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INTRODUCTION i electronic nueic systems since about 1965 have been mainly concerned
»ith voltage controlled devices.1 Recently, digital devices and the availability at
digital IC's and MSI haw made digital music systems practical,2.J.* and even some
ISI la being used in organ designs.̂ " Use of digital systems along with the present
voltage controlled synthesizers is being considered*

This report wili consider some aspects of voltage controlled systems, and
interfaces with digital systems. It is Intended that an overall electronic music
system be presented, and toward this end. It will be mainly voltage controlled, i.e.
generally analog, since the digital counterparts of various electronic music modules
are not developed yet, or are impractical. Where analog modules are used, the
corresponding digital approach is often presented as an appendix to this report.

Digital IC's have been used for various purposes in electronic music. Digital
controllers known as sequencers or tune computers have been used to provide a slow
series of control voltages representing different musical notes in seo.uence.">°
Various methods of waveform generation have been used, mainly on a segment-by-segment
basis, and Hill be mentioned at the beginning of part fc of this report. The real
tour-cte-force of digital methods in electronic music has been in the generation of
appropriate musical scales by digital countdown of one master oscillator, e.g. a
twelve tone eo.uaj.ly tempered scale by dividing one upper frequency by numbers in the
range of 100-300, these numbers approximating the ratio liZ-1'". These methods will
be discussed, but not used. The main digital method we will discuss here is the
synthesis of waveforms by Walsh-Fourier methods.

Conventional Voltage Controlled System A conventional V.C. electronic music system
in indicated below in its most basic form:

Keyboard Controller
or Control Voltage

Sequencer

Multiple
Envelope
Generator

Sample | Exponential ' Linear Voltage
and , Voltage | Controlled
Hold | Converter , Oscillator (VOO)

envelope 1 ^

enveloOT 2

V
Voltage Controlled

Amplifier
(VCA)

T

Voltage Controlled
Filter
(VCF)

The VCD must have exponential response to the control voltage in order that
equal musical intervals are generated for equal changes of control voltage* Recall
that each octave of an equally tempered scale is 12 notes, equally spaced, and more
fundamentally, each octave is twice the frequency of the one below, hence the need
for an exponential rather than a linear voltage to frequency relation. This permits
two exponentially controlled VCO's to track each other at equal intervals (equal
frequency ratios), and also, resistors in the voltage divider string in a keyboard
can all be the same value* An exception is made for the generation of musical timbre
by means of PM sidebandŝ . The purpose of the aample-and-hold circuit is to provide
a control voltage for the VCO during the time that the sound envelope is Intended to
decay• For example, after the key on a keyboard controller is lifted, we want a
finite, non-zero decay time during which the pitch should not change. Various types
of voltage envelopes are available, and can be supplied to a VCA for amplitued shap-
ing, or to a VCF to control overtone content with time. This latter time dependent
control over musical timbre Is thought to be fundamental to the "character" of the
-ynthesiaed sounds, i.e., it makes the sound musical.
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PART Is Digcussion of the overall systgm; The system shown below is a slight expan-
sion of the basic V.Ct system described above. We have added a Walsh function gener-
ator between the VCO and the VGA* This provides the waveshaping. Also included
are some additional balanced modulators, and additional equipment for a frequency
shifting device of simple designs

S.& H VCO HWalsh Gsn 'D/A

•• Balanced I
.- Modulatorsf

in
Generator

T '

The basic source of signal is the VCOj since the VCO is the most generally use-
ful for musical applications at this time. This is because it is more generally
tunable, and the addition of a voltage sample-and-hold permits the storage of "freq-
uency information" by the stored voltage. The VCO we are presently using is shown in
Fig. 1, pgl 3 of Electronotes newsletter fr'lS (W15)i Nov. 30, 1972. Other VCO's
perhaps more suitable are given in EIW13, pg. 5 (Oot* 10, 1972) and in EK//16, sect.
Ua (to be published); The main feature we require is that the VCO can drive TTL, and
that it have range well above the audio, since it must be counted down by a factor of
32 by the Walsh function generator. A discussion of -the attractive alternative of
ecale generation by digital means is discussed in Appendix A* The exponential conver-
ter is shown in fig. ̂ , pg. 3 of EW#15, and its operation is described in Appendix B
of this report* The sample-and-hold circuit and the envelope generator are shown in
fig* 6 of EN#15, pg. **•• Digital methods of envelope generation and gain control are
discussed in Appendix G.

The basic VGA circuit is simply a analog multiplier using a single chip 1C.
This module is described in iiH,-12, pg. 4-, Sept. 20, 1972, and a discussion is also
given in Appendix D, which also discusses a D.G. version that Is used for control
purposes in the VCO and VCF. The multiplier module serves as a VGA, but also works as
a balanced modulator, a frequency doubler, and for amplitude modulation as desired.

The three remaining modules will be discussed separately. The VCF, fig, 2 ,
combined with a quadrature VCO, fig 3 of W15, pg. 3 is described in part 2 below.
The frequency shifting interconnection is described in Part 3 below, and the Walsh
generation process is described In part 4.

PART 2, The, VCF/VCO Module\ First of all, It is appropriate to state why we are
considering the use of a filter in a system we are orienting toward additive rather
than subtractlve synthesis. That is, we intend to build a waveform from harmonics
(Walsh harmonics in this case) rather than start with a waveform rich in harmonics and
then filter it down to what we want (subtractive synthesis). However, the additive
synthesis by Walsh functions is less familiar, and hence standard filtering of the
waveforms generated can be used In the standard way. In a true Walsh-synthesis pro-
cess, each Walsh function output to the D/A converter would be controlled with time,
and this would necesaairily be more involved than the VCF, and thus the additive
synthesis is to be thought of as more of a preset and more permanent process, while
the use of the VCF might provide for more rapid changes during live performance for
example. Finally, the VCF could be used directly with the VCO in the standard manner,
or used as a more general filter for processing live sounds, etc.

The VCF circuit is shown in Fig. 2 of EN#15. It is of the State-Variable type,
and the operation of this filter is described simply by D. Rossura in part 8a of the
same issue, and other references are given on page 6 of that issue. The main interest
In this filter ia its stability and the simultaneous High-Pass, Band-Pass, and Low-
pass outputs.
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Th« filter is voltage controlled by two D.C, mulltpliers (See Appendix D) and
—, e positive control voltage controls the filter functions in a linear manner. The

control mechanism is obvious once we consider that the summing junctions (the invert-
ing Inputs of the op-amps) are at virtual ground* Current passing through the res-
istors (RyJ charges the capacitors, since the virtual ground passes no current to
ground, tut only sits at ground potential. Thus, center frequency is controled by th«
rate of integration, which is determined by the current through By, and this is of
course determined only by the voltage output of the multipliers measured above ground.

The circuit becomes a VCO upon application of a negative control voltage.
Simply stated, this is because the multipliers become inverters as well as just mult*
ipllers, and the Low-Pass output is inverted twice with respect to the summer, hence
remains the same, but the Band-Pass output is Inverted only once with respect to the
summer, and thus furnishes positive feedback controlled by the "Q" control* The
voltages on opposite sides of the integrators are 90° out of phase as expected* Use
of this circuit as an oscillator is described elsewherê 0and a further discussion of
the use of two integrators as an oscillator is considered in Appendix E.

PART 2,, The Frequency Shifter i Balanced modulators have been used in electronic music
for years to produce the so called "Ring Modulator" effect, the word "ring" refers to
the ring of four diodes employed in early versions of the device rather than to any
characteristic sounds produced* The essential thing about balanced modulation is the
production of two sidebands, the sum and difference of the frequencies applied to the
Inputs. Today, the balanced modulator is being Implemented with 1C versions of four-
quadrant multipliers* These same modules are used as VGA's, etc*, as described above,
and two of them are used along with the VCF/VCO unit of Part Z for the frequency shift-
er. AH that remains is an accurate 90° phase shifting network and a couple of sum-
ming networks to implement a frequency shifter interconnection.

