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        ON DEMODULATION AND SUPERPOSITION                 

 

     There has been interest here [1] in “hypersound” as a beamed source of modulated 

untrasound that carries and distributes ordinary audio.  The basic concepts are not new:  

Beaming of sound (audible or ultra) is not new.  Modulation is not new, nor is 

demodulation.  [In fact, demodulation by a non-linear process is not new – that’s how 

even the original “crystal-set” radios worked.]  What is new is a practical realization that 

seems to work (but initially seemed unlikely), and possible suggestions that it could be 

extended to beams of microwaves.  

 

     Fig. 1 shows a modulation example – ordinary Amplitude Modulation (AM) as was 

first used in radio.  Here the top panel is the carrier, a frequency of 1/10.  It is a sinusoid 

but is impossible to see in the clutter of so many cycles.  It corresponds to the Radio 

Frequency (RF) carrier, like 550 kHz to 1,600 kHz for AM radio.  The middle panel is the 

“program” or modulating signal, which would be Audio Frequency (AF) in AM radio. 

Note well that while it is AF, it is NOT audio (sound), but rather an electrical signal 

(usually a voltage) that is an analog of the sound (typically obtained by a microphone).  

Here the program signal varies from 0 to +1, so when we multiply the top two panels 

(giving the bottom panel), the modulation is 100%.     

 

      Here is the Matlab code for this plot: 
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t=0:4999; 

xm=(1+sin(2*pi*t/1000))/2; 



xc=sin(2*pi*t/10); 

x=xc.*xm; 

figure(1) 

subplot(311) 

plot(t,xc)           %Top panel, Fig. 1 

subplot(312) 

plot(t,xm)           %Middle panel, Fig. 1 

subplot(313) 

plot(t,x)            %Bottom panel, Fig. 1  

figure(1) 

                                                                                                  Fig. 1  Ordinary AM 

      In AM radio, it is the modulated carrier that is intercepted, and we desire to recover 

the electrical signal (de-modulate) and convert that back to sound with an earphone or 

loudspeaker.  The top panel of Fig. 2 is just the absolute value of the bottom panel of 

Fig. 1 (thus the rectified modulated carrier) while the lower panel in Fig. 2 is a low-

passed version of the top.  The filter is just a simple length-10 moving average for 

illustration.  This does a good job of recovering the program signal.  In the crystal-set 

radio, the rectifier was a galena crystal (a diode) and the low-pass was the mechanical 

inertia of the transducer (the diaphragm of the earphone) and/or the frequency limits of 

the ear (the earphone performing a dual function of converting electrical to audio and of 

low-pass filtering).     
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                          Fig. 2  De-Modulation with Rectifier/Low-Pass 

 

 

The Matlab code for Fig. 2 is here: 

 
% 

xd=abs(x); 

xdlp=filter((1/10)*ones(1,10), 1, xd);      % length 10 moving average 

figure(2) 

subplot(311) 

plot(t,xm) 

subplot(312) 

plot(t,xd )             % Top panel of Fig. 2 

subplot(313) 

plot(t,xdlp)            % Bottom panel of Fig. 2 

figure(2) 

  

 

     Finally we want to illustrate the de-modulation possible with a non-linearity. [ Wait a 

minute – we just did.   The absolute value is a sever non-linearity. ]  It is common 

practice to investigate a nonlinearity startling with a power series.  Here we will use x 

replaced by x + 0.1x2.  This is shown in the top panel of Fig. 3.  Note the slight upward 

displacement of this relative to the modulated waveform (bottom Fig. 1) but far less than 

the absolute value (top Fig. 2).  It is probably clear enough that if we only used x2, we 

would have a purely positive result. The low-pass filtered (same filter as above) version 

of the non-linearity is shown in the bottom panel of Fig. 3.  [ Here, and above, the low-

pass filter amplitude depends on several factors not central here.]  The bottom panel is 

noisy-looking, but does suggest that credible de-modulation has occurred.   
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                 Fig. 3  De-Modulation with Non-Lineariaty (x  x + 0.1x
2
) 

 

 
The code for Fig. 3 is here: 

% 

xnl = x + 0.1*x.^2; 

xnllp=filter((1/10)*ones(1,10), 1, xnl); 

figure(3) 

subplot(311) 

plot(t,xm) 

subplot(312) 

plot(t,xnl )                   % Top panel of Fig. 3 

subplot(313) 

plot(t,xnllp)                  % Bottom panel of Fig. 3 

figure(3) 

 

     If we interpret the results of Fig. 3 as being an ultra-sonic carrier and an audio 

program signal, we can enquire about the nature of the processes.  The modulated 

(AM) signal would be obtained by using the audio signal (electrical analog from a 

microphone, etc,) to control the amplitude of an ultra-sound oscillator/transducer which 

then enters the air as ultrasound.  We would expect this to be inaudible.  We need a 

demodulator – in this case, the non-linearity.   That is, the higher pressure of the 

assumed very loud ultra-sound produces a non-linear response.  The corresponding 

low-pass filter is nothing more than the fact that the ear hears only the lower component 

caused by the non-linearity. The air is its own transducer (back to sound) here.  

