A popular all-pass filter that is often used : I I
for its phase shifting properties is shown in 2 ™.
Fig. 58. The steps in the analysis are as . M e
follows: Vin R" R'
v sCV, v_ =
1. = in - in : R
1 R + 1/sC 1 + sCR ' : AMA + '
v v, > Vot
_ Fig. 58 ;\\\y ou
VsV LA/0 - T X P lame
: s - All-Pass l
IZ (Vin Vw)/R_ _
1 - sCR : R
= - L B L Fig. 59 ]
Vout v, IZR vin 1 + sCR _ & J
- - _ s ~1/RC -
T(s) out/vi + 1/RC ~1/RC : 1/§C
This circuit has a pole at -1/RC and a zero at
+1/RC as shown in Fig. 59, so it is clear that

the circuit is all-pass. Note that at low

frequencies, the capacitor can be considered out of the circuit. The reader can
verify that the resulting structure is actually a follower, and thus the phase
‘respounse at DC is zero. At high frequencies, the phase lag goes to 180°.

6D. THE NOTCH FILTER

There are many circuits available for notch filters. The one we will discuss
here is shown as much for its teaching value as its actual utility in practice. .To
cbtain a notch response, it is desirable to have a zero occur on the jw-axis at some
point other than at s = 0. Thus the numerator of T(s) will have to take on the
form s? +-wézwhere wg is the frequency at which the response is to be zero. With
this numerator, there is a zero at *jwp. Fig. 60 shows a prototype of the active
filter we wish to develope. It includes an : 12 vy
inductor which we will eventually want to
replace with a capacitor and an op-amp. in
. Briefly we can see that the circuit will
provide a notch because at a certain

frequency, the LC combination will become B '
resonant and take on a zero impedance, ) ) Il _Eé

e rem

leaving only a resistor R in the ground leg. Fig. 60
This leaves a differential amplifier with Notch

" both inputs connected, and thus their

difference should be zero. In the case tI:C
where the LC combination is not resonant, ' ;
we expect it to add an impedance much greater than R in the ground leg, effect1vely
isolating this leg and giving us the same follower circuit that we saw in the all-pass

filter above.
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We mentioned briefly that if you have an inductor, you mentally replace it with
a "resistor" of resistance sL and solve the rietwork as though it were composed of
only resistors. With this knowledge, the reader should have no trouble following
the general analysis of a differential amplifiex and arriving at the transfer function

of the network as:

s2 + 1/1LC
2

s“ + (2R/L)s + 1/LC

T(s) =

We note from this that T(s) has two zexros, at *j/V/LC, so the notch appears at 1/2n/1C
and the damping goes as R/L (the Q increases as the resistance'decreases). Both these
facts should be in line with what the reader probably knows about LC resomant circuits.

We have next to get rid of the inductor by v 1, : >
using the circuit shown in.Fig» 61, wh?re we have in -
only to show that the portion of the circuit R R
below the node marked with a (%) is the same as _ =
a resistor and series inductor. By inspection,

we can write three equations for the voltage V':

Vo= (I +INERID
V' = vk~ Il(R/2)
= Y% - T'(1/sC")

vl

We can solve these for Z = V¥%/I; where Z is the
input impedance as seen from the (*) node. The
result is:

. Thus, the equivalent seriés inductance is given
"~ by:
' L = C'R2/4

This can be substituted back into the prototype.

/6E. EXPERIMENT NO. 4, HIGH-PASS, BAND-PASS, ALL-PASS, AND NOTCH

1. Build and test a second-order 2db ripple Chebyshev low-pass with a 3db cotoff
of 440 Hz, and construct and test the corresponding high-pass with the same
cutoff frequency. The two filters should overlap at the 3db points, and
not at the section design frequency as in Fig. 57B. Investigate the very
high frequency behavior of the high-pass where the response starts to drop
back down again, and associate this drop with the limitation of the op-amp
you are using. Construct and test a fourth-order high-pass filter with
a Butterworth characteristic, or with a 1 or 2 db ripple characteristic, by
using the data in Table 3 of Chapter 53, converting the data for high-pass as
needed. o '

2. Build and test the all-pass filter of Fig. 58 and examine the phase response
using Lissajous figures or other phase measuring means. Discuss whether or
not there is any reason to prefer that R' = 2R.