While the balanced modulators produce a "double sideband" signal, the frequency
shifter is a "single-sideband" device, and the present device is capable of separate
upper sideband and lower sideband production, I.e., the separated sum and difference
frequencies. The frequency to be shifted (i.e., the input signal) is first applied to
a phase shifting network, and thus we can think of it as being divided into a sine and
a cosine representation, since the phase shifter shifts 90°. Furthermore, the VCF/VCO
unit described in Part Z provides a sine and a cosine representation of the shifting
signal* By putting the two sines into one multiplier, and the two cosines into a sec-
ond multiplier, the normal sum and difference frequencies appear, but there is a differ-
ence of sign between either the sum or the difference signals in the output of one of
the multipliers relative to the other* Hence, they are easily separated by adding or
subtracting the two signals from the multiplier outputs. The actual case is easy to
work out from trigonometry.11!12 A discussion of 90° phase shifting networks is given
in Appendix F, and the actual frequency shifter constructed is shown in EN#51, pg 1*.

It is fair to say that the device constructed works about 90#. In test setups,
oscilloscope traces showed that the sum and differences were clearly separated, but
not without some "noise" which was probably the other sideband getting through, etc.
This was about 10$ of the desired signal. This could probably be improved by construct-
ion of better 90° phase-shifters, better balance of the multipliers, and more accurate
construction of the summers used to separate the signals. Many 10$ components were
used, and this is not really good enough. While this 10jS error is perhaps not first
rate engineering, the unit does work well as a special effects device, cost only about
2% of what a commercially made unit does, and can be broken down into other useful
modules when not being used to shift frequencies. The effect is most dramatic with
the human voice, where a "Donald Duck" effect is achieved, achieving Increasing, loss of
inteniglbility with Increasing shift. However, use of downshift Is limited, since the
voice can only be shifted Just so far down before the apparent pitch is so low that
it cannot be reproduced by hi-fi amplifiers, or is below the audio range* Crossing
the downshift below aero results In an upshift,
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Part 4: WAVSFORL SYHTH^SIS BY MEANS OF WAI3H FUNCTIONS i
a) Xnjroductign; Several methods of digital waveform synthesis have "been con-

sidered elsewhere. One method is to use a "Bucket Brigade" type of counter, and have
a voltage "walk" down the line of n segments, each segment being adjusted to a desired
output voltage level by its ovm pot, 3 A second method is to use commercially avail-
able read-only-memories (ROM's) to produce a stored waveform.1̂  Thirdly, transversal
digital filters have been used for synthesizing sine waves,̂ 5 These three methods are
basically segment by segment methods.

A second approach is to use various basis sets of functions and generate a
desired waveform by appropriate superposition. Generation of strings of digital har-
monics (up to 10 or more) have been suggested by counting down one upper frequency
using divide-by-n type circuits»16,1? This is easy to do with digital IC's( but out-
puts are square waves or non-symmetric rectangular waves. Assurance of square-wave
symmetric outputs can be achieved by doubling the upper frequency and adding divlde-
by-2 circuits to each cf the lower harmonic outputs we want to usei None the less,
we really don't want to attempt a Fourier synthesis process using square waves which
have substantial harmonic content, even if all the harmonics are available* Efforts
to round the square waves intb sines (e.g* by using a low-pass filter) have been used,
but this works over only a relatively small range of frequencies* Still another
approach is offered by the use of shift registers to generate pseudo-noise sequences,
i.e*| an overall output waveform is derived from the outputs of a shift register and
weighted as desired to give a histograni type output.!8 Any and all of the above
could be used for useful musical purposes.

The method we are describing here is believed to be general and the simplest
from the point of view of hardwear. The complete, orthogonal set of rectangular
"Walsh Functions" is employed as a basis set of waveforms from which we can synthesize
all other periodic waveforms by a process which exactly parallels Fourier synthesis
using sines and cosines, i'iathematicians have assured us that the Walsh Functions
possess the necessary properties for a corresponding Walsh-Fourier Synthesis, A
list of references on Walsh functions is given in Appendix G. Below, a consistant
approach is offered to the problem! 1} A general discussion of properties, 2) A
computer program, and 3) a TTL hardwear realization all follow the same basic proced-
ure.

)̂ Discussion of Walsh Functionsi Walsh functions as described below are given
a single index n, and denoted Wal(n). Properly, they should have a running variable
(ssy t for time) and be denoted Wal(n.t), but this will generally be neglected.
Wal(O) is simply a D.C. offset level, and won't enter our calculations of A.C. funct-.
ions. Ual(2i-l) is a symmetric square wave, i being a positive integer. This square
wave repeats 2*/2 » 2i-l times over the basic interval chosen for the entire set.
The rest of the Walsh functions are generated by the recursion relation:

Ual(h>Wal(k) B Wal(h©k)

where the ©sign indicates "Modulo-2" addition, which means 1+0=1, 0+1*1t 0+0=0, and
1+1-0, and the h and k indices are represented as binary numbers for this addition.
Perhaps 3Xclusive-OR of the two function indices represented as binary numbers is the
clearest. A couple of examples will helpi

Example 1: Generating a new function: Example 2i Regeneration of Wal(3) square
5 s 0101 in binary notation 7 = 0111 in binary notation

15 » . 1111 in binary notation 4 = .0100 in binary notation
1010 = 10 in decimal notation 0011 s 3 in decimal notation

Thus: Wal(lO) = Wal(5)«Wal(l5) Thus: Wal(3) = Wal(7)«ValCO
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The odd Indaj: Halsh functions are also denoted by Sal(j) = Wai (2j-l) and the
even Walsh functions by Cal(j) = Wal(Zj). Tha motivation Behind this notation Is the
similarity of the Sal and Gal functions with the Sine and Cosine functions, ana there
are many valid analogs, e.g. the main difference between corresponding Sal and Cal
functions is phase. A complete oasis of functions could therefore to cased on Sal or
Cal alone J but we shall stick to the whole set as all are generally required for the
complete generation of the Walsh functions.

Another property of the Walsh functions that la an analog of the sine-cosine
functions is the terminology of Sequency, analogous to Frequency. Sequency is defined
as one-half the total number of zero-Crossings per second (ZPS) and since the Walsh
functions are irregular within their basio period, the concept of frequency has no
meaning.

Some thought will show the followingi1? Square waves generally have * and -
values about zeroj while logic levels are defined as 1 and Oi A level shift process
could be used to convert these logic levels j but is not necessary. Just define the *
excursion as logic 1 and the - excursion as 0. Note that this also greatly simplifies
the multiplication process Indicated in the recursion relation, since it reduces to
the exclusive-or operation! The fact that the multiplication reduces to EX-OB is
fundamental to what we do next* We have the necessary properties and can now generate
the functions, after considering the basio period pf the set.

The basic period of the set of Walsh functions is the period of ••1(1), «nd la
nade the same as the period of f(t), where f(t) Is the periodic waveform we are going
to synthesize. Be divide this basic Interval into 2" segments, where m Is as large u
we need for any desired degree of approximation of f(t). We illustrate with xs3, i.e.
a basic Interval divided into 2ro=B segments.

A matrix notation ie useful and will be used below. The rows represent the
Walsh functions, and the columns represent the segments of the basic Interval. First
put in the Wal(O) d.c. offset, and square waves in the 2l-l positions, 1=1,2,3 (»=3)

Wai
Wai
Wai
Wai
Wai
Wai
Wai
Wai

11111111
11110000

10101010

Now the rest can be generated with the recursion relation!
Wai
Wai

Wai

i Wai
i Wai
•• Wai

6) a Hal

3).Wal
7) .Wai
7)-Wai
7)-Wai

The recursion process is probably clear by now without
need of the binary Index procedure.

