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INTRODUCTION: slectronic music systems sincs about 1965 hawe been mainly concernéd
¥ith voltage controlled devices.l Recently, digital devices and the availability of
digital IC's and MSI havé made u;sg.g music systems practical,2»% and even some
151 is being used in organ designs.”*° Use of digital systems along with the present
voltage controlled synthesizers is being considered.

This yeport will consider some aspects of voltage controlled systems, and
interfaces with digital syst It is intended that an overall electronic music
system be presented, and toward this end, it will be mainly voltage centrolled, i.e.
generally analog, since the digitsl counterparts of various electrenic muslc modules
are not developed yet, or are impractical. Where analog modules are used, the
mmdmmwummumawwmnm.

Digital IC's have been used for variocus purposes in electronle nusic. Digital

llers known as seq or tune comput hnwhmmdtowwidﬁtglw
series of control voltages representing different musical notes in sequence?s
Various methods of waveform generatlon have been used, mainly on a segment-by-segment
basis, and will be mentioned at the beginning of part 4 of this report. The real
tour-de~force of digital methods in electronic music has been in the generation of

te musical scales by digital countdown of one master osclllator, e.g. a

twelve tone equally tempered scale by dividing ome upper ney by numbers in the
range of 100-300, these numbers approximating the ratlo 1:2 « These methods will
be discussed, but not used. The main digital method we will discuss here is the
synthesis of waveforms by Walsh-Fourler methods.

Conventlonal Veltage Centrolled mi A tional V.C. electronic music syst
in indlicated below in its most basic form:
Keyboard Controller Sample , Exponentiil ' Linear Voltage
or Control Voltage and , Voltage |  Controlled
Sequencer ! Hold ! Converter | Osedllator (VOO)
'
[Madt: envelope 1 y[Voltage Controlled
Envelope Amplifier
(vea)
Voltags Controllsd
Filter
[\fﬂ"!
out

The VCO must have exponential responss to the contrel veltage in order that
equal musical intervals are generated for equal changes of control voltage: FRecall
that each octave of an equally tempered scale is 12 n » equally spaced, and more
fundamentially, each octave 1s twice the frequency of the one below, hence the need
for an exponential rather than a linear voltage to frequency relation, This permits
two exponent. controlled VCO's to track each other at equal intervals (equal
frequency ratios), and also, resistors in the voltage divlider string in a keyboard
can all be the same value. An exception is made for the generatlon of musical timbre
by means of FM sid ds?s The purp of the sample-and-hold eircuit is to provide
& control voltage for the VOO during the time that the sound envelope is intended to
decays For exanple, after the key on a keyboard controller is lifted, we want a
finite, nen-gzerc decay time during which the piteh should not change. Various types
of voltage envelopes are available, and can be supplied to a VCA for amplitued shap-
ing, or to a VCF to control overtens comtent with time. This latter time dependent
control over musical tinmbre ia ht to be fund tal to the "ch ter” of the
synthesized sounds, i.e., it makes the sound musical.
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E 1: Digcussion of the overall system: The system shovm below is a slight expan-
ﬁ of the basic V.C. system described above., We have added a Walsh functlon gener-

ator between the VOO and the VCA« This provides the waveshaping: Also included
are some additional balanced medulators, and additional equipment for a frequency
shifting device of simple design:

‘Wh*ls‘” PV i V0 [Valsh Gen :D/A

Shu"bar}" :1 munm

The basic socurce of signal is the V0O, since the VOO is the most generally use=
ful for musical applicatiohs at this time. This 1s because it is more generally
tunable, and the addition of a voltage sanple-and-hold permits the storage of "freg=-
uency informatlon" by the stored voltage. Th? vCo l;! are %!l;‘lﬁ mﬁu“v&)h?“ in
Fige 1, pg. 3 of Electronotes EN#15), mw. . . T
perhaps more Iuitabh are given E Ehalj,gp;;. 5 (Dots 10, 1972) and in EN#16, sect.
La (to be published): The main feature we require is tha,t the mo maxivo‘r‘rl., and
that it have range well above the audio, smmitmthmmambyafmot
32 by the Walsh function 4 A dd ion of the attractive alt ive of
scale generation by digital means is discussed in Appendix A+ The exponential conver=
ter is shown in fig. 4, pg. 3 of EN#15, and its operation is desoribed in Appendix B
of this report. The sample-and-hold eircuit and the envelope gensrator are shown in
figi 6 of EN#1l5, pge 4 Digital methods of envelope generation and gain control ave
discussed in Appendix C.

The basle VCA elrcuit is simply a analog multiplier using a single chip IC.
This module is described in ENi#l2, pgs. 4, Sept. 20, 1972, and a discussion is also
given in Appendix D, which also discusses a D.C. version that is used for control
purposes in the VCO and VCF. The multiplier medule serves as a VOA, but also works as
a balanced medulator, a frequency doubler, and for amplitude modulation as desired.

The three remalning modules will be discussed separately. The VCF, fig. 2 ,
combired with a quadrature VCO, fig 3 of EN#15, pge 3 is described in part 2 below.
The frequency shifting intercennection is described in Part 3 below, and the lalsh
generatlon process is described in part 4.

EART 2, The VCR/VCO Medule: First of all, it is appropriate to state why we are
considering the use of a filter in a system we are orlenting toward additive rather
than subtractive synthesis. That is, we intend to bulld a waveform from harmonics
(Walsh harmonics in this case) rather than atu"t with a wswfm rich in harmonics and
then filter it down to what we want (sut tive synthesis ), the edditive
synthesis by Walsh functions is less familiar, and hence standard fﬂtu’iu.s of the
waveforms generated can be used in the standard ways In a true Wialsh-synthesis pro-
cess, each Walsh function ocutput to the ‘D/A converter would be controlled with time,
and this would irily be more i than the VCF, and thus the additive
synthuuutohthmtdumotnmmmmwmtm.m
the use of the VCF might provide for more rapid changes during live performance for
example. Finally, the VCF could be used directly with the VCO in the standard manner,
or used as a more general filter for processing live sounds, etc.

The VCF circult is shown in Fig. 2 of EN#lS. It 1z of the Stne-\'arilblu W.
and the operation of this filter is described simply by D. Rossum in part Sa
same lssue, and other references are given én page 6 of that issue, The m!.n !.utomt
in this filter is its stability and the simultanecus High-Fass, Band-Fass, and Low-
pass outputss
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The filter is voltage controlled by twe D.C, mulitpliers (See Appendix D) and
& positive control voltage controls the filter functlons in a linear manners The
control mechanism is obvi once we ider that the summing junctions (the invert=-
u;mputeoemop-mp)matmmm Current passing through the res=
istors Ry)mu@smupmm.:humﬂnmlwwmmmmh
ground, butmlxsiuatgrammntm. Thuo, unmrmmmnoonmhd‘bym
rate of int d by the ‘. s and this is of
wmudmdmlybwtmmlwwtpmm‘uumtmhn uuodummmd.

The circult becomes a VCO upon application of a negative control voltags.
Simply stated, this is because the multipliers becoms inverters as well as just multe
ipliers, and the Low-Fass ocutput is inverted twice with respect to the summer, hence
mni.m1.‘:-sm.wtwm-?mmtmthummmwlthmncttoﬂn
summer, and thus furnishes positive feedback controlled by the "Q" controls The
mltuumoppontuamuorthninhmtmmwougofphmuwﬂu.uu
of this circuit as an oscillator 1s described elsewhereiland a further discussion of
wemoemmumm-umummum-mmmwxz.