3. Complete all the necessary design equations for the-notch filter as outlined
in Section 6D. Build and test the filter, being careful to note the depth
of the notch, Discuss how it might be possible to trim a single resistor
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to obtain a deeper notch. Show what happens if the two resistors shown
as R/2 are changed, but always so that their sum is R. What does this
indicate about the possibility that the notch position may be tuned with
a single potentiometer,

4, Build and test the bandpass circuit of Fig. 36, or with other values.
Verify the equations (3F-3 and 3F-4) for the center frequency and the Q by
using equation (3F-5) to determine Q experimentally. Apply the general
technique associated with Fig. 56 to obtain filters with higher § without
going to unacceptable spreads in resistance between Rl and R2 (as in Fig. 34).
For high Q filters, it is often more useful to measure the Q by means of

"ringing" the filter as shown in Fig. 62. |¢-Tf+1

The rirg time (T,) is taken as the time o m_.-.r_ - 1.0 Fig. 62
for the envelope of the ring to decay :

from a starting value to l/e = 0.37 of = N AYdew-— -0.37

that value. With the ringing frequency d\,hﬁ
Fc (essentially taken as the center U V‘j

frequency of the bandpass), the Q is given

by- . _ ‘)‘ ‘("""'lch

. Q o WFTy (6E-1) ——=impulse appled here

TYPICAL RESULTS: Typical results for high~pass are shown in Fig. 57B, or by

reflecting the data for the corresponding low-pass. Typical bandpass results are
shown in Fig. 37. Typical results for the notch filter are shown in Fig. 63 below:

il i T
Flg 63 Notch Results
ff__R = 100k, C ='0.0511 =
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CHAPTER 7:  STATE- VARIABLE Anp VoLTAGE- CONTROLLED FILTERS

TA. INTRODUCTION

In this chapter, we will be covering two important subjects ~ the state-variable
filter, and the idea of voltage-control of filters. In the course of the chapter,
it should become clear why these go well together. We will begin with the basic
theory of the state-variable filter, and give some actual state-variable active
filter realizations. We will then discuss the transconductor as a filter control
element (as a voltage-controlled resistor). As a simple voltage-~controlled filter,
the first-order controlled structure will be examined, and then we will move on to
the voltage-controlled state-variable. In the third part of experiment 5 below, the
state-variable will be refined so that in its control mode the Q remains constant
dispite phase shifts across the control elements.

7B. BASIC THEORY OF THE STATE-VARIABLE FILTER

The name state-variable (s-v) comes from the fact that the filter is derived
from a flow-graph between the state-variables of a simple passive network. The
exact details of this derivation shall not concern us here. Instead we will consider
the network as given, analyze it, and learn to control its parameters. The basic s-v
filter consists of two integrators and a summer in a loop as shown in Fig. 64. The
network is second-order (biquadratic) and is sometimes called a "Biquad" although this
latter term is a more general term for a type of network of which the s-v is an
example. The s-v is properly called biquadratic because it can be used to realize a
 numerator of the form As2 + Bs + C, where A, B, and C are constants, which may be zero,
s0 the s-v is capable of producing low-pass, high-pass, and bandpass functions, certain
special combinations (such as notch), and in fact, any general biquadratic. It is alsc
sometimes useful that the low-pass, bandpass, and hlgh pass outputs are available
31multaneously '

Fig. 64
in ] Variable Filter

For the moment, we will just use 1/s for the integrator, and thus we can see that the
output of the summer is: .

_ - . . 2 . 1Yy
VH = Vin - aVB VL = Vin aVH/s VH/S o (7B-1)

and this is easily solved for TH(s) as:

g2

Tg(e) = VH/Vin s? + as + 1 (78~2)
from which it is easily seen that:
= = . s !
TB(S) VB/Vin st + as + 1 _ (78 31
and: 1 A
= = 7B=-
T (s) = Vi Vo sZ + as ¥ 1 (78-4)

We thus have a basis for a filter that relies only on our ability to comstruct
integrators and summers. We have shown also that the damping term is D = a for the
s-v where a is just a feedback gain. _
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A popular configuration for the s-v AN
filter formed from op-amps is showm in R
Fig. 65. In the analysis, it should be !
" remembered that the integrators are invert- .
ing and have transfer functions -1/sCR. The -
first step in the analysis is to observe that t
the voltage on the inputs of Al are determined ,Al
by resistor veoltage dividers:
V. +V
- L H . _
V.= 2 (73-5) Vin R
O A NNt
. t -
v, =V, - iT%EE (V:ﬁl - VB) (7B-6) Fig. 65 One Form of State-Variable
As usual, we set V. =7V , and representing R'/(R'+R.) by k, and using the integrator
- + Q
result, we get: :
Vﬁx VH VH

(78-7)

Vin@®) = e+ sgzcERr v 7

From this we obtain the transfer functions analogous to (7B-2), (7B-3), and (7B-4):

. _ 252 ] | -

Tg(s) = Vy/Vy, = @ K?[ ST T (3<JRCYs + 17R%C% (78-8)

') = V. = -2s/RC ] (78~9)

Tpls) = Vg/V, = K)[ sZ + (2k/RCYs + 1/R2C?|

= = (1- 2/R?¢% 1 .