Replacing multiplication by EXcluslve-Qring as described above, VIal(2) is gen-
erated as indicatedi

Wal(l) 11110000
Wal(3J 11001100
Wal(2) 00111100

Likewise, the matrix Is filled: Or Drawn as Waveforms instead of matrix i
Wai
Wai
Wai
Wai
Wai
Wai
Wai
Wai

11111111
11110000
00111100
11001100
01100110
10010110
01011010
10101010

D.C.
Square Have
EX-OR of 1 and 3
Square Wave
EX-OR of 7 and 3
EX-OR of 7 and 2
EX-OR of 7 and 1
Square Wave
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c) Computer Generation of Matrix:
Obviously, filling In the matrix is great fun - for about m=3, but after that,

it gets tiresome. Fortunately, a computer can do it, and you could tell a computer
how in about 30 second in English, but first we have to develope an algorithm for
the process, and convert it into a computer language. An algorithm that we have used
is shown below:

STEP Is Define m, define dimension of matrix as 2m,Elements W( , )

STEP 2: Generation of Square Waves in_ j

Repeat for k = l,2,3,.....n
leflne I, = 2i"-fc
Repeat for r a 1.2.3 2.™

Ilet p = Ifl - 1/2"
If (Highest Integer in p)/2 = An Integer
Then W(2k-l,r) t 1
Otherwise vl(2«-l, r) = 0

EMD this Step

STEP 3 i Filling in the Matrix

Repeat for k » 1,2,3, ..... m-1

IDefine L = 2k*l - 2k - 1
Repeat for q = 1,2 ..... L
f Repeat for r - 1,2,3,
i JLet »(2fc«l -1-q, r) = l

EHD this step

1-!. r) ®W(q.,r)

The actual computer program written in PL/C,|Wal( 0)
a Cornell Univ. version of PL/I is shown in jUalf 1)
Appendix H. PL/C will run on a PL/I |Wal( 2J
complier. You can generate a Ualsh Function!HaJ
matrix by writing the above algorithm in j
your favorite computer language, or use a '
different algorithm. The computer generated^ W
matrix for m» 5 is shown at the right -» jjj

Vial
iWal
I Wai
jWal
Hal
[Wai
jUal
Wai
Wai

I Wai
19

iiimnmiimiiuimiiiiHil
11111111111111110000000000000000
oooooo oomiiiiiimmioooooooa
11111111000000001111111100000000
00001111111100000000111111110000
11110000000011110000111111110000
000011110000U11111100001U10000
11110000111100001111000011110000
00111100001111000011110000111100
11000011110000110011110000111108
00111100110000111100001100111100
11000011001111001100001100111100
0011001111001100001100111100UOO
11001100001100110011001111001100
00110011001100111100110011001100
11001100110011001100110011001100
01100110011001100110011001100110
10011001100110010110011001100110
01100110100110011001100101100110
10011001011001101001100101100110
01101001100101100110100110010110
10010110011010010110100110010110
01101001011010011001011010010110
10010110100101101001011010010110
010110100101101C0101101001011010
10100101101001010101101001011010
01011010101001011010010101011010
10100101010110101010010101011010
01010101101010100101010110101010
10101010010101010101010110101010
01010101010101011010101010101010
10101010101010101010101010101010
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d) WALSH-Fourler Synthesis; Once the Walsh functions are generated, we ask
what we can do with them besides listen to them individually (Which is interesting
in itself). Clearly, we want to make use of the complete orthogonal set property
and use a "Walsh-Fourier" process completely analogous to the Fourier synthesis pro-
cess.20 Denoting the function «e want to synthesize by f(t), the Fourier series is:

f(t) m ao « §. (%i cos(n(̂ jt) t bn sin(nW0t))
nsl

where «„ • -S_ C f(t) cos(n«ot) dt and b,, • _2_ fTf(t) Bln(nu>0t) dt
T oJ T J
where T is overall period, t is running variable, and

The HAlSH-Fourier series is I 21 °* ~
oo

f(t) • AO * £ (An cal(n.S) * Bn sal(n.e))
nil

where AO I _1_ fT f(t) wal(0,9) dtI _1_ fT

1 oi

An s 1 I f (t) cal(n,9) dt and Bn « _!_ (T f W sal(n,8)dt

~ oi T o)
where T is overall period, t is running variable, and fi z t/T

He will ignore the distinction between sal and cal, set Tsl, and simplify the
series to: CD /•!

F(x) s £ On Wal(n»x) where Cn = \ F(X) wal(n,x) dx
n=0 o^

Note that mathematically this process is much simpler than standard Fourier series
since Wal(n,x) takes on only the values -tl and -1 (or +1 and 0) and thus this only
breaks up the interval of Integration. Thus we only have to integrate F(x), and not
the function times sine or cosine. Therefore, we can calculate the C^ for any F(X)
that we know how to integrate.

Let's examine some of the waveforms we can synthesize from the Walsh functions
He note that to an extent, when calculating Walsh-Fourier coefficients (Cn), we can
ignore level shifts, inversions of Walsh-Functions, and the absolute value of the
coefficients. As long as we keep in mind what we are doing, we can take steps to keep
the math as simple as possible, and end up with the signs and ratios of the various
coefficients. We shall always give the coefficients Gn consistant with the TTL real-
ization we have in mind, although we may at times work with coefficients en as dummy
coefficients.

First of all, we have the Walsh functions themselves available, and this in-
cludes the usual square waves* A second group of waveforms we can easily get are
pulses of various duty cycle. In such cases, the integration is simply the summation
of signed areas. We illustrate first for the pulse of 3/*J- duty cycle, calculated for
e<jual excursions about zero:

f F(x)Wal(l,x)dx = ^1-1 dx . \ l.(-l) dx « (\-lH-l) dx
iJ 3AJ

ii T3A i i
s x | .f « x| , = i-o-3/lt«|«l-3/U

Jo Ji J3A
this is done by straight integration, but
ean b« done by signed areas (see next page)
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For signed areas, multiply F(x) tines Wal(n) and multiply by 1/8 for each
ef the 8 segments. We do the calculation for the 3/4 duty cycle pulse completely!

F(x)

-̂ -22z2z:2j-Wal(l) C]» 1/8 «;l/8 » 1/8 « 1/8 - 1/8 - 1/8 * 1/8 « 1/8 s i

£3̂ ./?r|. Wal(2) 02—1/8 - 1/8 » 1/8 « 1/8 •• 1/8 •. 1/8 * 1/8 » 1/8 * i

773- »aa(3) C3. 1/8 » 1/8 - 1/8' - 1/8 •> 1/8 » 1/8 « 1/8 . 1/8 5 f

!(<») 0,5-1/8 » 1/8 * 1/8 - 1/8 - 1/8 * 1/8 - 1/8 « 1/8 r 0

r Wsl(5) Cjs 1/8 - 1/8 - 1/8 « 1/8 - 1/8 « 1/8 -1/8*1/8 = 0

06, Oy = 0

We can now reconstruct this for the o and 1 digital levels t

t Ual(l)

t ¥al(2)

£ Wal(3)

Sum of above

Repeating this for the & duty cycle pulse gives t

For a 1/8 duty cycle pulse

2/4 Duty Cycle Pulse

Note that we only had to go to
to ms2 in this case* In general,
we would not expect to require
division of the basic interval
into a greater number so segments
than the denomenator of the duty
cycle

* i, C2 a -i, and 03 * \

F
Wal(l) Oj = 1/8 « 1/8 « 1/6 - 1/8 t 1/8 t 1/8 » 1/8 t 1/8 *}

- 1/8 * 1/8 - 1/8 - 1/8 - 1/8 « 1/8 » 1/8 =-

1/8 =

s -1/8Wal(2) 02

03 m 1/8 * 1/8 - 1/8 i 1/8 - 1/8 - 1/8 « 1/8 *

= -1/8 t 1/8 + 1/8 t 1/8 « 1/8 - 1/8 - 1/8 « 1/8 *

. 1/8 - 1/8 - 1/8 - 1/8 . 1/8 - .1/8 - 1/8 * 1/8 •*

-1/8 - 1/8 - 1/8 - 1/8 - 1/8 - 1/8 - 1/8 - 1/8 =-

1/6 «Cy ; 1/3 - 1/8 » 1/8 * 1/8 - 1/8 « 1/8 - 1/8

Reconstruction at digital 1 and 0 levels* Other pulses
are calculated in the came way. However,something like a
1/3 duty cycle presents a problem, we have to settle for
i or 3/8, or use more Walsh functions to get 5/16, 11/32,
etc. Thl» is very similar to the problem we run into when
trying to generate a square wave with a finite number of
sine waves*
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Another group of function* of interest are the linear ones, in particular tto«
sawtooth and the triangle wave. The sawtooth is considered first, and for mathematical
convenience^ we switch the basic interval from 0 to 1 to the interval -1 to 1.