EART Frequency Shifter: Balanced modulators have been used in electronic musie
:vé' mmtbsoullﬁ'mmatw’-mm.mwxd“ﬂns refers to
the ring of mdm.namgmmmhmmefmhﬂmntmtmtom
ch teristic scunds d The ial thing about balanced modulation is the
produetion of twe sid the sum and difference of the frequencies applied to the
inputs. Today, the balanced modulator is being implemented with IC versions of four-
quadrant multipliers, These same modules are used as VCA's, etc., as described above,
and two of them are used along with the VOF/VCO unit of Part 2 for the frequency shift-
ers All that remains is an accurate 90° phase shifting network and a couple of sume
ming networks to implement a frequency shifter interconnectlion.
While the balanced medulators produce a "double sideband" signal, the frequency
shifter is a “single-sideband" device, and the present device is capable of separate
prod

frequencless The frequency to be shifted (i.e., the input signal) is first applied to
a phase shifting network, and thus we can think of it as being divided into a sine and
a cosine representation, since the phase shifter shifts 90°, Furthermore, the VCF/VCO
unit described in Fart 2 provides a sine and a cosine representation of the shifting
signals By putting the two sines into ome multiplier, and the two cosines into a sec=
ond multiplier, the normal sum and difference fregquencles appear, but there is a differ-
ence of sign between elther the sum or the difference signals in the output of one of
the multipliers relative to the other. Hence, they are easily separated by adding or
subtracting the two niylnhlﬁzﬂumlupum outputs. The actual case is
mkuutﬁvl"“ Add don of 90° phase shifting networks is given
wv.mmmmmqmmmruwmmummng.pgu.
It is falr to say that the device constructed works about 90%. In test setups,
oscllloscope traces showed that the sum and differences were clearly separated, but
not without some “nolse" which was bably the other sideband getting through, etec.
This was about 10% of the desired signal, This could probably be inproved by comstruete
lon of better 90° phnu-hmm. better balance of the miltipliers, and more accurate

E

the human voice, where a "Donald Duck" effect is achleved, achieving increasing loss of
intelligibility with incressing shift. However, use of downshift is limited, since the
volce can only be shifted just so far down before the apparent pitch is so low that
the downshift below serc results in an upshift.
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Part l4: WAVEPORN SYNTHISIS BY MEARS OF WALSH FUNCTIONS:

a) Introduction: Several methods of digital waveform symthesis have been con=
sidered elsewhere. C(ne method 1z to use a "Bucket Erigade" type of counter, and have
a voltage "walk" down the line of n ﬁgmonts, each segment being adjusted to a desired
output voltage level by its own pot. A second method 1s to_use commerclally avail-
able read-only-memories (ROM's) to produce a stored waveform,l Thirdly, transversal
digital filters have been used for synthesizing sine waves W15 These three methods are
basically segment by segment methods.

A second approach is to use varlous basis sets of functlons and generate a
desired waveform by appropriate superposition. Ceneration of strings of digital har-
monics (up to 10 or more) have ‘begn suggested by counting down one upper frequency
using divide=by-n type circuits,l®+17 This is sasy to do with digital IC's, but m-
puts are square wWaves or v trie t lar Wavess of 8qQ’
symmetric outputs can be achieved by doubling the upper frequency and add:l.ng dl.\d.de-
by=2 ecircuits to each cf the lower harmonic outputs we wdnt to uses None the less,
we really don't want to attempt a Fourler synthesis process using square waves which
have substantial harmenic content, even if all the harmenles are avallables Efforts
to round the square waves intb sines (e.gs by using a low-pass filter) have been used,
but this works over only a relatively small range of f dess 5till
approach 1z offered by the usé of shift registers to gensrate pseudo-nbise sequences,
ilses, an overall output waveform is derived from thllgutputl of & shift register and
weighted as desired to give a histogran type outputs Any and all of the above
could bte used for useful musical purposes.

The method we are describing here 1s belleved to be general and tha sinplast
from the point of view of hardwear. The complete, orth 1 set of lar
"Walsh Functions" is employed as a basie set of waveforms from which we can synthesize
all other periodic waveforms by a process which exactly parallels Fourier synthesis
using sines and cosines. lathematiclans have assured us that the Walsh Functions
possess the necessary mpartm fur a corresponding Walsh-Fourier Synthesis, A
list of on Halsh fu is given in Appendix G. Below, a consistant
approach is offered to the problem: 1) A general discussion of properties, 2) A
computer program, and 3) a TTL hardwear realization all follow the same basic proced-

b) Discussion of Halsh Functions: Walsh functions as described below are given
a single index n, and denoted Wal(n)s Properly, they should have a running variable
(ssy t for time) and be denoted Wal(n,t), but this will generally te neglected.
Wal(0) is sipply a D.C. offset level, and won't enter our calculations of A.C. functe.
ions. Wal(2i-1) is a sImet.r!.c square wave, 1 being a positive integer. This square
wave repeats 21/2 = 21-l times over the basic interval chosen for the entire set.
The rest of the Walsh functicns are generated by the recursion relaticn:

Wal(h)eWal(k) = Val(h @ k)

where the @ sign indicates "Module-2" addition, which means l+0=l, Owlsl, 040=0, and
1+1l=0, and the h and k indices are represented as binary nua‘bers for this addition.
Perhaps EXclusive-OR of the two function indices as binary numbers is the
clearest. A couple of examples will helps

Example 1: Cenerating a new function: Example 2: Regeneratlon of Wal(3) square
5= 0101 4n bnary notatien 7 = 0111 in binary notatlon
15 = 1111 in binary notation L= 0 in binary notation
1010 = 10 in decimal notation 0011 = 3 in decimal notation
Thus: Wal{10) = Wal(5)sWal(1s) Thus: Wal(3) = wal(7)«Wal(l)
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The odd indsx Walsh funetions are also denoted by Sal(j) = Wal (2j-1) and the
sven Walsh functions by Cal(j) = Wal(2j). The motivation behind this notation is the
similarity of the Sal and Cal functions with the Sine and Cosine functions, and there
are many valid analogs, ®.gs the main dif bet ding Sal and Cal
functions is phase. A complete basis of functions could therefore be based cn Sal or
Cal alone} but we shall stick to the whole set as all are generally required for the
complete generation of the Walsh functions.

Ancther property of the Walsh functions that is an analog of the sine-cosine
functions is the terminology of Sequency, analogous to uency. Sequency is defined
a5 one=half the total number of sero-crossings per second \ZPS) and since the Walsh
funetions are irregular within their basic period, the cencept of frequency has no
meaning.

Some thought will shew the following:19 Square waves generally have + and =
values about serc, while logic levels are defined ms 1 and 04 A level shifi process
could be used to convert these logic levels) but is not necessary., Just define the 4
excursion a8 logic 1 and the = excursion as 0. Note that this also greatly sinplifies
the multiplication process indicated in the recursion relation, since it reduces to
the exclusive-or operationl The fact that the multiplication reduces to EX-OR is
fundamental to what we do mexti We have the necessary properties and can now generate
the functions, after censidering the basic period pf the set. i

The basic peried of the set of Walsh functlons is the perlod of Wal(l), and is
Mads the same as the period of f(t), where f£(t) i the pericdiec waveform we are going
to synthesize, We divide this basic interval into 2M segments, where m 1s as large as
We nesd for any desired degree of approximation of f(t). We illustrate with ms3, l.e.
a basic interval divided into 2M=8 segments.

A matrix notatlon is useful and will be used below, The rows represent the
Walsh functions, and the colunrs represent the segments of the basic interval., First
put in the Wal{0) d.c. offset, and square waves in the 21-1 positions, 1=1,2,3 (m=3)

Wal(0) 11111111 New the rest can be generated with the recursion relation:
Wal(l) 11110000 Wal(2) = Wal(3)sWal(1l) since 001 @011 = 010
Wal(2 -7 Wal(l) = Wal(7).Wal(3) since 111(HO11 = 100
wal(3) 11001100 Wal(5) = Wal(7)sHal(2) since 111 G010 = 201
:ﬁg -;- Wal(6) = Wal(?)+¥al(1l) since 111 @001 = 110
Wal(6 7= The recursion process is probably clear by now without
Wa1(7) 10102020 maornamu-ﬁ.nn-xm«dm.

Replacing multiplication by EXclusive-Oring as described above, Wal(2) is gen-
erated as indicated:

Hﬂil; 11110000

Wall3

va(z) “setiios

Likewise, the matrix is filled: Or Drawn as Waveforms instead of matrix:
Wall0 11111111 D.C. L (LN LK T T BT X NTFY)
Wal(l 11110000 Square Wave L' ) :
Wal(2 00111100 EX~OR of 1 and 3 ' [rar sare ra I
Wal(3 11001100 Square Wave rFwETET) F77rra i
Wal(k) 01100110 EX-OR of 7 ard 3 \ Tl o
Wal(s 10010110 [EX-0R of 7 and 2 = [trrs WO v o2 D)
Wal(é 01011010 EX-0R of 7 and 1 \ T TP FFA oM

Wal(7) 10101010 Square Wave R v B 7 W v W a1 ) :
S-008 (g)




¢) Computer Ge! tien of Matrix:
)Ob\me"%J—.Hiﬁ%ﬁﬁﬁﬁ is great fun - for about m=3, but after that,

it gets tiresome.