1) =V /Yy, = O e s T TR ' (7B-10)
From these equations, we note an overall gain of 2(l-x), and a damping term 2x,
corresponding to a Q of 1/2x. We could have arrived at the expression for Q by
means of the feedback gain using the general model of Fig. 64. To do this we would
have to determine the value of the feedback path "a" in the general model. <Clearly,
the voltage Vp is fed back by voltage divider Rn-R', and the proportion that reaches

the (+) input of Al is just x, However, you should reallze that the resistor R' from
vy, back to the (-) input of Al acts to make Al a non-inverting amplifier of gain 2,
just as though Vi, were grounded. Thus, the feedback factor from V; to Vi is 2-x, a
fact that should be carefully studied as a means of preparing for the analysis of the
slightly different configuration given in the experiment that follows later. Thus,
since the feedback gain a=2x, Q = 1/2x, just as we get from analysis of T(s). The
section design frequency of the state-variable is just 1/27RC. Thus note that control
of the RC product of the integrators controls the frequency characteristics of this
second-order section while RQ determines the response characteristic independently.-
Thus, unlike some second-order structures {but like Sallen—Key), we have independent
control over frequency and damping. It turns out, although we will not show it here,
that one of the advantages of the s-v apptroach over Sallen-Key will be that the 5=V
has a lower sensitivity to component wvariations.

. Knowing the_relationshib between dampihg and the resistor relative to R’
allows us to set a response characteristic, which we might choose as Butterworth.
Consulting Table 1 of Chapter 5 tells us that the damping should be 1.41. Thus 2x =

1.41 6y ¢=0.707. Thus, choosing R' = 100k, we get R'/(R' +RQ) 0.707 or = 41k,
We can run an experimental test choosing R = 12.48k and C = 0.0511 mfd (just values
“on hand chosen at random). The results are shown in Fig. 66. We note from Fig. 66

the Butterworth high-pass and low-pass with second-order l2db/octave slopes, as well
as the bandpass with 6db/octave "skirts" on each side. The experimental Q (equation

3F-5) is close to the 0.707 predicted value. .The overall gain is close to the
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2.(1-¢) = 0.58 predicted, as can be seen from the low frequency gain of the low-pass
and the highwfxequeﬁcy gain of the high-pass. To check the peak gain of ‘the bandpass
it is a useful trick to realize that if we substitute juwg for s, where wp is the center
frequency = 1/RC, the s? term in the denominator will cancel the 1/R2C2%term when it
comes to taking the magnitude. Applying this to equation (7B-9) we see that we would
have 2(1-«)/2x remaining, so the bandpass peak amplitude would be (1-k)/r=0.414, close
to the observed value.  Finally, the center frequency is 1/2#RC = 248 Hz, close to the
observed values. Note that all three curves pass through the same point, and that the
3db frequencies are the same for low-pass and high-pass. This is true only for this
Butterworth example, as will be clear from the second example shown in Fig. 67 where
= 160k (close to 3db Chebyshev). - The reader may verify the other calculations on

 this second example against the experimental results. '

7C.  THE TRANSCONDUCTOR AS A CONTROL ELEMENT

Tn all the filters we have studied so far, we have seen that the frequency of
operation and other parameters of the filter depended on the value of certain resistors
(and on capacitors). Since variable capacitors of more than a few thousand pf are rare
or unavailable, we resort to variable resistorxs when it is necessary to tune filters.
Variable resistors, potentiometers, are easy to apply, but must be manually tuned. Here
we will look at a control element that responds to voltage.  This allows us to tune
filters without manual control, and this can often be done automatically, at a faster
rate, and with more accuracy than can be done with manual control. Such filters find
numerous applications including the synthesis of music and speech, communications,
adaptive processing, and adaptive control.

The development of a voltage-controlled filter (VCF) is a two stage process that
generally starts with a control device, and then proceeds to the search for a network
where this control device will work properly and naturally. Here we will choose as
the control device the transconductor, of which the RCA type CA3080 is the best known
example, and will see which networks can use this device. First, we will look at the
transconductor itself. : :

Fig. 68 shows the CA3080 transcondﬁctof IC.
It is in some ways much like an ordinary op-amp,
except it has (1) a gain controlled by IABRC

"ABC Fig. 68
CA3080

(amplifier bias current), (2) a current output

instead of a voltage output, and (3) an input E. +

that generally needs to be limited by an m_y
attenuator. In general, the control current /’///
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I,pc should not exceed 1 to 2 ma. The differential input voltage should not exceed
about 1 = 2 volts in all cases to prevent damage to the device, and here we have a
further restriction that the input should not exceed *20 mV, this latter restriction
being added so that the device remains sufficiently linear. The basic equation
for the CA3080 is: '

- . “E - Fig. 69
I ye = 19-2°L,5.E (7¢-1)

To assure that the input voltage does not exceed 100k
the 20 nV we specified (with +10 volt signals
in the filter) or better still 10 mv (with 5
volts signals in the filter), the 100k to 220Q
attenuator shown in Fig. 69 is used. This gives:
Ein = 0.00220 V4.  Substituting this back into
equation (7C-1), and solving for an equlvalent
resistance Req = Vip/Iout, we get:

23,7

= = . (7¢-2)
®1 Ippe i
out

To see the significance of this equivalent : Vin Req ’
resistance, consider Fig. 70 where we show an @ AAAAA _\\N
ordinary resistor driven from the same wvoltage .J-
driving the same current into ground. It is not .
always necessary that the CA3080 drive current Fig. 70 =

into ground potential, but here it is seen to work
as an equivalent resistor driving into ground.