F(x)sx »1 /•! fl
Ci ± \ F(x>Ual(l,x) dx : \ x-Wal(l.x) dx

i
x d x - f x d x : f - 41

IV 0^ 2 J-l 2 JO

. Wal(l)

Likewise, one finds that cj. « 0^ ej « -f-, 04 » 0( 05 = 0, C£ a 0, 07 * *lA etc" !•••»
we use the square waves, and each time.we doubls the frequency (square waves still have
frequency), we halve the amplitude of the coefficient. This is a fairly well known
method of generating a "Staircase Wave", but not as a consequence of Walsh Fourier
synthesis. Converting back to the basic interval 0 to 1, we have to cut the en in
half to get the Cn, and in this case, we will level shift by 4! to get a conventional
looking staircase, approximation the sawtooth. Similar calculations for the triangle
wave give Ĉ  c £, Cg • 0, 03 sO, ty s 0, 05 = -i» Cg to Ci2=0 Ci3=-l/8and in general,
Cgn-3 a l/(2n'2). Note that for these functions, unlike the first pulses we considered
the synthesized waveforms are evidently approximations to the desired waveform, and it
is clear that we can make this approximation better by adding more Walsh functions,
i.e., by dividing the basic interval into more segments by increasing m.

Staircase approx-
imation to sawtooth

1 - l»Wal(l)
-i*Wal(3)
-lA'Wal(?)

Approximation to tri-
angle waveform

V?3
note B.C.
Offset:
discussed for sine waves below.

One waveform of fundamental interest Is of course the sine wave. Here we must
alter the basic interval to represent 0-2TT but if we consider the basic interval to
be in units of pi, we can still use 0-1, For example, the first coefficient is calc-
ulated asi (for a peak to peak amplitude of 1 unit)

Wal(l,x)f(x) dx = C3(i)sin(2TTx) dx - C (|)sln(2rrx) dx

ITT sin(2TTx)

os(2TTx jj i 1/TT = 0,318

I» the same way, we can break up the interval for every zero crossing of the Walsh
functions. The integral of sin(2TTx) is of course -cos(2TTx) in all cases. One finds
for the first 8 Halsh functions (Wal(O) to Hal(7)) that all cn are zero except 03.
above and Cc ± -0,138. These first two are plotted on the next page.
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Sinewave approximation for m»3
0.313 Wal(l) - 0.138 Wal(5)
plotted for equal excursions of
the Walsh functions about zero.

Here, as In the case of the sawtooth and triangle, it becomes apparent that we must
subdivide the basic interval into more segments to get a good enough approximation to
the waveform we want. The math again gets too tedious, and we must resort to the
computer* The process the computer must follow is exactly the sane as for the hand
calculations on the -cos values. However, generally it is necessary to carry out th«
Integration over all 32 intervals (for ra=5) rather than just at the zero crossings.
Of course, the limits of integration often cancel In such a process, and a small
accumulated error may build up( but this generally is not a problem* The computer
program used is in appendix K, and the results are plotted on the next page. Note
that in the computer program, the one and zero levels were used, i»e., the matrix
elements calculated before. Thus, the amplitude of the sine wave Was made 1 instead
of ̂  as in the hand calculations* This gives results for 1 unit peak to peak, when
generated with equal excursion Walsh functions* With the 0 and 1 digital levels, we
must again double the coefficient as indicated on the next page* In any eventj it
is the ratios that are important

The actual formation of the waveform with the addition of subsequent Walsh
components is interesting; Several features should be mentioned* (l) In Fourier
sine wave synthesis, each additional component seems to make the waveform better, but
some Walsh-Fourier components seem to make it worse. However, appearance of the next
component show that the hole dug out by the former was to make allowance for a. hill
on the latter. Note this is just a comment on appearances, and does not neccssairily
say anything about mathematical convergence. (2) For a balanced waveform, such as
the slnewave, the coefficient of Wal(O) is 0, as it should be, since there is no D.C.
offset. However, we see that the first component of the sine wave is positive, and
builds up a large "block" on the left »id« (0 to |). Thus this has an apparent D.C.
error of $GI. It remains for the rest of the Walsh components to chip away at the
comers of the block, and dig a'pit" on the right side, and this shifts the apparent
D.C. error down as indicated belowi

Apparent d.c.
error level

Apparent d.c.
error level

A glance at the next page shows that the error level is very low, but not saro yet,
and we would have to use an infinite number of Walsh functions to make it zero. Thus,
truncating the series results in an apparent D.C, error level, which we can easily
correct by adding some Wal(O) to the waveform, but this is not the same as an actual
Walsh component. The sine wave Initially refuses any part of Wal(O) but then when it
sees it is not going to get all the others, it goes back and asks for a D.C. component
which can be supplied by Wal(O). The distinction is mainly academic, as as we said,
level shifts tend to be somewhat arbitrary anyway. Also, this level shift problem
generalizes somewhat for the generation of higher harmonics, and one must be careful
to remember that these error levels do come in when the series Is truncated.
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»al(21) fl Fl

0.637" MlCl);>- 1

• .,0.637 Wal(l) - 0.264 Wal(5)
7>^ -«.0525 »al(9) -0.127 '

~^ -0.0125 Mal(17) »0.00517 Wal(21)
-0.0260 Wal(25) -0.0627 »al(29)

Best fit, 1 Volt p-p sine wave

error levell rest of Wal(n>3lK

generated from
Kal(l), Wal(5).
Bal(9), «al(13),Mal(25)
and Wal(z9)

Addition of Lon-Paa
filtering to above



e) Fourier To_ Vjalsh Foiirier_—Higher 3inewave_ Harmonics_:
Finally, we are also interested in the generation of higher sinewave harmonics,

not so much for the purpose of Derating, them, but for use in a Fourier to Ualsh-
Fourier transition. The 2nd, ̂ th, and 8th sinewave harmonics, etc. are easy to gen-
erate using the results for the sinewave. We can see this by observing that each of
the Vfalsh functions eventually occurs at twice the sequency (ZP3) and thus we have
only to look for the same waveform at double the sequency, assign it the appropriate
sinewave Walsh coefficient, and this will result in a sinewave of twice the frequency.
The process becomes simple when we observe that the first Walsh function appearing in
each sine wave is just the square wave of the same frequency. Hone the less, the
"density" of Walsh functions increases as the square, so the relative spacing of
required tfalsh functions must increase. Recall the sine itself required every fourth
harmonic, starting with one. The 2nd harmonic requires every eighth-harmonic, start-
ing with three. The -fou.v*W s.inewave harmonic requires every 16th Walsh harmonic,
starting with Kal(7;, etc.

The odd numbered harmonics such as the third sinewave present more of a problei,
since basically we aretrying to generate six bumps using ̂  or 8, etc. They are how-
ever, like the first sinewave, antisymmetric about the midpoint, and can be built up
in the same way using the sal(n) Walsh functions. The results for the first 8 sine-
wave harmonics, as generated by the first 32 Walsh functions are shown below. The
coefficients of the even index Walsh Functions are all zero, and are not included.

SIKEIJAVB HARhONICS

Walfl)

Wai (3)
«al(5)
Hal(7)
Hal(9)
Hal(ll)
Wal(l3)
Hal 15)
Hal 17)
Hal 19)
WaJ (21)
WaJ (21)

Wal(25)
Wal(27)
Vfcl(29)
Hal(31)

GI

°3
C5
Go
C9
Oil
C13
C15c17
C19

2̂3
C25
C27
C29

First ̂

0.637
0.0
-0.261*
0.0
-0.0525
OiO
-0.127
0.0
-0.0125
0.0
*o. 00517
0.0
-0.0260
0.0
-0.0627
0.0

Second
0.0
01637
oto
0)0
OiO
-01264
OiO
0.0
0.0
-0.0525
0.0
0.0
0.0
-0.127
0.0
0.0

Third
0.212
0.0
0.512
0.0
-0.342
0.0
0.14
0.0
-0.042
0.0
-0.102
0.0
-0.154
0.0
0.064
0.0

Fourth

0.0
0.0
0.0
0.637
0.0
0.0
0.0
o.o
o.o
o.o
0.0
-0.264
0.0
o.o
0.0
0.0

Fifth
0
0
0
0
0
0
-0
0
-0
0
-0
0
0
0
-0
0

.126

.0

.307

.0

.46

.0

.190

.0

.100

.0

.246

.0

.164

.0

.068

.0

Sixth
0.0
0.212
0.0
0.0
0.0
0.512
0.0
0.0
0.0
-0.342
0.0
0.0
o.o
0.140
0.0
0.0

Seventh
0.
0.
-0.
0.
0.
0.
0.
0.
-0.
0

090
0
036
0
188
0
456
0
375
0

0.154
0.
0.
0
0.
0.