Fortunately, a computer can do it, and you could tell a computer

how in about 30 second in Inglish, but first we have to develope an algorithm for

the process, and convert
is shown below:
STEF 1:

STEF 23

it into a computer language.
Define m, define dimension of matrix as 2M,Elements W( , )

Generation of Square Waves in positions 2-1

Hepeat for k = 1.§.3.---un

Define L = 28~

An algorithm that we have used

for £ = 1,2,3, ssaes 27

in p)/2 = An Integer

st In

Tﬁﬁ S /L - Afm

Then W(2k-1,r) = 1
Ctherwise

e W(2%-1, r) =0

SID this Step

STEP 31 Filling ip the Matrix

Hepeat for k = 1,2,3,ese0am=l

L= gkl - 2k

e
I Hepeat for g = 1,2,esssl

I for r=1,2,3
nf& li(2kel <1-q, r

1

"

iavie 8
V'2u(zke1a, r) @i(a,r)

END this sten
The actual computer program written in PLfc.iWal 0) 11111111111111311111311111111111
a Cornell Univ. versicn of PL/I is shown in |Wal( 1 11111111113111110000000000000000
Appendix H, PL/C will run on a PL/I {Wal( 2) 000000001111111111111113C000000Q
complier. You can generate a Walsh Funection Wal( 3) 11111111000000001111111100000000
matrix by writing the above algorithm in |Ha1 4) 00001111111100000000111111110000
your favorite computer language, or use a | Wal 11110000000011110000111111110C
different algerithms The d: Hal 011110000111111110000111
t b o | Wal 111100001111000011110000111
matrix for me 5 is shown at the right — a1 g SR DEOELI11 00003E110800]
‘Wal{ 9) 1100001111000011001111000011110¢
Wal{10) 001111001100001111000011001
Wal(ll) 11000011001111001100001100111100
Wal(l2) 00110011110011000011001111001100
Wal 11001100001100110011001111001100
Wal 00110011001100111100110011 00
Wal(l5) 1100110011 01100110011001100
Wal 12 01100110011001100110011001 0
Wal }; 10011001100; 0110011001100110
Wal 01100110100110011001100101100110
Wal{l9) 10011001011001101001100101100110
Wal(20) 01101001100101100110100110010110
Wal(21) 10010110011010010110100110010110
Wal(22) 01101001011010011001011010010110
Wal %g 100101101001011010010110100101.
Wal 010110100101101001011010010110.
‘Wal gg 101001011010010101011010010110;
Wal 010110101010010110100101010110.
Wal 2; 101001010101101010100101010110.
Wal(28) 010101011010101001010101101010:
Wal(29) 10101010010101010101010110101010
Wal 303 01010101010101011010101010101010
{Wal(31) 10101010101010101010101010101010
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d) WALSH-Fourler Symthesis: Cnce the Walsh functioms are generated, we ask
what N'z can do with them besides listen to them individually (Which is interesting
in itself). Clearly, we want to make use of the complete orthogonal set property
and use a "Walsh=Fourler" process completely analogous to the Fourler synthesis pro-
cess.20 Denoting the function we want to synthesize by f(t), the Fourier series is:

£(t) = ap + % (ag cos(ntht) + by sin(nwgt))
whers ap = .?lc‘_ Sr f(t) cos(nwgt) dt  and by = %‘ST‘E&) sin(nwot) dt
o
where T 1s overall perled, t is running variable, and

The WALSH-Fourier series is: 21
£(t) 2 ho ¢ 5 (an calln,9) + By sal(n,8))
nzl

2 TL
gy 5

where Ap & 1 ST £(t) wal(0,8) at
T o

Ay =-_%__ T:m cal(n,@) dt and By = _%_ST £(t) sal(n,0)dt
whire T is overall period, t is running variable, ant @ £ t/7

We will ignores the distinction between sal and eal, set T=l, and simplify the

series to: @ 1
F(x) = z Cp Wal(n,x) where Cp = SF(:] wal(n,x) dx
n=o o
Hote that leally this p is much simpler than standard Fourler serles

since Wal(n,x) takes on only the values +1 and -1 (or +1 and 0) and thus this only
breaks up the interval of integration. Thus we only have to integrate F(x), and not
the function times sine or cosine, Therefore, we can calculate the Cp for any Fix)
that we know how to integrate.

Let's examine scme of the waveforms we can synthesize from the Walsh functions
We note that to an extent, when caloulating Walsh-Fourler coefficients (Cp), we can
ignore level shifts, inversions of Walsh-Functions, and the absclute value of the
coefficlents. As long as we keep in mind what we are doing, we can take stepe to keep
the math as simple as possible, and end up with the signs and ratios of the various
coefficlents. We shall always give the coefficients Cp consistant with the TTL real=
ization we have in mind, although We may at times work with coefficients cp as dummy
coefficients. ’

First of all, we have the Walsh functions themselves available, and this in-
cludes the usual square waves., A second group of waveforms we can easily get are
pulses of various duty cycle. In such cases, the integration is simply the summation
of signed arsas. We illustrate first for the pulse of 3/4 duty cycle, calculated for
equal excursions about zero:

1 3 3/ _
o -‘5 Fx)Wal(l,x)ax = as 1lax e ’5 10(-1) ax o 3ﬂS(-n-(-:L) ax

T + 3/ 1
t.\\\\\\‘ I = o ~ .

3/ Duty Gyele Joil 4 :[o '] k- x}g > $=0-3/4edn13/k = &
F_-_—..—n M;nwb;ystmmtmtzz.mmj
Wi o Agoad
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For signed aress, multiply F(x) times Wal(n) and multiply by 1/8 for each
of the 8 segments. We d:’a the calculation for the 3/U duty eyele pulse completely:

IR et P(x)

2z oy~ Hal(l) 1= 1/8 #:1/8 4 1/8 4 1/8 - 1/8 - 1/8 +1/8 + 1/8 = %
g gy Ve (2) Cpnelf8 = 1/8 4 1/8 4 1/8 +1/8 +1/8 4+ 1/8 4+ 1/B = }
Ry Ty Wal(3) C3m 1/8 ¢ 1/6 < 1/8-1/8 4 1/8 + 1/B 4 184 1/B =
O 2t W a2 Hal(l) Cy=-1/8 + 1/8 ¢+ 1/8 - 1/8 -1/8+1/8-1/84+1/820
_;/_, Wel(5) Cg=1/6 - 1/8 -1/8 +1/8 -1/8+1/8-1/8+1/820

Cs Cpa seasess 20
We can now reconstruct this for the o and 1 digital levels:

: : .. # va1(1) 3/ Duty Cycls Pulse
) (777777777775 4 Wal(2) Note that we only had to go to
to m#2 in this case. In general,
2T 777774 - $ Wal(3) we would not expeet to require

division of the basic interval

into a greater number so ssgments

AT, I
Sum of above than the denomenator of the duty
cycle

AT i d Fis

Repeating this for the $ duty cycle pulse gives: Cy = 4, Cp = =3, and C3 = }
For a 3/8 duty eyele pulse
T sy ¥lx)
T g Wal(1) Gy 2 1B 4 1/B 4 1/8 - 1/8 4 1/8 4 1/8 4 1/8 + 1/8 =3/4
g Wel(2) Cp = <1/8 = 1/8 #1/8 - 1/8 - 1/8 - 1/8 + 1/8 + 1/8 =4
riom¥al(3) C3= 1/8+1/8-1/8+1/8-1/8-1/84+1/84+1/8=1%
T 4Wal(h) Gy = -1/8 +1/Be1/8+1/8+1/6-1/8-1/8+1/8=4%
A 7 b ¥al(5) G5 = 1/8 = 3/8 = 1/8 < 1/8 4 1/B - 1/8 - 1/B + 1/8 24
by Vel (6) Cg = <1/8 = 1/8 - 1/8 - 1/8 - 1/8 - 1/8 - 1/8 - 1/8 =
~ P Wel(7) G 2 1/8=1/84+1/841/8-1/8+1/6-1/8+1/824

i 4— Reconstruction at digital 1 and O levels. Other pulses
7 VA are calculated in the same way. However,somsthing like a

=]

W 1/3 duty cycle presents a problem, Wwe have to settle for
f///frfff % or 3/8, or use more Walsh functions to get 5/16, 11/32,
etes This is very similar to the problem we run into when
trying to generate a sguare wave with a finite number of

Meroos (9)




Another group of functions of interest are the linear ones, in particular the
sawtooth and the triangle wave. The sawtooth is considered first, and for mathematical
convenience; we switch the basic interval from O to 1 to the interval -1 to 1.