 

     The “beaming” (beam-forming) is all in the transmitting transducer array for the ultra-

sound.  The demodulation is due to the high loudness of the ultrasound (non-linearity – 

requiring a lot of energy). No “transducer” is required, since the lower audio is there for 

the ear to interpret directly.  High marks for those who actually made this work.  Note as 

well that the difficulties were in engineering – not particularly with theory. 
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What About Microwaves? 
 

     Can an audio signal modulate a microwave beam?  Of course: for decades (before 

fiber) this was how long-distance telephone was implemented once the limitations of 

land-lines needed to be overcome.  Can microwaves be amplified into a non-linear 

region.  Certainly: the circuitry can be driven to “clipping”.  BUT- you can’t drive the 

MEDIUM (the metaphorical “aether”) to non-linearity the way you can air.  And the 

medium is not going to be its own transducer.  You need demodulation circuitry and 

electrical signals to sound.  And it needs to be dedicated technology on the receiving 

end, and put there intentionally.   

 

          Could microwaves be transmitted, even beamed by a satellite in space?  Of 

course.  Likely much of your communications comes from this.  It’s low-energy stuff 

however.  Can vast amounts of energy (intense beams) be beamed to thousands of 

individuals on the surface?   Of courses not.  How would you get enough energy (in 

space) to drive your disruptor?  It’s hard enough to get the TV pictures down even with 

very sensitive receivers and lots of signal processing on the ground.  

 

     Hypersound does not translate to microwaves.      

 

 

SUPERPOSITION                                                       (added 10/24/2016) 

                (Of Signals – YES,  Of Perceptions – Probabaly Not) 

 

      In the example above, we examined a case involving 100% AM.  We are familiar 

with the notion of representing modulated signals in terms of discrete frequencies called 

“sidebands”.  This relates, for example, to the multiplication of two sinewaves as the 

absolutely equivalent sum of two different sinewaves [equation (1) below].   They are 

two views of the same signal.  The crucial thing is that, in this traditional view, the 

“spectrum” is found “by observation” as the summation.  [The best known example of a 

discrete spectrum is the Fourier Series sum.] 

 

     When we bring up superposition, and specifically inquire about what is “heard” when 

we superimpose waveforms AND PRESENT THEM TO THE EAR, we need to take 

great care.  The perceptions are not necessarily (or perhaps ever) exactly 

superimposed.  One example will serve at this point.  Suppose we play a sinewave of 

600 Hz to the ear.  The spectrum is one frequency (600 Hz), and we hear a pitch at 600 

Hz.  If we then play a sinewave of 400 Hz, the spectrum is one frequency (400 Hz) and 

we hear a pitch of 400 Hz.  If we add the two signals, the spectrum now has two  
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frequencies (400 Hz and 600 Hz) but the ear hears a pitch of 200 Hz.   This is the 

“missing fundamental” phenomenon.  It is lower than either the two components.  It 

leave a very different impression.  Now, when you try hard (perhaps starting with an 

unpaired tone) it is quite possible to “hear out” the 400 Hz and 600 Hz components.  

The superposition is the sum of the parts (mathematically, electronically) but quite a bit 

more than the sum of the parts at the ear.  We need to listen and not guess.    

 

     Below is Matlab code for playing this example: 

 
n=0:14999; 

fs=10000 

x1=sin(2*pi*400*n/fs); 

x2=sin(2*pi*600*n/fs ); 

superpos=x1+x2; 

figure(6) 

plot(n(1:500)/fs,s(1:500)) 

sound(x1,fs) 

pause 

sound(x2,fs) 

pause 

sound(superpos,fs) 

 

                 

     At this point, three simple equations (just high-school trig) can be studied.   