0
030
0
074
0

Eighth

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.637
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

The above arrangement of numbers can be considered as a conversion matrix if you like
to work with such things, the Walsh coefficients being a row vector, and the Fourier
coefficients being a coulmn vector in such a case. In practice, suppose you have read
in a paper on musical acoustics that the overtone series of instrument X is one times
the fundamental and i times the second harmonic. You would multiply the first column
of coefficients by one, the second by f-, and add all the results for a given Cn to
get an overall Cn. This additional conversion step is of course a bother, but equip-
ment advantages may make it more desirable to use Walsh harmonics. Except for the
vast amount of published data on Fourier sinewave overtones, there is no reason to
object to Walsh harmonics from an academic point of view, particularly for persons
on low budgets. From the musicians point of view, in an actual musical instrument,
it may be impossible to tell from the exterior if Fourier or Walsh-Fourier methods
or something else is used. Also, whenever it gets down to knob twisting, as it often
does, the t~wo are about equivalent. Bear in mind that these results in the table
apply to equal excursion Walsh functions. See remarks on D/A methods in Ug. See also
Appendix I.
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f) Hardwear Generation of Walsh Functions!2^ Hardwear realization is fulta
simple; we just have to follow the discussion above. The square waves are generated
by simple divlde-by-2 fllp-flope, properly phased. Exclusive-ORing Is done by EX-OR
gates. The connection of the logic is shown below for the generation of the first 8
Walsh Functions. The circuit can be extended for nore Walsh Functions by adding more
flip-flops on the top side, and exclsuive-oring this flip-flop's Input with the Walsh
functions already generated. This should be obvious from the discussion above.

input
square wave

^

wal(6)

Wal(5)

Wal(a)

Wal(l)

-Ual(O)

The actual TTL circuit we used is shown In Appendix J. While this circuit
does work, and is useful, this is not intended as a model from the point of view of
its particular features, but only as a general method and as an illustration of the
proper interconnections of the IG's used.

g) Digital to Analog conversioni It is of course necessary to combine the
various Walsh functions in proportion and in the proper sense to get the proper wavt-
form for the calculated Walsh coefficients. Four possible methods are shown belowi

(1) Strict Digital Coefficientsi One pot of resistance Rp and two resistors R
are required for each Walsh function we want to handle. The table gives the output
for the extreme values of the pots (Artop, Bscenter, and Gsbottom) for both the 0 and
the 1 logic level outputs of the IC's (1 level taken as 5 volts here for illustration)

other pots with resistors
R on the ends eonnect to
points a and bi

Settings of the pot between A and B represent positive Cn, settings of the pot bet-
ween B and G represent negative Cn. The pots should be linear, and their value should
be at leas* 50 times the value of R used*
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(ii) Equal Excursions about zero (method I):

Hal(n)

Wal(n) A B C
«5 2.5 0 -2.5
0 -2.5 0 2.5

out
as In (i) above, addit-
ional pots with resis-
tors connect to points
a and b

This method avoids the problem of B.C. error level, but the center reference voltage
to the two op-amps must be well defined with respect to the ends.

(iil) Equal Excursion about Zero (Msthod 2)

Wal(n) A EL _.C
*5 2.5 0 -2.5

OUT o -2.5 0 2.5
additional pots with summing

resistors R connect to point a exactly
as the one shown

Walfn)

This method is about the same as the method above, except for different parts required
This one uses one inverter for each Walsh function, one less resistor per function,
and two less op-amps total.

(iv) Direct Summing Methodi
This ie a one-waveform fixed circuit. You
could have a good number of these in para-
llel to give a standard set of waveforms*
Standard op-amp summing methods are used
along with the appropriate Ĉ  values to
determine the Rn, R and B

1.

n) WAVEFORIB GENERATED (PHOTOS) The photos on the next page show a group of
waveforms as actually generated.by the equipment in Appendix J« Captions describe the
waveforms and the location of corresponding discussion of them in the text.

i) Applicationsi Application possibilities are somewhat unlimited at the moment
We have discussed the generation of basic waveforms above, and use of the Walsh Funct-
ions for envelope shaping is found in Appendix C. The applications to filtering seem
quite attractive, but we are not prepared for definite suggestions at the moment. A
few other possibilities are considered belowj

(i) The study of conventional instrument timbres by Synthesis: In such cases,
the conversion from Fourier to Walsh Fourier coefficients would seem to be indicated,
as sinewave overtones are considered in the available literature.

(ii) Live Performance: Frequency information and amplitude information could
be recovered from a live instrument by some sort of a pickup, and this would then be
used to generate a new instrument sound. The live instrument might well be muted in
•uch a case, to give only the new instrument. This process would very likely require
some sort of frequency multiplication technique to give a much higher pitch to drive
the Walsh generator. A possible phase locked frequency multiplier scheme is indicated
on page 1?. While it might be difficult for a phased-locked-loop to to have a wide
enough capture range, this might be useful for written music where the performer has
plenty of time to program the Walsh generator, and eet the center frequency of the
loop in preparation for a passage to come.
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Walsh Functions 1 to ?
(See page 6)

1/4 Duty Cycle Pulse Generated as on Page 9
(note this is more easily obtained as the
AND of Wal(l) and Wal(3j)

3/4 Duty Cycle Pulse Generated as on Page 9
(note this is more easily obtained as the
OR of Wal(l) and Wal(3})

Sawtooth Wave - Staircase Approximation
Generated as on Page 10

: A I

V V
Triangle Wave Generated as on Page 10

Third Harmonic Sine Wave Generated from Wal(l),
Wal(5)f Wal(9), Wal(13), Wal(2l) 4 Wal(25) only.
Coefficients from Page 13. See also Appendix I.

Waveform Above with Low-Pass Filtering

Mlsci Periodic Waveforms. While these waveforms
are very interesting to look at, they are no more
interesting to listen to than many of the smoother
ones. In general it is true that the ear doesen't
listen very long to any periodic waveform of this
type, and it is with amplitude shaping and time
dependent harmonic percentages, not fancy waveforms,
that an interesting musical sound is achieved.
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(lil) Scientific studies of phasing: The question of the "Phase deafness" of the
ear is an unanswered question2?! Ohm's law of acoustics states that the ear is unable
to hear the phase relationship of the overtones in a periodic function. Others contem.
otherwise. Since it is so easy to change the phase of Walsh harmonics by simply sub-
stituting a cal for a sal( it would seem that Walsh functions could be a useful toolt

(lv) Control Voltage Sequences: Since all waveforms generated by Walsh Functions
necessairily involve discrete steps, when steped relatively slowly, a sequence of
control voltages could be made available for various purposes when used with voltage
controlled systems.

Jl
01
7.
8i
9»
10.

12.
13.

15.

16.
17.
18.

19.

20.
21.

22.
23.

B.A. Moog "Voltage Controlled Electronic Music Modules" JAES 12. #3, (1965)
Fi Maynard "Digisyntone " Radio-Electronics Sept. 1970
R.W. Burhans "Digital Tone Synthesis" JAES 19 #8, Sept. 1971, and "TTL Circuits
for Monophonio Devices" AES Preprint 886 (N-lJ, Wrd Convention | Sept. 72
J» Marshall "A TTL Digisyntone" Electronotea newsletter i/13 Octi 10, 1972
Rl Schrecongost "LSI in Organ Design" JAES 20 * May 1972