1
Px)ae 'I e ¢ .;,sl F(x)e¥al(1,x) dx = _18] xeHal(d,x) ax

B Y

- =0=-4=-4+0z-1

o M) "

Likewise, one finds that =0, eg= ,q,,-o.g = 0, = 0; 2 =1/4 atce Ll.es,
We use the square waves, :gd. gm- 3 51’:!1\:!:2! (lq.u::u waves still have
frequency), We halve the amplitude of the mrriount. This is a fairly well known
method of generating a "Staircase Wave", but not as a consequence of Walsh Fourier
synthesis. Converting back to the basic interval O to 1, we have to cut the cp in
half to get the Cyn, andinthiaoase. we will level shift by +1 to get a conventional
looking staircase, approxi the wtooths Similar caloulations for the triangle
wave give 0} = 4, 0z = 0, C3 20, Gy = 0, Cs5 = «}, Cg to C12=0 0y3=-1/8and in genmeral,
Con-3 = 1/(2"*2), Hote that for these functions, unlike the first pulses we considered
the synthesized waveforms are evidently approximations to the desired waveform, and it
is clear that we can make this appreximation better by adding more Walsh funotioms,
i.e., by dividing the basic intervel into more segments by increasing m.

SBtaircase approxe Approximation to tri-
imation to sawtooth angle waveferm (mzb)
1 - 1091(1) baQeting
~4Wal(3)
=1 4eWal(7) note D.C.
offeet

H
- discussed for sine waves below.

One waveform of fundamental interest is of course the esine wave. Here we must
alter the basiec interval to represent 0-21T tut if we consider the basie interval to
be in units of pi, we can still use 0O=l. For y the first coefficlent is cale-
ulated as: (for a peak to peak amplitude of 1 unit

¢ = ,Sl Wal(l,x)f(x) ax = os*(iinmtzﬂx) ax - *Sl(‘})sintzﬂx) dx
1
= 1}_TJ,_r.‘S’ sin(277x) dx = E‘lﬂ' ‘S sin(2mx) dx

-E%T—[w(zwxj]: -I‘}.?[-ou(zrrxi-l: = 1l/T = 0,318

In the same way, we can break tuinmmruownmomingorthehhh
functions. The integral of sin(27x) is of course -cos(27Tx) in all cases. One finds
for the first B Walsh functions (Wal(0) to Wal(7)) that all c.,. are sero except oy
above and o = 0,138, These first two are plotted on the next page.

S-008 (10)



Sinewave approximation for m=j
0,318 Wal{l) = 0,138 Wal(5)

plotted for equal excursions of
the Walsh functiens about zero.

-7

Here, as in the case of the sawtooth and triangle, it becemes apparent that we must
subdivide the basle interval into more segments to get a good enough approximation te
the waveform we want., The math again gets too tedious, and we must resort to the

P + The p the P must follow is exactly the same as for the hand
caleulations on the -cos values. However, generally it is necessary to carry out the
integration over all 32 intervals (for m=5) rather than just at the mero crossings.
Of course, the limits of integration often cancel in such a process, and a small
accumalated error may tulld up, but this generally is not a Troblems The computer
progran used is in appendix H, and the results are plotted on the next page. Nots
that in the computer program, the one and sero levels were used, i.e., the matrix
elements calculated befores Thus, the amplitude of the sine wave was made 1 instead
of % as in the hand calculations: This gives results for 1 unit peak to peak, when
generated with equal excursion Walsh functionss With the 0 and 1 digital levels, we
must again double the coefficlenst as indicated on the next pages In any event) it
is the rptios that are important

The actual formation of the waveform with the addition of subsequent Walsh

P ts is int ing: Several should be menticneds (1) In Fourier
sine wave synthesis, each additlonal component seems to make the waveform better, tut
some WalsheFourier compenents seem to make it worse. However, appearance of the next
component show that the hole dug out by the former was to make allowance for a hill
on the latter. lNote this is just a comment on arances, and does not necessairily
say about mathematical g (2) PFor a balanced waveform, such as
the sinewave, the ecefficient of Wal(0) is 0, as it should be, since there is mo D.C.
offset. However, we see that the first t of the sine wave is positive, and
tuilds up a large "block" on the left side Eo to ) Thus this has an apparent D.C.
error of #C;. It remains for the rest of the Walsh components to chip away at the
corners of the block, and dig a'pit" on the right side, and this shifts the apparent
D.C. error down as indicated below:

¢ Afparent d.c.
1 e error level

E o 11
A glance at the next page shows that the error level is very low, tut not serc yet, - -

we would have to use an infinite number of Walsh functions to make it sero., Thus,
truncating the series results in an apparent D.C, error level, which we can easily
correct by adding some Wal(0) to the waveform, but this is not the same as an actual
Walsh components The sine wave initially refuses any part of Wal(0) but then when it
sees it 1s not going to get all the others, it goes back and asks for a D.C. component
which can be supplied by Wal(0). The distinction is mainly academic, as as we sald,
level shifts tend to be somewhat arbitrary anyways Also, this level shift problem
genaralizes hat for the tion of higher harmonics, and one must be careful
to remember that these error levels do come in when the serles is truncated.
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wa1(1) | — . : i [
wis) [ 1 1 ] LT
wale) [ [ L J_W_J—_“—]_i_—‘___n
Wiz 1L LT
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val(r) [ L L LI T L 1L i if
wares) [ LT LML TLREMLT L T LI
walze) [T LML LT e Lo

[ osarward) s

0.6

' 0,637 Wal{l) - 0.264 Wal(5)
T[T -D.0525 Wal(9) =0.127 Wal(13)

=0,0125 Wal(l7) #0.00517 Wal(2l)
-0,0260 Wal(25) -0.0627 Wal(29)

Best fit, 1 Volt p-p sine wave

error level; rest of i-lal(l':)jl)—~.t

0.0 o — . ¥ R S U N S S W S

N Gmnratld. from
wu?) E ),
| Wal(9), Wal(13), Hll(25)
and Wal(29)

Addition of Low-Fass
filtering to above
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&) Fourisr To Walsh Fovrier--irher Sinevave Harmomics:

Finally, we are also interested in the generation of higher sinewave harmenies,
not so much for the purpose of gensrating them. but for use in a Fourier to Walsh-
Fourier transition, The Znd, %th, and Bth sinewave harmenics, stc. are easy to gen-
erate using the results for the sinewave. We can see this by observing that each of
the Walsh functions eventually ccovrs at twlee the sequency (ZF3) and thus we have
only to lock for the same waveform at double the sequency, asslgn it the approprlate
sinewave Walsh coefficient, and this will result in a sinewave of twlce the frequency.
The process becomes simple when We observe that the first Walsh function appearing in
each sins wave is just the souare wave of the same frequency. lHome the less, the
"density" of Walsh functions increases as the square, so the relative spaclng of
required Walsh functlons must increase, hecall the sine itself required every fourth
harmonic, starting with one. The 2nd harmonic requires every eighth harmonie, start-
ing with three. The fowddn sinewave harmonle requires every l6th Walsh harmonic,
starting with Wal(7), etc.

The odd numbered harmonics such as the third sinewave present more of a problen
since basically we aretrying to gemerate six bumps using U or &, ete. They are how= -
ever, like the first sinewave, antisymmeiric about the midpoint, and can be bullt up
in the same way using the sal(n) Walsh funetions. The results for the first 8 sine-
wave harmonics, as generated by the first 32 Walsh functions are shown below. The
coefficients of the even index Walsh Functions are all gero, and are not included.

SINEHAVE HARKONICS
Birst _ Second Burth. Pt Shh  Seventh Eihun
mglj 0y 0.637 0.0 212 0.0 0.128 0.0 0,090 0.0

Wal 3; a 0.0 04637 0.0 0.0 0.0 0.212 0.0 0.0
Wal(s) €3 -0.26 00 0.512 0.0 0.307 0.0  -0.0% 0.0
Wal(? o‘; 0,0 040 0.0 0,637 0.0 0.0 0.0 0.0
Wal(9) Cg =0.0525 040 04342 0.0 0.6 0.0 0,188 0.0
Wal(ll) €13 0.0 ~0i264 0.0 0.0 0.0 0,512 0.0 0.0
Wal(1l3) Cp3 =0.127 040 0414 0.0 0,190 0.0 0.456 0.0
Wal(ls 0.0 0.0 0.0 0.0 0.0 0.0 0.0 04637
Wal(l7) €17 =0.0125 0,0 =0.042 0.0 =0,100 0.0 =0.375 0.0
Wal(19) Cig 0.0 =0.0525 0.0 0.0 0.0 0.2 0.0 0.0
Wal(21) Cp1 #0,00517 0.0 =0,102 0.0 -0.246 0.0 0.15%% 0.0
Wal(23 t‘n‘v3 0.0 D0 0.0 0264 0.0 0.0 0.0 0.0
Wal(25) Cp5 =0.0260 0.0 =0,15% 0.0 0.164 0.0 0030 0.0
Wel(27) Cop 0.0 -0,127 0.0 0.0 0.0 0,140 0.0 0.0
Wzl(29) Cag -0.0627 0.0 0.064 0.0 -0.068 0.0 0.07% 0.0
Wall3l 031 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.0