At this point, we have described a current-controlled resistance. It actually
makes little difference what we use to contrel the controlling element ~ voltage or
current - but voltage 1s often easier to design with and measure. For the purposes
of this discussion and experiment, we need only know that the control terminal, pin 5,
is at a voltage that is approximately 0.7 volts above the negative supply. On a %15
power supply, pin 5 is at about -14.3 volts. Thus we can supply the control current
by connecting a resistor between pin 5 and some other voltage more positive than
-14.3. Ve will generally be supplying this current from the wiper of a pot connected
between +15 and -15, and the resistor to pin 5 will be 33k, which safely limits the
current even at control voltages of +15. Keep in mind that even though we are
supplying the control voltage from a manual pot, we have the potential of supplying the
voltage from any source, so we have a system that goes beyond manual tuning.

7D. A FIRST~ORDER VOLTAGE~CONTROLLED FILTER

As an example, we will consider the process of adding voltage-control to &
first-order low-pass filter. We can use as a
.prototype either of the two circuits shown in.
Fig. 71, but for this discussion, we will choose
the B circuit., . It turns out that both circuits
would give essentially the same voltage-controlled
version, even though circult 71B has one extra
resistor. The voltage-controlled version of the
B circuit has the slight advantage that the CA3080
is always driving into ground potential,

Note-first that in the A circuit, the voltage
across the resistor is not a constant, but is the-

difference between the voltage on the input and the +
voltage on the capacitor. In the B version, the : B '
effective voltage across the resistor is decreased i
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" by a cancelling current fed back through the second resistor from the output. If we

' drive a standard inverting integrator with the voltage-controlled resistor of Fig. 69,
we have a voltage-controlled integrator, a simple fact that we will exploit in the
voltage~controlled version of the state-variable filter. But here, we must add
provisions so that the decrease in the voltage across the filter resistor is accounted

for.

The solution to the problem is seen
in Fig. 72. We simply loop a portion of * AN
the output voltage back to the input of Vi 100k 100k
the CA3080, keeping in mind that the - — T
integrator is inverting. Since the 220 0%9/,
ohm resistor is so much smaller than the = K5
100k resistors that bring in the input signal,
and return the feedback, we can consider '220ﬁ =
. voltages to be summed (as well as attenuated) 9 33k
at the (+) input of the CA3080. In Fig. 73, ﬁL '
‘the circuit of Fig. 72 is redrawn so as to _ v
look as much as possible like the circuit Fig. 72 "¢
of Fig. 71B. The reader may want to show :
that the circuit of Fig. 74 is the proper
© voltage~controlled version of Fig. 71A, and
note that here the CA3080 drives into a voltage equal to the output voltage of the
filter, which it is capable of doing, as long as the power supply voltages to the CA3080
exceed the signal voltages of the filter. In all these filters, the cutoff frequency
is given by 1/2nR__C, where R is given by equation (7C-2) with I approximately
(v, + 14.3)/33k. © eq - ABC

AAAAAS
vy

I~

) ~ .
S, .
e ~ _
v o
in 1 - \/\"'-.
| —
. + ,’ v
Fig. 73 | - out
) | I _
' "
i P
] .
T | .7
[ T

7E. VOLTAGE-CONTROLLED STATE-VARIABLE FILTER

It is a simple matter to use the voltage-controlled resistor of Fig. 69 to drive
into the ground potential {(virtual ground) of the inverting integrator. Another
advantage of this setup is that by using the (-) input of the CA3080 used in the voltagew
controlled resistor, the overall integrator becomes positive, and the summer of the
state-~variable filter can be a simple inverting summer. The complete circuit is shown
in Fig. 75. Note that both of the CA3080's in the two integrators can be controlled

“in parallel as shown. -Another simple extension that we will not consider here is that
a third CA3080 can be used to control the Q of the filter by controlling the feedback
from the bandpass output, essentially using anothér voltage-controlled resistor (CA3080)
to replace resistor R Based on prev1ous results, the reader should be able to show
that the center frequency is:

(Ve - 14.3)  _ _(Ve - 14.3) _
FnGe23.7-33k (3.9 x10¥6)C (7E-1)

F = ‘1/21R C =
c eq
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vin 100k