"Pite Organ Goes Digital" Electronics May Z*t, 1971
D. Lancaster "Psych-Tone" Popular-Electronics Feb. 1971
B. Hutchins "Digital Synthesizer" in EN#1 to EN#3 Jan-Mar. 1972
B. Hutchins "Frequency Modulation" JJM.3, Oct. 10, 1972 (see pg <l)
Girling & Good "Active Filters 81 The Two Integrator loop, Continued"
MjelesB World March 1970
H. Bode and R.A. Moog "A High Accuracy Frequency for Professional Audio
Applications" AES Preprint No. 865 (D-6) 1972
B. Hutchins "Frequency Shifting 2" EJI13 page 11, Oct. 10, 1972
E.T. Powner "Digital Waveform Synthesis" Electronic Engineering Aug 69, pg 50
K. Huehne "Programmable ROM's Offer a Digital Approach to Waveform Synthesis"
EM Aug. 1, 1972
L.J. Mandell "Sine-Wave Synthesizer Has Low Harmonic Distortion" EDN Aug. 15
1972. Corrections, Nov. 1, 1972
B. Hutchins "Digital Harmonics 1" EN#12, pg 5, Sept, 20, 1972
B. Hutchins, et al "Digital Harmonics 2" EK#13, Pg. 12. Oct. 10, 1972
H.W. Burhans "Pseudo-Noise Timbre Generators" JAES 20 #3, April 1972. See
also additional Information, JAES 20 pg 210-211
H.F. Harmuth Transmission of Information by Orthogonal Functions, 2nd Ed.
pg. 91 Springer-Verlag, 1972
B. Hutchins "Fourier Analysis 2" To appear in EN#16
K. Siemens it a. Kitai "Digital Walsh-Fourier Analysis of Periodic Waveforms"
Tim Trans, on Instru and Measur. IH-18 #1* pg. 316 Dec. 69
Reference 19, pages 90-91
V. Lozhkln "Monaural Phase Effects" Soviet Fbys. Acoustics 17. #1, July-Sep. 71
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CONCLUSIONS; We wish to emphasize that while the systems and modules described in
this report are believed or known to work properly (except untested ideas as noted),
they have not received a full technical or musical evaluation as yet. Therefore, this
report should be used more as a basis for design ideas, and not as a basis for constr-
uction. Furthermore, this report will appear as a supplement to Electronotes. Mewslet-
ter #16. and future issues of the newsletter may expand on the material given here.
More exacting design and construction details may appear as well.
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ctions for music synthesis, and for many valuable discussions. We also acknowledge
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and the advice of Lou Phillips with regard to the formulation of the computer program.

APPENDIX A: Digital Methods, of. Scale Tone. Generationi The basic system indicated be-
low has been used for the accurate generation of musical scale tones:

Diodes are placed in appropriate
positions in the matrix to program
the divider to divide by various
numbers (from 2 to 255 in the case of
an 8-bit counter) and these numbers
are picked for the ratio lit****
(lil.059463....) in the case of a
well-tempered scale.

F"-
7 {

J

programma'c le
divider
1 1 1 M 1 1 1

diode
matrix

Several instruments of this type have been designed and constructed.2,3,4 The applic-
ation of this system to other than the well-tempered scale has been discussed (D.Goi
"Generation of Kusical Intervals by a Digital Method", Phillips Technical Bevlew. 26
pg 170 (1965), and N, Franssen 4 C. van der Peat, "Digital Tone Generation for a Trans-
posing Keyboard Instrument", PTR, 31 (1970) pg 354) and the general case could of
course be approached with a matrix switching process for each point on the diode pro-
grammer. This sort of instrument might be of great interest to musicologists who are
studying music from a period when other methods of scale tuning were used. The gener-
ation of octaves other than the one produced by direct counting can be accomplished by
simply adding flip-flop divide-by-two circuits, switched by a separate bus on the key-
board, or through use of the single bus technique devised by R. Burhans ("Single Bus
Control for Digital Musical Instruments" JAES 1£ #10, pg. 865, Nov. 71, and AES Pre-
print iy'886) Actual numbers commonly used for an 8-bit divider arei 123, 130, 138,
146, 155, 164, 174, 184, 195, 207, 219, 232. Stapelfeldt ("Approximating the Frequen-
cies of the Kusioal Scale with Digital Counter Circuits" JASA 46 itZ (Part 2), pg 478
(1969)) has determined the proper Integers for minimum error for counters of total
capacity from 6 to 12 bits. Cotton ("Tempered Scale Generation from a Single Frequenc;
Source", JA^S 20 „";. June 1972, pg 377) has discussed two other methods of digital
scale generation} one Involves addition of pulses, and the other involves repeated
dividion by 196/185 to approximate the twelfth root of 2,

It is of course desirable to have a memory for frequency during decay (i.e,,
the equivalent of a sample-and-hold with a VCO). A possible, but undeveloped system
for holding one pitch activated by a keyboard until another key is pressed is indicat-
ed on the next page. Also shown is a possible TTL realization of a leading-edge-det-
ector (LED) and a followlng-edge-detector (FED) based on H.A. Cole ("TTL Trigger Cir-
cuits" Wireless Horld. Jan 1972, pg 31, with corrections in March 1972, pg 116).
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one of key;

--5̂ - ' matrix
—ww-HJ

—̂?£. points

\-^^

jAlternatiye. Connection to Point a
'"̂ ""t-tirr points

this point would
normally be connected
to key for switching
to grounding bus

Leading Mge Detector (LlilD) Following Eflge Detector (FED)

in

APPENDIX B: Exponential Conversion ̂ ith Transistors; Shockley's theory of the PH
junction gives; I = I0(exp(̂ v/kBT) - l), and this results in a collector current
that is an exponential function of the base-emitter voltage as defiend belowi

Ic = ales e - B „ A e-BVBE
for currents Ic from 1 pa to 1 ma

The configuration used is basically
ff. m.. v in _!..„. .

the one below:

Ici= 15/150R = 0.1 ma. We can write equations for both transistors:

Icl = A e-
BVESl = A e

£(Vin-V2) ^̂  ̂  _ A e-BV3E2 „ A e-BV2

now: Icl - O.lma = A e -SVin e -BV2 = / e BV'in̂ /̂ ̂

so: IC2 = O.laa e~
BVin â  therefore Eout = 12k.Ic2 = 1,2 e~

BVln

for exact circuit used, including voltage divider on inputi Sout = lo~
Ein
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The op-amp summer is used to sum control voltages, and to put the exponential convert-
er in the proper range*

The summer output (Ein of the exponential converter
is offset by a constant voltage setting the output
at *3 volts when ET + LU + Eo s 0. Thus the out-
put voltage is 10-3 = 0.001 volts. When Ej. + Eg
* 1̂ 3 =: 4 for example, Ej_n = -̂  + 3 = -1| â d
Eoub = Id = 10.

References for appendix Bi (l) R.C. Dobkin "Logarithmic Converters" National Semi-
conductor Applications Note AN-30 (1969) (2) K. Huehne "Transistor Logarithmic Con-
version Using an Integrated Operational Amplifier" Motorola Semiconductor Products
Application Note AU-261A (l9?l) (3) W.L. Faterson "Multiplication and logarithmic
Conversion by Operational Amplifier-Transistor Circuits" Review of Scientific Instru-
ments 3jf ;/12 Dec. 1963

APPENDIX C_: Digital Kethods, of Envelope. Generation! In regard to digital methods of
obtaining control envelopes," several methods come to mind. We require these control
envelopes for both amplitude and harmonic shaping. We assume that some signal is
present, either as an analog trigger derived directly from a comparator signifying the
down position of a. key, or as indicated in Appendix A. The methods below have not
been implemented or tested.

(ij Suppose we have a counter of the bucket brigade type, which when periodically
triggered will cDunt up to the top and stop, and upon triggering in a different mode
will count down to the bottom and stops Presumably, it will also reverse direction in
midcount as wells A siiaple envelope generator could be made that operates much like
the capacitor charge-discharge type of V.C. systems. A simple arrangement could be
as follows: Vie assume here and elsewhere in this appendix that some means of smoothen-
ing the sharp corners (eag, with a low-pass filter) is available if needed to make the
envelopes smoother*

Resistance values would be selected for any desired envelope waveform, and any number
of parallel envelopes could be generated.

(2) A generator of the above type could be used for direct gain control, insteadfcf
applying the envelope to a VGA, in the following manner:

Where the resistors to the bases
of the transistors are selected
to saturate the transistors on
logic 1, and the resistors from
the collectors to the inverting
input of the op-afflp are selected

to program the gain of the op-amp stage, Reference:
A. Sedra & K, Smith "Simple Digita.lly-Controlled
Variable Gain DC Amplifier" Electronic Engineering:
i±l /&93 Karch 1969
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(3) In a very general type system, where a very large number of envelopes are to
be generated (for eaxaple in a complete additive synthesis system), generation of env-
elopes by :Jalsh functions (Part 4) might be considered. Far fewer summing resistors
would be required in many cases, This system as outlined below also has a re-trigger-
able feature that might be musically advantageous (see D. Rossum, fi»/13, Pg. «, sect.
8e). Note that the Walsh function generator operates parallel to the bucket brigade,
and is not essential, but a aeans of assuring general envelopes for the least number
of summing resistors. The_methods of (1) and (z) above could be used directly.