The above arrangement of numbers can be considered as a conversion matrix if you like
to work with such things, the Yalsh coefflcients belng a row vector, and the Fourier
coefflelents being a coulmn vector in such a case. In practice, suppese you have read
in a paper on musical acoustics that the overtone series of instrument X is cne times
the fundamental and + times the second harmonic. You would multiply the first column
of coefficlents by one, the second by %, and add all the results for a given Cp to
get an overall Cn, This additional conversion step is of course a bother, but equip=
ment advantages may make it more desirable to use Walsh harmonles. Except for the
vast amount of published data on Fourler sinewave overtenes, there is no reasen to
object to Walsh harmonics from an academic point of view, particularly for persons

on lew budgets. From the musicians point of view, in an actual musical instrument,
it may be impossible to tell from the exterior if Fourier or Walsh-Fourler methods

or something else is used, Also, whenever it gets down to knob twisting, as it often
does, the two are about equivalent, Bear in mind that these results in the table
apply to equal excursion Walsh functions. OSee remarks on D/A methods ia Yg. see alsc

Appendix L.
S-o08 (13)



f) Hardwsar Generation of Walsh Functions:?? Hardwear realizatiem is quits
simple; we just have to follow the discussion above. The square waves are gensrated
by aimple divide-by-2 flip-flope, properly phased. Efclusive-ORing is done by EX-OR
gates, The connection of the logic is shown below for the generation of the first &
Walsh- Functions. The eircuit can be extended for more Walsh Functions by adding more
flip-flops en the top side, and exclsuive-oring this flip-flop's input with the Walsh

funeti already ted. This should be obvious frem the discussion above.

input Wal(7)
square wave
i jB L L Wal(g)
-:-2] EeoR | [ Wal(s)
EX=O0R
Wal(l)
EX=0R
. L val(3)
L ( Wal(z)
~OR

Wal(l)
o ——Wal(0)

The actual TTL circuit we used is shown in Appendix J. While this circuit
does work, and is useful, this is not intended as a model from the point of view of
its particular features, but only as a general method and as an illustration of the
Pproper interconnections of the IC's used.

B) Digital to Analog genversion: It is of course necessary to combine the
various Walsh functlons in proportion and in the proper sense to get the proper wave=
form for the calculated Walsh coefficients. Four possible methods are shown below:

(1) Strict Digital Coefficients: One pot of resistance R, and two resistors R
are required for each Walsh function we want to handles The table gives the out;
for the extreme values of the pots (A=top, B=center, and Cszhottem) fer both the 0 and
the 1 logic level outputs of the IC's (1 level taken as 5 volts here for illustration)

Other
] o o o

other pots with resistors

R on the ends sonnect to
points a and b.

Settings of the pot t A and E rep it positive Cpn, settings of the pot bet-
ween B and C represent negative Cp. The pots should be linear, and their value should
be at leasd 50 times the value of R used.

S-coe (14)




(11) Mqual Excursicns about zero (method 1):

out

as in (1) above, addit=

ional pots with resis-

+tors connect to points
_ aand b

This method avolds the problem of D.C. errer level, but the centar reference voltage

to the two op-amps must be well defined with respect to the ends.

Wal(n) --)'g 5v

(411) Equal Excursion about Zero (Method 2):

5 0
our =2.5 0
additional pots with smmn:l.ns
Walln i resistors R connect to point & exactly
as the one shown

(=N

This method is about the same as the method above, except for different parts required
This one uses one inverter for each Walsh function, one less resistor per function,
and two less op-amps totals

(iv) Direct Summing Method:

P R This is a one-waveform fixed circuit. You

could have a good number of these in park~

selected 1lel to give a standard set of waveformsi
Walsh Standard op-amp summing methods are used
Functions Fy . along with the appropriate Cp values to

" determine the fp, R and R's
out
h)mm(gﬁEJmmmmmmxtmsm;wpﬁ
waveforns as actually generated.by the lquipmnt in Appendix J. Captions describe the
waveforms and the location of g ion of them in the texts

1) Applications: Application possibilities are somewhat unlimited at the moment
We have discussed the generation of basic waveforms above, and use of the Walsh Funct-
ions for envelope shaping is found in Appendix Cs The applications to filtering seem
quite attractive, but we are not prepared for definite suggestions at the moment. A
few other possibllities are considered below:

(1) The study of conventional instrument timbres by Synthesis: In such cases,
the conversion from Fourler to Walsh Fourier cosfficients would seem to be indicated,
as sinewave overtones are considered in the available literature.

(11) ILive Performance: Frequency information and amplitude information could
be recovered from a live instrument by soms sort of a plckup, and this would then be
used to te a new inst t sounds The live instrument might well be muted in
such a case, to glve only the new instrument. This process would very J.unoly reqiire
some sort of frequency multiplication technique to give a much higher pitch to drive
the Walsh generator. A possible phase locked frequency multiplier scheme is indicated
on page 17. While it might be difficult for a phased-locked-loop to to have a wide
enough capture range, this might be useful for written music where the psrformer has
plenty of time to the Walsh g y and set the center frequency of the
loop in preparation for a passage to come,

s-cos  (15)




Wal(l) Walsh Functlons 1 to 7
wal(z)  (See page 6)

Wal(3)

Wal(l)

Wal(5)

Wal(s)

Wal(7)

1/4 Duty Cyele Pulse Generated as on Page 9
(note this is more easily obtained as the
AND of Wal(l) and u'al(ag)

3/4 Duty Cycle Pulse Generated as on Page 9
(note this is more easily obtalned as the
OR of Wal(l) and Wal(3))

Sawtooth Wave - Staircase Approximation
Generated as on Fage 10

Triangle Wave Cenerated as on FPage 10

Third Harmonic Sine Wave Generated from Wal(l),
wal(s), Wal(9), Wal(13), Wal(2l) & Wal(25) only.
Coefficients from Fage 13. See also Appendix I.

Waveform Above with Low-Fass Filtering

Misc, Periodic Waveforms, While these waveforms
are very interesting to look at, they are no more
interesting to listen to than many of the smoother
ones, In general it is true that the ear doesen't
listen very long to any pericdic waveform of this

4 type, and it i1s with amplitude shaping and time
dependent harmonic percentages, not fancy waveforms,
that an interesting musical sound 1s achlewved.
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LIVE PERFCRMANCE SYSTEM
Anp

zerc oross det.

litude
e det,

(111) Solentific studiss gf phasing: The question of the "Phase deafness” of the

ear 1s an unanswered question®Jl Ohm's Law of acoustics states that the ear is unable
4o hear the phase relationship of the overtones in a pericdic function. Others contend
otherwise. GSince it 1s so easy to chdnge the phase of Walsh harmonics by simply sub=
stituting a cal for a sal; it would seem that Walsh functions could be a useful tools

(v ¥ Sequences: Since all waveforms generated by Walsh Functiens
involve discrete steps, when stepsd relatively slowly, a sequence of

con mwummum.mhmrwwwnmmuﬁhmup
controlled systems.

1

184

23

N R.A.INuos "yoltage Controlled Electronic Music Modules" JAES 13 #3, (1965)

Fi Haynard ‘Digisyntone” m-&liﬁmn o 1 :
RuW. Burhans "m:s{ntd Tone Synthesis"” #8, Sept. 1971, and “TTL Clircuite
for Monophonic Devices" AES Preprint Hel), 43rd Convention Gept. 72

Js Marshall "A TTL Digisyntone" ﬂmmg tter 13 Octs 10, 1972
Ri Schrecongost "LSI in Organ Design® JAES 20 May 1972
o 'Pipe Organ Goes Digital™ Electronics
D. Lancaster 'PsycheTone" Fopular-Electrenics Feb. 1971
B. Hutchins “"Digital Synthesizer” in EN#l to EN#3 Jan-Mar, 1972
H. Hutchins “"Frequency Modulation® ENg¢l3, Oct. 10, 1972 (see pg 4)
Girling & Good "Active Pllters 8: The Two Integrator Loep, Continued"
Hizeless World Harch 1970
He Bode and R.A. Hoog “A High Aceuracy Frequency for Professional Audio
Applicatlons” AES Preprint No, 865 (D=6) 1972
B, Hutchins ‘Trequency Shifting 2" EN13 page 11, Oct. 10, 1972
EeT« Posmer "Digital Waveform Synthesls" Electronic Aug 69, pg 50
Ke Huehne ‘“Programmable ROM's Offer a Digital Approach to Waveform Syntheais"
Auge 1, 1972