Voltage-Controlled

State~Va

riable

and that

the Q is given by: Q= Rq/lOOk i _ (7E-2)

7F. EXPERIMENT NO. 5, VOLTAGE-CONTROLLED AND STATE-VARIABLE FILTERS

1,

Build and test the state-variable filter shown in Fig. 76. This configuration
is popular and about as common as the one in Fig. 65. Analyze the ciréuit

to determine the relationship between filter Q and the resistor Rq. Verify
this relationship using equation (3F-5) to determine experimental Q's.

v “"‘“

Calculate and verify ekperimentally the overall gain factor for the coﬂfiguration
of Fig. 76. Compare the variations of overall gain and Q with the cenfiguration
of Fig. 65.  Sum the high~pass and low-pass outputs using a simple inverting

.summer, and verify that a notch response results from this summation. - Discuss

- Input signal is applied to both the original I

the importance of relative phase in this summation.

Build and test the voltage-controlled single-pole low-pass of Fig. 72. Verify
the relationship between cutoff frequency and control voltage.  Alter the
s;ructur; by considering the (+) input of o _aaa—e AN ——
the regular op-amp to be a second input as i
shown in Fig. 77. By analysis and by Inl 100k pL00k Fig. 77
experiment determine what happens when the

original input is grounded and the (+)

input of the op-amp receives the input

signal, Then see what happens when the 220

ARAA
ey

input and to the (+) input of the op-amp. = 2
. 76 o



3. Build and test the state-variable VCF of Fig. 75. A good starting value for
C is 0.00I mfd. Note that here we have used attenuators on the CA3080 inputs
that are formed from 10k-22ohm resistors instead of the previous 100k-220chm
setup. This makes no difference to the analysis to this point, as the
attenuvation is the same as before. Later we will want to be doing some
special compensation where it will be convenient to have a smaller resistor
in the (*) positions so that a needed RC constant can be obtained w1thout
having to locate a very small capacitor,

By experimental measurements on the bandpass output, verify equations (7E-1)
and (7E~2). Calculate the value of the overall gain of the network and
verify by measuring the low-frequency gain of the low-pass output.

Learn to use the "ringing" method of measuring Q [Fig. 62 and equation (6E-1)]
and choose R. go that the Q is about 10. Measure the Q at low-frequency (say
200 Hz) and at high frequency (say 10 kHz) and compare. You will probably
find that the Q has increased at the upper frequency. This is due to phase
shift across the control elements, and is called 'Q-Enhancement." Plot a
curve of Q as a function of frequency. Now, to compensate for this it is
useful to add a "phase lead" section which is achieved simply by placing a
small capacitor across the two 10k resistors marked with a (*). The capacitor
should be something like 10 pf to start with. Remeasure the curve of Q as
a function of frequency, and see if it is now flatter. Adjust the value of
these capacitors up or down as needed to achieve a flat curve. The exact
value will depend on the op-amps used., as these also contribute some phase
shift to the 1oop Discuss why this type of compensation is relatively
important in VCF's or other tunable filters, and why it might not be so
important in flxed filters.

TYPICAL RESULTS: Results of part 1 will be very similar to those shown in Fig. 66 and
Fig. 67.  Part 2 will result in a low-pass response similar to Fig. 27, and with the
alterations descrlbed, a corresponding high-pass and all-pass response w1ll appear. Ln
part 3, the major new thing is the compensation for Q-Enhancement. Typical Q vs. freq.
curves aré shown in Fig. 78 below. The CA3140 was uséd for the op~amp for these. Slower
op-amps such as the 307 may require up to 30 pf or more to flatten (and may be a better
lab experlment for this reason}.

R

g
HE

=1 KHz—

11Q Enhancement of
‘Fig. 75, CA3140
Op-Amps ‘ X
L e e

77



CHAPTER &:  DiscreTE-TIME FiLTERING WiTH DELAY LINE NETWORKS

8A. - INTRODUCTION

In this chapter, we depart from the general flow that we have been following,
and will jump into the domain of discrete time - the world of the so-called "digital
filter" and its relatives. It will not be possible here to go into a lot of detail.
Instead, we will give only enough background so that the reader will be able to .
perform the experiments. There is probably no need to discuss the emerging
importance of digital filters. They must be studied, and it is probably the case
that the best way to learn about digital filters is to work with them. As of this
writing there are several good ways to work with digital filters, and actually building
one as a lab exercise is not one of these good ways. Among the good ways are: com-
puter simulation, manipulation of special purpose digital signal processors, use of
a programmable calculator, and experimenting with delay line networks.

The delay lines we have in mind are analog delay lines of the "Bucket brigade"
oxr "charge-coupled device" type. These are basically integrated circuits that are
designed to represent an analog voltage by a proportional amount of charge, pass this
charge sample down a line, and recomstruct the analog voltage on the other end. This
process involves time sampling, 80 the reconstructed waveform will be of a stepped
approximation mnature, and the limitations of sampled data systems apply here. However,
we will assume, and it can be made the case, that the sampling rate on the actual IC
delay line is sufficiently fast, and that the proper input guard and output smoothening
filters are present so that we may regard the device as an ideal fixed delay. We are
then free to design with a delay element which we can call Tt.