—

switches in
second posit-
ion are for
mode (iv)
discussed
below

ICLOCK I P\J—gy_

i'alsh Generated
n Envelppi

The Normal Mode of the system is as follows: Bucket brigade is in the 2n "rest"
state. Clearing puts the bucket brigade in the 1 state. Suppose we have an envelope
prepared to be generated by Walsh functions as
shown at the right. When the leading edge of
the signal signifying that a key is down is
detected by leading edge detector ,'.'1 (LED;?l),
the output of LtiD/r'l clears the counter through
OR Gate «-'2 and also fires AMD Gate ,-?3 and OR
Gate ,£[, turning on flip-flop SI to Q=l , thus
turning on AND Gate ;/l, starting up the bucket brigade counter and the parallel
Walsh function generator. The timing on these events should be correct. The bucket
brigade counts up to n where LED./2 turns the flip-flop off again. Then, upon release
of the key, Following edge detector //I (FHLV/1) turns
the flip-flop back on again (but does not clear the
counter, prevented by inverter ,/l) and the
counter counts down to 2n, where LBDtf'3 again
shuts it off again (rest state; See right(

Note that the system makes no provis-
ions for different clock rates during attack
and decay. Although this could probably be
done fairly easily, theoretically it Is not
necessary. A change in the apparent attack
or decay rates could be made by changing the
slope (as a function of n) of the Walsh-gen-
erated envelope.

Walsh Generated



However, the fact is that musicians don't always play in such nice normal modes
as outlined above, hence, we must examine how the system responds in other modes.

(i) Key is lifted during count from 1 to ni Inverter 1 is in state 1, so AND
Gate #2 will deliver the pulse from FED./l to clear the counter.
Thus, the envelope will drop rapidly to the cleared state of
zero voltage, and presumably, this sudden drop could be delayed
slightly by a capacitor if it is unpleasently sharp.

(ii) Key is lifted, starting decay from n to 2n, but another key is pressed
during the count from n to 2n: LEDr/i signal will clear the counter, but not turn off
the flip-flop, prevented by AMD Gate #3*
thus the system finds itself in the 1 to
n count of the normal mode, and thus
counts up to n and stops, or takes mode
(i) as outlined above. ' "

(ill) The problem of simultaneous events; (Keyboard switching transitions at
same time as counter switches in or out of the n or 2n states; This is a problem for
the designer working with a specific logic family to answer* Very likely, refinements
may be needed, or the case might be insignificantly rare. Requires further study.

(iv) Case where Fitch is changed by sliding from one key to the other without
actually lifting the first key before the second makes contact: Here, we refer back to
Appendix A, and note that the point marked EXT in the second figure delivers a pulse
whenever a new key is pressed, regardless of whether another key is still down or not.
If we are using this digital generation of scale tones, tfe can use the HLiT output as
a third input to OR Gate i'fet to clear the counter and start a new envelope. Note that
in general, the counter would probably be In the n state when the pitch change arrived,
so it is necessary for the counter to be restarted through AND Gate r&. At this point.
LEDj/1 becomes redundant, and we would probably disconnect it and connect the EXT pulse
to the point marked x. This would of course make OB Gate -.42 a two input gate again.
Further, it is clear that the UXT input is essential if we are to permit mode (ivj, so
even if a V.C. system is used; it would pay to use a differentiator on the control
voltage to provide this EXT Input. Thus; the signals we want to have are one represent-
ing a change of pitch (different key or change of input control voltage) and a second
representing the point at which all keys are lifted.

APPENDIX Ds Hultlpj.ie.rs; The multiplier we used in the various voltage controlled
modules is of the monolithic; variable transconductance type. In its most basic form,
this is a differential amplifier stage with & voltage to current converter. It is
easy to show (see for example Ji Graeme et al (Ed) Operational Amplifiers Design and,
A_pplicatior.s. Mc-Graw Hill (1971) Pg 2?6, thai the output
of this combination is proportional to ei, the input
to the differential amplifier, second input
grounded, and to the current IQ, which in
this case is made proportional to 62- Hence
the output is proportional to the product
of the input voltages. In the monolithic
1C (type 1595) this is made into a four-
quadrant device. An excellent discussion
of the device is found in Ch. 12 "The Linear
Four-Quadrant Multiplier" by Hl.L. Renschler,
in J, Eimbinder (Ed) Applications, Cpnsider-
ations for Linear Integrated Circuits. Wiley
(1970). AC and* DC versions for multiplier
modules are easily set up, and shown on the
next page. An improved version of the 1595,
the 1594, is also available.
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APPENDIX E, The Two Phase, Two Integrator. Quadrature Oscillator; To understand the
two integrator loop as an oscillator, we have only to recall that it presents a 90°
phase shift over all frequencies, and the roll-off is -20 db/ decade and we can repres-
ent this as 1/sT, where s is the complex frequency, and T is the time constant of the
integrator. Two integrators in series thus represent
-40 db/decade, and a -180° (*180°) phase shift. Put-
ting in a loop with one inversion, at low frequency,
the high forward gain gives unity loop gain, and at
the frequency where the forward gain drops to unity,
the signal fed back is of course the same as the in-
put to the first integrator, and the phase shift is
of course 180° * 180°, hence it oscillates.

Mathematically, this follows from the fact that
V2-STV3 and therefore V]_as2T2V3. Hence when Yin* 0,
-s2T2v-j=V3t which is the equation of simple harmonic
motion at frequency f= l/(2TTT)f where s=s j.2TTf, ., *- - - p^' _'ff'
Note that for unequal time constants of the integrat-~ " ~ 7~ ~
ors, the equation foy the freq. of oscillation is the V2
same except T»(TiT2)*. (Ref, E.Good, Electronic Engineering. 2£ April 1957)

* * * V " "¥ — "» " "S *

APPENDIX F, 20° Phase Shift Networks! To realize the 90° phase shift networks, one
uses a pair of all-pass networks. Each network has a zero in the right half plane for
each pole in the left-half-plane to give flat gain characteristics and non-minimal
monotonlcally decreasing phase shift. The phase difference between the two Is made to
ripple about 90°na specified frequency range. The ratio of the transfer functions
contains both poles and zeros in the R.H.P. With enough poles, it is theoretically
possible to approximate 90° over any frequency range with any phase tolerance desired.
Pole location is determined by making positive and negative phase deviations about 90°
equal and minimal. This can be done by use of the Chuer functions in a manner similar
to the use of Chebyshev functions for equal amplitude ripples in the passband.

Referencesi W. Albersheim & F. Shirley "Computation Methods for Broad-Band 90°
Phase-Difference Networks" IEEE Trans on Ckt. Theory, May 1969, pg 189* This presents
the necessary theory and the element values of a phase shifter (6-polea, 25-6000 He,
3° phase tolerance, 4 op-amps, 16 precision passive components). F. Shirley "Shift
Phase Independent of Frequency" Electronic Design 18, Sept. 1, 1970 gives a phase
shifter (4-pole, 70-2200 Hz, 3.8° phase tolerance, 2 op-amps, 12 precision passive
components). R. Orban gives a very interesting phase shifter (90°, *1.96° from 20-
20,000 Hz using discrete components ( JASS 18, #4, pg. ̂42, August 1970). Finally,
reference 11 shows the schematic of the "dome filter" used by Bode and Moog, but
component values are not given. Note that the networks given in the second reference
were used in the frequency shifter we constructed.
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APPENDIX G: Some, References, on the. Halgh Functions;

1. J.E. Walsh "A Closed Set of Normal Orthogonal Functions" American Journal of
Mathematics. 45_ pg 5 (1923)

2. N.J. Fine "On~tl,e Walsh Functions" Amer. Ijathematlcal Society Transactions,
6_5_ PS 372 (19̂ 9)

3. N.J. Fine "The Generalized Walsh Factions" Trans.Amer. fa.th. Soc. 6_9_ (l950),66
4. G. Horgenthaler "On the !'.'alsh-Fourier Series" Trans Amer. I-Jath Soc. 84 (1957),4?2
5. H.F, Karmuth,Transmissioii of Information bv_ Orthogonal Functions". Springer-Verlag

N.Y., Heidelberg, Berlin. tj$72j{and Ed7 "
6. H.F. Harmuth "A Generalised Concept of Frequency and Some Applications" IEEE

Trans on In̂ orrtatian Theory, IT--14 ;,-3 May 68, pg 375-332
7. _ 19?0 Walsh Function Symposium (AD 707-̂ 31} 0̂ papers, 274 pages,

$3.00 from national Technical Information Service, Operations Division,
Springfield, Va. 22151. order number AD 707-̂ 31