«Js Mandell “Sine-Wave Synthesizer Has Low Harmonic Distortion" EIN Auge 15
1972. Corrections, NHov. 1, 1972
B Hutehins "Digital Harmemics 1* EN#12, pg 5, Septs 20, 1972
B, Hutchins, et al "Digital Harmonics 2" EN#13, pge 12, Oct. 10, 1972
RHls Burhans “"Pseudo-Noise Timbre Cenerators" JAES 20 #3, April 1972. GSee
;1;0 additional information, ﬁ 20 pg 210-211

+Fs Harsuth Transmission of Opthogonal Functions, 2nd Ede
pgs 91 Springer-Verlag, 1972 &
B. Hutchins "Fourier Analysis 2" To appear in EN#16
K, Siemens & R. Kital "Digital Walsh-Fourier Analysis of Periodic Waveforms"
IEES Trans. on Instru and Messur. IN-18 #4 pgs 316  Decs 69
Reference 19, pages 50-91
V. Loghkin "Monaural Phase Effects" Soviet Fhys. Acoustics 17 #1, July-Sep. 71
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IONS: We wish to emphasize that while the systems and modules described in
this report are believed or lmown to work properly (except untested ldeas as noted ),
they have not received a full technical or musical evaluation as yet. Therefors, this
report should be used more as a basis for design ideas, and not as a basls for constr
uction. Furthermore, this report will appear as a supplement to Elec Hewslet-
ter #16, and future issues of the newsletter may expand on the mat glven here.
More exacting deslgn and construction details may appear as well.

ACKNOWLEDGMENT: e are greatly indebted to Dr. Carl Frederick of the Center for
Radiophysics and Space Research at Cormell Univ. for suggesting the use of Walsh fun-
otions for music synthesis, and for many valuable discussions. We also acknowledge
the support of Frofessor Walter Ku of the Dept. of Electrical Englneering at Cormell,
and the advies of Lou Fhillips with regard to the formulation of the computer programs

* * * * - #* * * *

APPENDIA A: Digital Methods of Scale Tope Generatlon: The basic system indicated be-
low has been used for the accuraie generatlon of musical scale tones:

Dicdes are placed in appropriate

laster osc, progranmable positions in the matrix to prograa
divider the divider to divide by varicus
TTTTIITT numbers (from 2 to 255 in the case of

F-h an 8-bit counter) and these numbers
12 keys_I7 ;7| diode are picked for the ratie 12l
—¥i | matrix (1114059463 4e4s) in the case of &
f‘" well-tempered scale.

Several instruments of this type have been designed and mm}.%“ The applic=
aticn of this system to other than the well~tempered scale has been discussed (D.Gossel
“Generation of Musical Intervals by a Digital Hethod”, Technigal Revlew, 26
g 170 (1565}, and N. Franssen & C. van der Peet, "Digital Tome Generation for a Trans-
posing Heyboard Instrument”, ETE, 31 (1970, pg 354) and the genmeral case could of
course be aprroached with a matrix switching process for each point on the dicde pro-
grammers This sort of instrument might be of great interest to musicologists who are
studying music from a periocd when ether methods of scale tuning were used. The gener-
ation of octaves other than the ome produced by direct counting can be accomplished by
sinply edding flip—flop divide-by-two circuits, switched by a separate bus cn the key-
board, or through use of the eingle bus technique devised by R. Burhans ("Single Bus
Control for Digital lusical Instruments” JAES 19 #10, pse 865, Nove 71, and ADS Pre-
print #886)  Aectusl numbers commonly used Tor an 8~bit divider ave: 123, 130, 138,
146, 155, 164, 174, 184, 195, 207, 219, 232. Stapelfeldt ("Approximating the Frequen~
cles of the Musical Scale with Digital Counter Circults” JASA 46 #2 (Part 2), pg 478
(1969)) has determined the proper integers for minimum error for counters of total
capaclty from 6 to 12 bdts. Cotton ("Tempersd Seale G from a Single Frequenc
Source", JAUS 20 /5, June 1972, pg 377) has discussed two other methods of digital
scals generation) cne involves addition of pulses, and the other involves repeated
dividion by 196/185 to approximate the twelfth root of 2,

It is of course desirable toc have a memory for frequency during decay (li.e.,
the equivalent of a sample-and-hold with a VCO). A possible, but undeveloped system
for holding one pitch activated by a keyboard until another key is pressed is indicat=
ed on the next pages Also shown is a possible TTL realisation of a leading-edge-det-
ector (LED) and a following-edge-detector (FED) based on H.A. Cole ("TTL Trigger Cir-
cuits" Wireless World, Jan 1972, pg 31, with corrections in larch 1972, pg 116).
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on time of key =~ flip-flop
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generator
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- matr

\"'—‘-thi:. point would
normally be connected
to key for switching
to grounding bus

leading Edge Deiector (L:.n) Following Mge Detector (FED)
t=
1.3RC 3 m—T

@ E}—;”.,——— o e
. [ - A A e
R lees than 220 1?“3 t = 1,380

" - . * 4 1 less than 220

APPENDIX B: Expo nantiﬂ Gonversion Hith Transistors: Shockley's theory of the FH
Junction gives: 1 = Ip(explqv/KET) = 1), and this results in a collector current
that is an sxpnnsntial function of the base-emitter voltage as defiend below:

1, M Io = alog o~3VBE/KST | o~BYem
ta for eurrents I, from 1 pa to 1 ma
! L=

The configuration used is l?aically the one below:
By i

Il >
Sy [ T

Iei= 15/150k = 0.1 ma. e can write equations for both transistors:

12k

Tgy = A e BVEEL o 4 o= (Tan=V2) and Ipp = 4 o~BVEE2 » 4 g=BV2

noMi Igl = Oulma = Ae “BVin o B2 = f o Blin,1 ./ 4

soi Iop = 0ulza o0 ang therefore Eout = 12keIgy = 1.2 e=PVin

for exact elreuit used, including voltage divider on inputi gy = 107Fin
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The op-emp summer 1s used to sum control voltages, and to put the exponential convert-
er in the proper ranges

The summer outmut {Eip of the exponential converter
rqu*-?ht is offset by a constant voltage setting the output
(Ein) at =3 volts when Ey + 3, + Bq = O, Thus the out-

put voltage is 10-3 = 0,001 Volts. When E] + Ep

# kg = 4 for example, Lip = =% + 3 = =1, and

Egut = 101 = 10.

References for appendix 81 (1) R.C. Dobkin "Logarithmle Converters" HNatlonal Semi-
conductor Applications lote AN=30 (1969) (2) K. Huehmne “Transistor Logarithmic Con=
version Using an Integrated Operational Amplifier” Hotorola Semiconductor Froducts
Application Note AN-261A (1571) (3) W.L. Patersen “Multiplication and Legarithmie
Conversion by Operatlional Amplifisr-Trensistor Cireuits" Heview of Seientific Instru-
ments 34 12 Decs 1963

* * * " * * *

APPENDIX C: Digital Methods of Invelope Cenerstion: In regard to digital metheds of
obtaining control envelopes, several methods come to mind. We require these control
envelopes for both amplituds and harmonic shaping. We assume that some slgnal is
present, elther as an analog trigger derived directly from a comparator signifying the
down positlon of a key, or as indicated in Appendix A. The methods below have not
been implemented or tested.

(1) Suppose we have a counter of the bucket brigade type, which when periodically
triggered will esunt up to the top and stop, and upon triggering in a different mode
will count down to the betiom and stop. I'resumably, it will also reverse directiocn in
midcount as well. A simple envelope generator could be made that cperates much like
the capacitor charge-discharge type of V.C. systems. A simple arrangement could be
as follows: We assums here and elsewhere in this appendix that some means of smoothen-
ing the sharp cormers (e.g. with a low-pass filter) is available if needed to make the
envelopes smoothers

F i1 AND

:

INVERTER

P

Feslatance values weuld be selected for any desired envelope waveform, and any number

of parallel envelopss could be generated. 4
(2) A generator of the sbove type could be used for direct galn comtrol, insteadof

applying the envelope to a VCA, in the follcwing manner: J

3
3

" AN

f ‘.....3;1
w 3
=
8

Where the resistors to the bases
of the transistors are selescted
to saturate the transistors on
% legle 1, and the resistors from

the collectors to the inverting
input of the op-amp are selected
to program the gain of the op-amp stage. Reference:
A, Sedra & K. Smith "Simple Digitally-Controlled