Before starting in, we want to point out that digital filters are not quite as
unfamiliar as many readers first think. It would seem likely that nearly everyone
has at one time or another used a digital filter, probably without knowing that what
he was doing was a form of digital filtering. For example, you may have worked in a
store and made a chart of sales. If this was done on a daily basis, you may have
found the chart to have too many irregular: variations to be useful for detecting the
trends you are interested in. So in a very natural way, you average data for several
days and replot, and arrive at a smoother sales curve. If you think about it, this
is a type of low-pass filtering, one which removes high frequency random events and
returns only low frequency trends. Some information is intentionally discarded so
that the remaining information is clearer. This is a type of digital filtering.

It is digital because the data is digital (discrete amplitudes) since they are in
amounts of dollars and cents - equally spaced numbers. Note that it is also a discrete
time process because of the daily sampling. The analog delay lines we will be using
will be discrete time (time exists at the input, and at a delayed point or at delayed
points in the case of multiple delays), but not discrete amplitude since the charge
packets that store the samples are proportionmal to the input voltage, and are not
rounded off ro the closest available discrete value. This is an improvement over a
fully digital system, at least in theory. In practice, amplitude samples capable of
taking on any of a continuous set of values are subject by their very nature to errors
because the system receiving them knows nothing of them except what is found when they
arrive, - A digital receiving system on the other hand knows that only a finite set

of values may be coming it. Thus, even with small variations that must exist, the
receiving system is ablé to regenerate the original value, and only very gross errors
will result in a sample jumping into a different bin so to speak.

8B. - SOME THEORY OF DISCRETE-TIME SIGNAL PROCESSING

It is natural when starting in on a new type of_anaiysis to try to hang on to
something familiar, We all have a good feeling for time delay, and thus would be

8-1




inclined to work in the time domain first. Yet, we should also keep in the back of

our minds that in the active filter case, things got really easy only when we went
In the case of

over to the frequency domain and started working with the s variable.

discrete time filtering, we will have to resort to a complex z variable eventuﬁlly,
and many of the things we do will follow closely the procedures that went on with the
First however, we will do one example where time domain analysis works

s variable.
rather well.

. . _ Sin wt Sinw(t-t)
Fig. 79 shows a simple setup where a sine wave . T
is summed (inverted) with a delayed version of Vin déla
the input. We will apply time domain analysis Y
here. We see that the output is the sum:
Vout = Sin(wt-wr) -~ Sin(ot)
=~28in{wt/2) Cosfwt - (wr)/2] ° (8B-1) Fig., 79

were the second line is obtained simply by applying the trig formula for the sum of
two sines. The first term in the result, Sin(wr/2) is independent of time t, but

depends on the delay time r, The second term is a sinusoidal that is identical to
the input except for the phase shifts [changing to Cosine, and the (wt/2)].

magnitude of the frequency response is thus as
indicated in Fig. 80. This is easily understood

in terms of the delayed signal cancelling and |T(w)|

then reinforcing the input as the frequency 9
changes, changing the relative phase at the

summer . The result is interesting in that

we have not yet studied any structures with

multiple notches (or any other multiple

The

feature), and this has the obvious application
of femoving harmonically related signals since
the notches can be tuned by adjusting the delay
time. :

It becomes obvious that when we congider
a more complex delay line network such as the
"second-oxder" (two delay lines) structure in
Fig. 81, that time domain analysis is going to
get very tedious. Not only is there the feed-
forward summer as in the above "comb filter",
but we also have feedback paths (making the
structure "recursive'), Based on our success
with frequency domain analysis with active
filters, we might want to jump right to the
s-domain.  This could be done, but a somewhat
different solution leads to results that are
more direct, and we will come to use a "z"
variable here. The first thing to observe is
that in the frequency domain, we are really
performing operations on quantities that are
Laplace transforms of their time domain
counterparts, We get away with being a little
"loose" with our thinking because we are always
thinking in terms of response to sinusoidals,
and it is the sinusoidals that are the "common
denominator™ between the time and frequency
worlds. In any case, we want to know how a

~delay effects a Laplace transformed quantity. T
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It is a standard exercise to show that the Laplace transform of a delayed signal
is just e~ST times the Laplace transform of the undelayed signal. It is standard
practice to represent e~ST by the notation z~l, which is, as it will turn out, more
‘than -just a change of notation. We now are in a position to write a transfer function
for the second-order structure of Fig. 81. Now, just as we have learned to treat
capacitors as "resistors" of value (1/sC), we will treat delays as devices which simply
multiply a signal by z~l (in the Laplace transformed domain, we remind you once again).
Thus, the signal at the output of the first summer can be represented as E’, and thus
the first delay changes this to E' z~1 (that 1s, E'/2) and the second delay multiplies
by an additional z-l, giving E'z~2 (that is, E'/z2). We then can just write:

E' =V, (2) - aiE'z_l - aOE'z_z ' (8B~2)
and that:
1 ] -1 1 -2 _
out(z) bZE + blE z ~ + boE z (8B-3)

We can solve for E' in equation (8B-2) and plug into (8B-3), arriving at a transfer
function which we will denote H(z} [you may use T(z) if you prefer].

b222 + blz + bO :
B{z) = Vout(z)/vin(z) = (8B~4)

zz-+ a.z 4+ a
1 o

Equation (8B~4) is something we cam easily work with in terms of poles and zeros and
relatéd techmigues. Notice that it would have been awkward to have carried e™ST
instead of z-l. = Yet, when it comes to finding the response of a discrete time filter
to ordinary sinusoidals, we will end up substituting e~J®T into equation (8B-4) or into
an expression derived from it,

Since we are now using a variable z, which is in general a complex number, we have
to work in the z-plane. The form of the z-plane is mathematically identical to the
s-plane., A calculation that is valid in the s-plane (such as the distance between two

points) 1g also valid in the z-plane, What will be different are the physical
consequences of the mathematics. For example, we know that in the s-plane, poles could
not appear in the right half-plane if the system was to be stable. If you transform

a few points from the s-plane to the zw-plane using z = 57, you will discover that the
left half-plane transforms or maps-entirely into the interior of the unit circle of

the z-plane, and that the right half-plane maps into the exterior of the unit circle.
Thus, stability in the z-plane is a matter of keeping poles-inside the unit circle.
Perhaps of the most interest is the fact that the jw-axis of the s—plane maps into the
unit circle, but in a curious way. It wraps itself around and around the unit circle
repeating ever 1/t units of frequency, with zero frequency at z = +1. Yet the point

z = +1 also represents frequencies 1/t, 2/t, 3/t, as well as -1/r, -2r, -3/r, and
likewise, any other point on the unit circle in the z-plane represents an infinite
number of equally spaced frequencies.

With this in mind, consider the evaluation Fig. 82 ’
of a frequency response using a z-plane pole- z-plane —~ ‘k\
zero model. We start our evaluation at zero _
frequency (at z = +1), and start counterclockwise _ ‘\
around the circle (see Fig., 82). Just as we did fs/2~¥ 0
in the s-plane, we evaluate the magnitude of the
response by multiplying the distances to the
zeros and dividing by the distances to the poles.
The frequency going round the circle is just :
(D/360)-(1/r), where D is the angle with respect —
to the positive real axis. The frequency (1/7)
is often called the "sampling frequency" fg.
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When the angle around the circle veaches 180°, the response function will start to
back up (because the poles and zeros here must be complex econjugates). Eventually,
we get back to the starting point at 360°. Going beyond 360°, we get the same values
all over again. We have already seen an example of this by the response shown in
Fig. 80. We now see that the "comb filter" response is something that comes in a
very natural way, and in fact, we have to take steps to get rid of it, The way to
get rid of the repeating response is to obey the "sampling theorem.'"  The sampling
theorem tells us that we should not input to the system any frequency components that
are higher than fg/2. This would be done by applylng a "guard filter", a low-pass
cutting off sharply by the time it reaches f£4/2. [Note that this has probably been
done in analog delay lines, but working very much higher at the clocking frequency of
the delay line]. This clocking frequency should not be confused with the sampling
frequency we are talking about here, In fact, it may be best te¢ forget about the
actual clocking frequency on the delay line, and just consider the delay as a
continuous analog delay.] In the comb filter, we intentionally violate the sampling
theorem so that we do get a repeating response.

'8C. EXPERIMENT NO. 6, DELAY LINE FILTERS

1. Set up and test the delay lines available to you. It is important that the
frequency response, overall gain, upper frequency limitatiomns,etc. be understood
before attempting to apply the line to these experiments. If the gain of the
line is not unity, this is not important, as long as it is allowed for when
setting network coefficients. Run the input frequency up until either the
response drops off, until steps appear in the output waveform, or until the
output frequency goes down as the input frequency increases (frequency
aliasing, or violation of the sampling frequency on the delay line itself).
Whichever of these limitations occurs first depends on the exact setup of the
delay line IC you are using. When vou have determined the upper frequency
limit, plan your experiments so that you work at frequencies that are about
ten times lower than this limit. : +

2. Set up and test the comb filter of Fig. 79. -
A suggested summing network is shown in -
Fig. 83, Find the spacing between the nulls
and show that this is 1/v, where t is the
delay time as obtained by direct measurement
with an accurate.scope, or by a knowledge of +
the frequency of the delay line clock and its
operation. If necessary, just use the
spacing between the nulls of this comb filter
as your measured delay time. Change the
experiment by setting up the summer with both <«
inputs positive, measure the frequency response
with this setup, and compare with the setup of
Fig, 79. Do a z-plane analysis of both these.
structures [a special case of Fig. 81 and equation (83-4)] and understand the
network -response in terms of the zeros which you locate by this means. Suppose
the system is a digital filter. How would you place a "guard filter" so that
the comb filter with both summer inputs positive is a low-pass filter. [Ignore
the fact that this is not a practical filter in this case.]