8. _ Applications, of Walsh. Functions., 1971 Proceedings, 13-15 April,
Washington, E.G. 33 papers order number AD 727-000

9. K. Siemens & E. Kltai "Digital Walsh-Fourier Analysis of Periodic Waveforms"
IEDK Trans_ on_ Instrur lent at ion and i-ieasnrjiejvb IH-1E3 #4 pg-316 Dec. 1969

10. H. Alexandrisdis "delation Ai.ong Gequency, Axis Symmetry, and Period of Walsh
Functions" Iggij Trans on Information .Theory IT-IT. J& July 1971

11. H. Andrews & K. Caspar! "A Generalised Technique for~3pectral Analysis" IEEE
Trans on Computers C-19_ .,-'1 Jan 1970, pg 16-25

12. J, Gibos & K. Gebbie "The Application of Walsh Functions to Transform-Spectro-
scopy" i^ature 224 (1969) pg 1012-1013

13. K, Henderson "Some Motes on the Walsh Functions" IffEE Trans Electronic Computers
(Correspondence) EC-11 PS 50-52, Feb 64

14. S. Kak "Sampling Theorem in Walsh-Fourier Analysis", Electronic Letters. 6,
pg 4^7, July 1970

15. F. Picnler 'Malsh-Fourier-oynthese Optimaler Filter" AEU 24 (1970) pg 350
16. J. Shanks "Computation of the Fast Walsh-Fourier Transform", IESE Trans on

£°.1IiEiiers, C_-18 pg 457 E%y 1969
17. F. Pichler "Some" Aspects of a Theory of Correlation with Respect ot Walsh

Harmonic Analysis" U. of Nd. Eeport R-70-11, College lark, Hd. (1970)
18. B. Lackey "So What's A Walsh Function" Froc. IjffiE Fall Electronics Gor.ferencei

PS 360, (1971)
19* R. Adams Properties and Applications of Walsh. Functions, Thesis, U. of Pa.

Moore School of Sleet,. Eng., Philadelphia (1962)
20. E. Glbbs "Walsh Spectrosaopy, A form of Analysis Well Suited to Binary Digital

Computation" (196?) Unpublished
21. S. Manoli ""Walsh Function Generator" Froc IE35 5_9 (1971) Pg 93
22. H.F. Harmuth, "Application of Walsh Functions in Communications" IgjS Spectrum.

Nov. 1969, Pg 82
23. J. Hammond & B. Johnson "A Review of Orthogonal Square-.tfave Functions" Journal

Si i££. Franftlin Instit.. 273 (1962) pg 211
24. G.R. Redinbo "An Implementation lechniq.ue for V/alsh Functions" I_Egg Trans on

Computer^ C-20 June 1971 pg 705
25. N.M. Elackman "Sipectral Analysis With Sinusoidal and Walsh Functions" IEgE Trans

on Aerospace and Elect. Systems AE3_-7 (1971) pg 900
26. D.A. Swlch "Walsh Function Generaticn" IEEE i'rans on Info Iheory IT-15 pg 16?

Jan 1969
27. W.G. Szok ijayeforr.1 Characterlzation in Terms of Walsh Functions I'jaster's

Thesis, Syracuse U. June 1968

NOTE: Not all of the above papers have been reviewed as yet, and numerous others
exist that have not been listed. Consequently, we are not certain that
some of the material presented in this report has not been done elsewhere-.



APPENDIX H: Computer Program For Ualsh 1'iatrix and Sinerave Harmonic Coefficientsi

STMT LEVEL BEST BLOCK SOUBCE STATEMENT

1 WALSH: PROCEDURE OPTIONS(MAIN} ,
2 1 1 DECLARED,M,R) FIXED ;
3 1 1 G E T LIsr(M) |
4 1 1 R = CSIL(2**H) i
5 1 1 BEGIN i
6 2 2 DECLARE W(H-1,H) BIT(1),(I,J,K,L,11,D) FLOAT ,

-'COEF(R-I) FLOAT,(x,PI,A,F) FLOAT,
Y FLOAT, SUM FLOAT IHT(O) ,
(C,P) FLOAT, tj FIXED |

7 2 2 L=R |
8 2 2 DO K=l TO M i
9 2 1 2 L=L/2 i

10 2 1 2 J= CEII(2»*K-1) :
11 2 1 2 DO 1=1 TO H !
12 2 2 2 P= I/L-l/H ;
13 2 2 2 C= FLOOH(P)/2 I
14 2 2 2 W(J , I ) • (FLOOH(C)-C=0) !
15 2 2 2 END !
16 2 1 2 END j
17 2 2 DO K=l TO M-l i
18 2 1 2 L» CEIL(2**K-1) i
19 2 1 2 N= CEIL(2*»(K«1)-1) i
20 2 1 2 DO Q=l TO L j
21 2 2 2 DO 1=1 TO R j
22 2 3 2 W(N-Q,I) = (W(N,I ) -,=«(«,!)) I
23 2 3 2 END !
24 2 2 2 END s
25 2 1 2 EHDi
26 2 2 PUT SKIP [
2? 2 2 DO 1=1 TO R-l |
28 2 1 2 DO J=l TO R ]
29 2 2 2 PUT EDH(W(I,J))(B(1)) !
30 2 2 2 END !
31 2 1 2 PUT SKIP |
32 2 1 2 END |
33 2 2 PI= 3.1416 i A=1/R !
35 2 2 START: GET LIST (D) i
36 2 2 F= 2*PI*D ;
37 2 2 DO 1=1 TO H-l |
38 2 1 2 X=0| COEF(I) = 0 |
40 2 1 2 DO J=l TO H |
41 2 2 2 IF W(I,J) s'l'B THEN 1= 1 |
43 2 2 2 ELSE t a 0 |
W 2 2 2 SUM = (COS(F'*x;-COS(F«(XtA)))*Y/F I
45 2 2 2 COEF(I) = SUK»COEF(I) |
46 2 2 2 XsX*A j
47 2 2 2 END |
48 2 1 2 END |
49 2 2 PUT PAGE j
50 2 2 PUT DATA(COEF) j
51 2 2 GO TO START |
52 2 2 END j
53 1 1 END WALSH s
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APPENDIX !_, Commentŝ  on the Level Shift Problem i The D.C. level shift problem due to
truncation of the Walsh-Fourier series was mentioned on page 11. When generating high-
er sinewave harmonics, a similar problem arises for the following reason i By defining
a given sinewave frequency as the fundamental, we necessairily define a corresponding
sequency for Wal(l)* When synthesizing the harmonics of order 2*, where i is an integer,
the second for example, we have only to start with the Walsh function of twice the sequen-
cy. However, when synthesizing the third sinewave harmonic, the Walsh function of three
tines the sequency is not in the original set, and thus the synthesis is not the most
natural one. As a result, we see a unbalanced effect on the synthesized waveform when
the Walsh-Fourier series is truncated. This error is of type Wal(l), and therefore is
not corrected by A.C. coupling. Note from the
drawing at right that the unbalance is very
small after the first 31 Walsh functions have
been considered. Also from the photo on page
16 note that every third cycle shows a dis-
placement* The drawing considers all the
Walsh harmonics listed on page 13 for the
third sinewave harmonic, while the photo
omits 017 and 029 due to equipment limit-
ations. This may well be more important for
higher sinewave harmonics* Note also that
the D.C. error Is still with us, but is not
a problem* In practice, we might simply
reduce the value of GI to give a more balanced
waveform, and this would result in a slightly _
revised version of the table on page 13 corresponding to a given truncation of the
Walsh-Fourier series. Further study is indicated.

APPENDIX J, Hardwear Setup Used* Numbers indexing connection points represent the order
of the Walsh Function at that point.

CD-
Three of these units are available
a la connected by selector switch to
any of lu(l) to Wai(15) *9 S*"6
selectively Wal(16) to Wal(31)

WALSH FUNCTION GENERATOH

7*76 or

7W3
J,K connected to +5

J7UTLn711?lI¥imRJTL

-c

-1—
— ̂ -S,L.ff K f 1

LLIL

r B
— '-^ •-j

LnjJiiiiiitijijJiir

Wal(l) through Wal(15) are available at
their output Jacks. Three of Mal(16)
through Mal(31J may be selected by the
switches. Up to six Halsh functions Bay
be processed through the D/A, which sets
the correct values of On

Quad EX-OB J-
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