41 #93 March 1969

. ._1 Variable Galn IC Amplifier” Elsetronic Engineering
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(3) In a very general type system, where a very large number of envelopes are 1o
te generated {for eaxmple in & complete addltive symtheslis systen), generation of enve
elopes by Wslsh fimetions (Part 4) misht te considered, Tar fewer sumnming resistors
would be required in meny cases. This system as outlined below alss has a re=trigger-
able feature that might be musically advantageous (see Ds Rossum, Elivl3, Dg. 16: sect,
B2)s Igte that the Walsh functlon generator operates parallel to the bucket trigade,
and is not essential, tut @ means of assurlng general envelopes for the least number
of sunming resistors. The methods of (1) and (2) ebove could bs used directly.
key on

ENVELOPE
GENERATOR

switches in

second poslt- .
ion are for Invezjiez‘ A

sl DY N
discussed

velow p—}

2n

envelopes out

The Hermal Mode of the system is as follows: Bucket brigade is in the 2n “rest"
state. Clearing puts the bucket brigade in the 1 state. OSuppose we have an envelope
prepared to be generated by Walsh functions as Uelat
showmn at the right. When the leading edge of ¥alsh Goourgfed

the signal signifying that a key is dewn is p Duvelope
detected by leading edge detector #1 (LED#1),
the output of LEDY1l clears the counter through 2n

OF Gate #2 and also fires AND Gate 3 and OR
Gate 1, turning on f1ip~flop il +o @=1 , thus
turning on AND Gate ./1, starting up the bucket brigade counter and the parallel
Ualsh function generators The timing on these events should be eorrect. The bucket
trigade counts up to n where LED/Z turns the flip~flop off agaln. Then, upon release
of the key, Following edge detector #1 (FEI¥1l) turns

the flip-flop back on again (but does not clear the

counter, prevented by inverter #1) and the ;fsher;:%r-g-;:_ﬂ ?.Llcﬁ
counter counts down to 2n, where LEDW3 again Delayed at Step n

shuts it off agaln (rest state) BSee rights

Hote that the system makes no provis- Attack
ione for different clock rates during attack
and decay. Although this could probebly be
done fairly easily, thecretically it is not
necessary. A changsin the apparent attack )
or decay rates could be mede by changing the
slope {as & functicn of n) of the Walsh-gen=
erated envelope.

Hormal Mode
Sustain
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However, the fact is that musicians don't always play in such nice normal modes

as outlined above, hence, we must examine how the system responds In other modes.

(i) Hey is lifted during count from 1 to ni Inverter 1 is in state 1, so AND
Gate #2 will deliver the pulse from FED/1l to clear the counter.
Thus, the envelope will drop rapidly to the cleared state of
zero voltage, and presumably, this sudden drop could be delayed
elightly by a capacitor if it 1s unpleasently sharp.

(11) Key is lifted, starting decay from n to Zu, tut another key is pressed
during the count from n to 2n: LID#1 signal will clear the counter, but not turn off

the flip-flop, prevented by AND Gate #3,
thus the system finds itself in the 1 to
n count of the normal mode, and thus
counts up to n and stops; or takes mode

(1) am outlined above,

(i11) The problem of simultanecus events: (Keyboard switching transitions at
sane time as counter switches in or out of the n or 2n statesi This is a problem for
the designer working with a specific logie family to answer: Very likely, refinements
may be needed, or the case might be insignificantly rare., Fequires further study.

(iv) Case where Fitch is changed by sliding from one key to the other without
actually lifting the first key before the second makes contact: Here, we refer back to
Appendix 4, and note that the polnt marked EXT in the second figure delivers a pulse
whenever a naw key is pressed, regardless of whether ancther key ie still down or not.
If we are using thls digital generation of scale tones, we can use the EAT output as
a third input to OR Gate 2, to clear the counter and start a new envelope. Nbte that
in general, the counter would probably be in the n state when the pltch change arrived,
80 it is necessary for the counter to be restarted through AND Gate ik, At this point.
LED/] becomes redundant, and we Would bly di it and et the EXT pulse
to the point marked x. This would of coursemake OR Gate #2 & tWo input gate again.
Further, it is clear that the EXT input is essential if we are to permit mode (iv), so
even if a V.C. system is used; it would pay to use a differentlator on the control
voltage to provide this EXT input. Thus; the signals we want to have are cne represent=
ing a change of pitch (different key or change of input control voltage) and a second
representing the point at which all keys are lifted.

* # * * * * #* *

AFPENDIX D: lultipliers: The multiplier we used in the various voltags controlled
modules is of the monolithie; variable transconductance types In its most basic form,
this is a differential amplifier stage with & voltage to current converter. It is
easy to show (see for example Ji Graeme et al (Dd) Operational Amplifiers Desisn and
Applicatlons, Me-Graw Hill (1971) pg 276, that the output

of this conhfl.nation is proporticnal to el, the input +Vee

to the differential amplifier, second input
grounded, and to the current Ig, which in

this case is made proportional to ez. Hence
the output is proporticnal to the product

of the input veltages. In the monolithic

IC (type 1595) this is made into a four- e
quadrant deviee. An excellent discussion

of the device is found in Ch. 12 "The Linear
Four-Quadrant Multiplier” by E.L. Renschler,

in J, Eisbinder (E4) Applications m;%ﬂ
fﬂﬂ%f_ Linear Intemrated Uircults, Wiley, 2
1970). AC and DC versions for multiplier
nodules are easily set up, and shown on the
next page. An improved version of the 1595,
the 1594, is also available,

S-c08 (22)
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AFFENDIX E, &n.mm-m_an_&mh tor, Quadrature Oscillator: To understand the
two mumtw 1oop as an oscillator, We have only to recall that it presents a 90°
phase shift over all frequencies, and the roll-off is -20 db/ decade and we can Tepres-
sntthusa1/aT.mmautmem@mmmncy,anmtmmmtoﬂm

+ Two int 2 in series thus represent

Zi0 Shaecade, and & 1000 (+180%) phase shifts Pute v ' w
ting in a loop with one inversion, at low frequency, L3 b 2 [’
the high forward gain glves unity loop gain, and at
the frequency where the fooward gain drops to unity,
the signal fed back is of course the same as the in- V3
put to the first integrator, and the phase shift 18 | _ _ _____ =__ﬁ_“‘/____
of course 180° « 180°, hence it oscillates. o7 ~¥

Mathematically, this follows from the fact that 1 ——- 'H —
Vg-'rp and therefore V1=s2T2V3, Hence when Vin= 0, ra o Vig ~

, which 1s the equation of simple harmonic ° ﬁ“_ ﬂ = /2

nnti.m nt fnquancy £z 1/(27T), vhere s= j.2TTf. al.. T Gai
Note that for unegqual time constants of the integrate i -

ors, the equation i‘ug the freq. of oscillation is the

same except T=(T172)% (Refs B.Cood, Electronie Ensinsering, 29 April 1957)

AFFENDIX F, Phase Shift Networks: To realise the 90° phase shift networks, one
useeape;zﬂoa.u networks. Mnﬂwwkhuauwﬁth'ri&hthmpmlfﬂ
each pole in the left-half-plane to give flat gain characteristics and non-minimal
monotonieally de ing phase shift. The phase difference between the two is made to
ripple about gmw cified frequency range., The ratio of the transfer functions
contains both poles and geros in the R.H.F. With encugh poles, it is theoretically
possible to approximate 90° over any frequency range with any phase tolerance desired.
Fole location is determined by making positive and megative phase deviations about $0°
equal and minimal. This can be done by use of the Chuer functions in a manner similar
to the use of Chebyshev functions for equal amplitude ripples in the passband.
nces: W. Albersheim & F. Shirley "Computation Methods for Broad=-Band 900

Fhase-Difference Networks" IZEE Irans on Ckt. M Hay 1969, 189 This presents
the necessary theory and the element values of a phase shifter (6-polea, 25-5000 Hs,
g:”pha.;:d:alem, 4 ope-amps, 16 precision pul!.wl;olpmnta). Fu Shirley "Shift

-] pendent of Frequency" Electronic Design 18, Sept. 1. 1970 gives a phase
shifter (4-pole, 70-2200 Hz, 3.89 phase tolerance, 2 op-amps, 12 pumm passive
components ). Re Orban gives a very interesting phase shifter (900, #1,96° from 20-
20,000 Hz using discrete components ( JAES 18, #, pgs 442, August 1970), Finally,
mfemm 11 shows the schematlc of the “dome filter" used by Bode and Moog, but
component values are not given. Note that the networks given in the second reference
were uged in the frequency shifter we constructed.

Beoce: o5



AEFENDIA Gi Some Refergnces on ihe Walsh Functions:

1ls
24
Se
b
Se
-

7

8.

pU'N

154
16

17
18,
19
20.

21,
22.