Fig. 83

Summer

3. Using two delay lines that have identical delay, realize the system of Fig. 8L.
The summer stage suggested in Fig. 83 should be modified to provide any
additional inputs necessary, and a second summer should be built, By factoring
equation (8B-4) using the quadratic formula, show that the poles of (8B-4) are
at a radius va, and at angles (see Fig. 84) 4 and 4, given by:

aay
=t -1 ——
. $1, $2 = T Cos 2an



and that the zeros are at a radius JE;/bz Fig. 84 Tm(z)
and at angles Y1 and Y, given by: ’

1 -bq/by

By using these formulas, you can locate
poles in the z~plane by adjusting the
sunming coefficients, Note that the
requirement that the system be stable
will restrict the poles to the interior
of the unit circle, and hence a, must be
less than one,

9. ¥, = E C

Re(z)

As a starting point, set the poles at approximately the locations shown in

Fig. 84, and place two zeros at z = -L. Measure the response of the filter,
and verify the respomse curve by us1ng a graphical method. Remove the zeros
(by setting by and b, = 0) and compare the stopband rejection with the case

where these zeros are present.

Often in the design of discrete-time filters, data borrowed from the world of
active filters is used with the idea that one or more of the properties will be
transformed and maintained in the discrete~time design. Here we will give an
example using the "Matched z-Transform". The method simply transforms the
poles of a filter in the s-plane to the z-plane through the mapping z = ST,
the same mapping we used to set up the z-plane in the first place. We will see
that this can be made to work under certain conditions. First, we can use
Table 1 of Chapter 5 to see that the damping for a 3db ripple Chebyshev filter
is 0.77, and thus the denominator in the s-plane is s2 + 0.77s + 1 (we are not
concerned here with the exact placement of cutoff frequencies). This gives
poles at -0.385 * 0.923j. When we transform these, we have to choose a value
for t relative to the s-plane dlmen51ons. Let's start with r=1. With this
done, the poles transform to: ‘ '

g = o 0385 T 09235 | coreie(0.923) % §51n(0.923)] = 0.410 % 0.542 §

Set up the experimental filter to give these poles. You should observe a 3db
ripple, but relatively poor stopband rejection, and of course the response will
repeat at higher frequencies. If you add in the zeros at z = -1, you will get
a much better stopband rejection, but the ripple in the passband will be
altered. Another approach to improving the situation is to change the sampling
frequency to a higher value. We can make this four times higher if we set

= 0.25 instead of one. The poles in this case are:

go= o(70.385 % 0.9233) (0.25)

= 0.884 £ 0.208 j

Set the filter for these poles, remove any zeros, and remeasure the response.
You ‘should find the 3db ripple, and a much improved stopband. Plot and
compare the active filter 3db Chebyshev, the discrete time filter with t = 1,
and for.t = 0.25.

If you are familiar with other digital filter design methods (such as the
Bilinear z~Transform) transform these s-plane filters to the z-plane and
examine them experimentally.

TYPICAL RESULTS: Typical resilts for the comb filters are as showﬁ in Fig, 85 and Fig.
86. Note that the spacing between nulls is the same in both cases, but one starts as
a high-pass filter while the other starts as a low-pass filter. In the case of the .

8-5




Fig. 85 QOut of Phase Summing

i 360 720
Degrees Around Circle

second-order filter, typical results
for poles placed approximately as in
Fig. 84 are as shown in Fig. 87. In
Fig. 87, the poles were placed at
+0.6 + 0.6 and +0,6 « 0.6j. The
dotted line in Fig. 87 shows the results
of placing a double zero at z = -1,
Note the much sharper cutoff as a
result of these zeros. The data on
the case with zeros was lowered by a
factor of four to make up for the
gain of four that results at DC.

Fig. 88 shows the result of the
matched z-transform applied to the
3db ripple Chebyshev, The filter
.shows the 3db ripple. The solid
line is the case where T = 1 and
shows the poor stopband rejection,
The dotted line on the left shows
both the analog Chebyshev, and the
case where 1 = 0.25. The dotted
line on the right shows the return
of the T = 0.25 case. The cdurves
have been slid left-right and/or
up~down as necessary to make comparison
easy.

Fig. 86 In Phase Summing
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