Equations (1) and (2) are absolutely the same (balanced modulation) if we make the 

substitutions of variables.  [The superposition is of two frequencies.]  Equation (3) is just 

a modification of equation (2) for the case of 100% AM.  This third case has three 

frequencies: the carrier (X) and two sidebands of half that amplitude, at (X+Y) and at  

(X-Y), Y being the program frequency.   Whether we form (synthesize) these signals 

electronically by multiplication, or by summation, makes no difference to the final result.   

 

      

                                 
   

 
      

   

 
                                                            (1)                                  

               SUPERPOSITION 

 

                                                                                               (2) 

            BALANCED MODULATION (Multiply, of Double Sideband)                          

 

                                                                                   (3) 

             AMPLUTUDE MODULATION  (100%)   
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     When we state that the signal is to be converted to sound, we eventually need to 

involve the nature of air as a propagating medium, and the way the ear perceives 

various pressure waves?   For low to moderate levels of sound (relative to the ear), and 

for all frequencies in the audible range, the indifference of the result to mathematical 

interpretation and synthesis, with regard to summation of multiplication, remains.    

 

     Thus first here we consider a modulated signal in terms of a summation synthesis, 

where the demodulator is either absent, or is a non-linearlty, and that a simple low-pass 

filtering stands in for the transducer and/or for the ear.   

                                                    Fig. 4  Sum of Two Sinwaves - Beating 

 

Here is Matlab code for Fig. 4 

 
t=0:4999; 

xm=sin(2*pi*t/10.1); 

xc=sin(2*pi*t/10); 

xe=2*cos(2*pi*(1/10-1/10.1)/2*t);            % calculated envelope 

xtrig=sin(2*pi*(1/10+1/10.1)/2*t).*xe; 

x=xc+xm; 

xnl = x;    

xnllp=filter((1/10)*ones(1,10), 1, xnl); 

figure(4) 

subplot(311) 

plot(t,x) 

hold on 

plot(t,xe,'r*') 

hold off 

subplot(312) 

plot(t,xnl ) 

subplot(313) 

plot(t,xnllp) 

figure(4) 
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     Fig. 4, top panel, shows the sum of two sine waves which are added (xc+xm) and we 

see the lobed structure of balanced modulation.  Also plotted, calculated as xe, in heavy 

red, is the cosine term which is the envelope of the beating waveform [2].  The average 

frequency, half the sum, is (1/10+1/10.1)/2 = 0.099595 and half the difference frequency 

is (1/10-1/10/1)/2 = 0.00495.  The signal is thus a high frequency nearly equal to the 

components subjected to a dominating low frequency amplitude beat.  Very different 

from either component. 

 

     The lower panel of Fig. 4 shows the low-passed version of the top panel.  That is, the 

balanced modulation has no DC component (as is evident from the trig identities).  Thus 

while there is a spectral component at (near to – actually) the higher frequencies (the 

average at about 1/10), there is no spectral energy at half the difference frequency (at 

about 0.005).  There is a very strong perception that something is there, perhaps low 

audio, even sub-audio (as is the case of tuning musical instruments by beats).  Thus 

while we perceive a low-frequency event, it is not found in the spectrum.   

 

 

                Fig. 5  Non-Linearity/Low-Passed   -  Demodulation 

 

 

     In Fig. 5 we again subject the signal to a non-linear operation.  This is the same sort 

of demodulation we had in Fig. 3.  Again we see that the symmetry of the waveform is 

disturbed (top panel), and some notion of a demodulated low-frequency sinewave 

emerges (lower panel).  We may hesitate to call this a demodulation since we did not 

actually modulate anything, but just superimposed the two frequencies that would have 

been the double sidebands.    

 

Here is Matlab code for Fig. 5 
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xm=sin(2*pi*t/10.1); 

xc=sin(2*pi*t/10); 

xe=2*cos(2*pi*(1/10-1/10.1)*t/2); 

xtrig=sin(2*pi*(1/10+1/10.1)*t/2).*xe; 

x=xc+xm; 

xnl = x + 0.5*x.^2; 

xnllp=filter((1/10)*ones(1,10), 1, xnl); 

figure(5) 

subplot(311) 

plot(t,x) 

hold on 

plot(t,xe,'r') 

%plot(t,xtrig,'c:') 

hold off 

subplot(312) 

plot(t,xnl ) 

subplot(313) 

plot(t,xnllp) 

figure(5) 

 

  

DISCUSION: 
  

     Here we have involved two topics: demodulation and superposition.  Also involved is 

the common idea that non-linearities needs to be considered. In engineering, the ability 

to superimpose is closely associated with LINEARITY.   With perception brought in, a 

valid claim of superposition, even without a non-linearity, needs to be demonstrate as it 

may well be absent.  
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