23,
2k,
25
264

274

J.E. Walsh "A Closed Set of Normal Urthegonal Fumetions" Ameriecsn Jourmal of
liathematios U5 pg 5 (1923)
Wele Fine "On the Walsh Functions" Amer. liathematical Soclety Transactions,
65 pg 372 (1949)
Nol. Fine "The Generalized Walsh Funetlons" Trans.Amer. Fath. Soce 69 (1950),66
Gs dorgenthaler "On the Valsh-Fourler Serles" Trans Amer ﬂ Soc B (195?) llf?z
HeF, Harmuth,Transmission of _J'_.n_fo’:n__ago by Orthoronal Funetlons, Springer-Verlag
HuY., Heldelberg, Beriin, (1572, (2nd %
HeF. Harmuth "4 Ceneralized Conce-rt of Frequency and Some Applicatlons" IEEE
Trans on Informetion Theery, IT-14 -3 May 68, ps 375-382
1970 Walsh Fnctlon Symposium (AD 707-431) 40 papers, 274 pages,
53.00 from Natlonal Techniecal Information Service, Operations Divisien,
Springfield, Va. 22151, order number AD 707-431
_ Applisations of Walsh Punctions, 1971 Proceedings, 13-15 April,
Washington, DsCs papers order number AD 727=000
Slemens & Fo Hital "Di.gital Walsh=Fourler Analysis of Periodle Waveforms"
IE0E Trans m Instrurentation gnd Hessurment IN-18 #4 pg 316 Dec. 1969
iy Alexandrisils "Aelatlon Auong Sequency, Axis Symmetry, and Perlod of ilalsh
Functions" IFEL Trans on Information fheory II-17 #l+ July 1971
He Andrews & K. Casparl “A Generallised lechnigue for Spectral Analysis" IEEE
Tzans on Computers C-19 /1 Jan 1970, pg 16-25
J. Gibbs & He Gebtbis "The Application of Walsh Functions to Transform-Spectro=
scopy” [ature 224 (1969) pg 1022-2013
K. Henderson "Scme ifotes on the Walsh Functions" ISEE Trans Elsctronle Computers
(Correspondence) EC-13 pg 50-52, Feb 64
Se Kak "Sanpling Theorem In Walsh-Fourier Analysls", Electronie lLetters, 6,
pg L7 ' July 1970
F. Plenler "Walsh-Fourler-Synthese Optimaler Filter" AEU 24 (1970) pg 350
Je Shanks "Computation of the Fast Walsh-Fourler Transferm", IEEE Trans on
Computers, C-18 pg 457 May 1969
Fu Pichler ‘"Socme Aspects of a Theory of Correlation with Respect ot Walsh
Harmonlc Analysis" U. of 1. Keport R=70-11, Gollegs }a.‘r:k, . (1970)
. La,cknjéa"s?lgl.;ag's 4 ‘lalsh Functicon" Erog. IEEE Fall Zlectronics Conference,
bg ¥ 1
R+ Adams Propertles and Applications of Nalsh F‘me'tions, Thesis, U. of Pa.
loore School of Elects Lng., Fhiladelphia
E. Gibbs "ial ctroscopy, & form of A.nal_\nsi.s Well Suited to Elnary Digital
Computation" ?396?; Unpublished
5. Manoli "Walsh Functlon Gemerator" Froc IEEE 59 (1971) ps 93
HoFa ;I{armutgag"&ppliuhiou of Walsh Functions in Communications" IEEZ Spectrum,
ov. 1969, D
J. Hammond & H. Johnson "A Review of Orthcgonal Square-dave Functions" Journal
of the Franklin Instit., 273 (1962) pg 211
G.R. fedinto "An Implementstion lechnique for Halsh Funetions" IGEE [rans on
 Computers C-20 dJune 1971 pg 706
N.H. Elackman "Spel:..ral Analysis With Sinusoldal and Walsh Functions™ IEZE Trane
on Aerospace and Elect, Systems AZ3-7 (1971) pg 900 T
Deha iwidigggalsh Functlon Generaticn” IEEs Irans on Info Iheory IT-15 pe 167
an
WiG. Seok  Waveforn Characterization in Terms of lalsh Functlons laster's
Theeis, cyracuse U, June 1

K

NOTE: HNot all of the above papers have been reviewsd as yet, and numercus others
exlat that have not been listed., Consequently, we ars not certain that
some of the naterial presented in this report has not been done elsewhero.
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AFPENDIX H:

Computer Program For Walsh Matrix and Sinewave Harmonic Coefficlents:

STMI LEVEL NEST BLOCK

oo L

B

B3 P3RS B0 B B RO B RO RO B RO B RO B B3 PORD O RO B R RO B PO RO B3RO RO T B 1D B R RO P T B B RO PO

R e HRWWREEE  HR RN S

TRl R o

W

I B0 PO B3 DO RO B3R RO RO RO RO BRI B3 RO RO B RO R RO R 1O B B0 1O B3 RO D B3 BB RO N PO RO 1D B R B DO B B0 RO RO

SOURCE STATEMENT

WALSH:

START1

PROCEDURE OPTICNS(MAIN)
DECLARE(N,H,R) FIXED 3
GET LIST(M) 1
R = CZIL(2%#i) §
BEGIN 4
n[cmnm Ww(Rr-1,R) BIT(1), E 4J,%,L,N,D) FLOAT ,
- CCEF{R-1) FLOAT,{X,PI,A,F) FLOAT,
Y FLOAT, SUM FLOAT INTT(0),
(c,p) FLOAT, G FIXED 3

DO K=l TO M
1=l/2
J= CEIL(2%#K-1) 3
DO I=s1 TOR ;
P= I/1~1/R i
c= FLOOR(P)/2
W(J,I) = (?Lwa(c;t-o-c) [
i
END
DO K=1TO Ml
La :EILEZ"'I{«lJ ]
k= CEIL 2**{1(.1) 1) 4
DO Qsl TO L
DO I=1 T
=3 H(N-Q.I) (W(w,I) ~=h(Q,I)) s
i

ENDj;
PUT SKIP ;
DO I=1 TO R-1 3

DO J=1 TO R
Drur EDIT(W(I,3))(B(1)) 3
PUT E';KIP H

END
Fls 5.1&16 A=1/R
GET LIsT (D) &
F= 2¥PI*D §
D0 Isl TO R-1 ¢
K=0y DOEF(IJ =0
D0 J=1 TO
Ir w(I JJ -'1-3 THEN Y= 1
Sok e ms(m) ca P (o)) 0/
= ~COS(F*(K+4) ) )*1/F 3
WEF(IS +CUEF(I)
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1, s on the Level t t The D.C. level shift problem due to
tmcu%%ou o%%n%:hh-r‘num-%%“m mentioned on page 11. When generating high-
er sinewave harmonics, a similar problem arises for the following reason: By defining
a given sinewave frequency as the fundamental, we necessairily define a corresponding
sequency for Wal(l)s When synthesizing the harmonies of order 21, where 1 1s an integer,
the second for example, we have mlr to start with the Walsh function of twice the sequen-
cy. However, when sym lhu!. the third sinewave harmonic, the Walsh function of three
tm-mmwhmmthom;m:ot andthuuthnamth“laianottmm
natural one. As a re We see a unbalanced effect on the g sized waveform when
the Walsh-Fourler series This error is of type Wal(l), and therefore is
not corrected by A.C. coupling. Note from the :
drawing at right that the unbalance is very
wl nfu”; the first 31 Hnlnt?‘hmotlm have
n conslidered. 0 on page
!E::tl a dis-

16 note that every ﬂ:lxd
placement.

Walsh harmonics 1isted on page 13 for the
third sinewave harmonie, while the photo
omits C17 and C29 due to oquimt limit=
atlons. This may well be more important for
higher sinewave harmonics. Note also that
the D.C, error is still with us, but is not
a

waveform, and a slightly 1 B0 N
mﬁmimofmhbh:n.mﬂm to a given truncation of the
APPENDIX Hardwear Setup : Numbers indexing ien points repr the order
R L e et paists
E CK 2 3 15 n
¥ D= ¥TPee AT -
F—=a1 7 15 Three of these units are avallable
A e D RS
Q $ ; :JD,es lgjbm WALSH FUNCTION GENERATOR
ak e 39  D/A (see pg. 14)
D ghes || [
8 1 2 | : 10k 10k  Pilter Out
TR Ty e o | ledsn | ¥ 2.
] | ]
o b R T k) 1 i
. =D g L !
J,K connected to +5 times &
W g W oM m m @ u
w[s][w][al[u][n][w]lls "1(1J through Ull(lﬂ are :{n%]ﬁﬂ&“
St L B
R 0 switches, o six Walsh
cLean sneset] PRessT cLEAR] be m“ through ua D/A, which sets

Lil2f]?

¥ 1 T
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