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                 THE 4-POLE LOOKED AT A BIT MORE 

                          Back-Story and New Finding 

 

Back-Story 

People send me stuff.   Often saying that they are sure I have probably seen it and 

know about it.  Mostly it is completely new to me.  So never hesitate to send me a note.  

Not infrequently, the hint leads to a new posting published on this site, as is the current 

case. 

     The topic responsible for the current Webnote was an item posted on the Synth-DIY 

site which I seldom get to these days.  Because the reader who sent the link said it had 

to do with the 4-pole low-pass, a popular topic here [1a, 1b, 2-5], and because they 

asked me a question about using feedback, I looked at it.   A number of fun things and 

interesting things emerged in just an hour’s playing around.   

     The story begins with a posting by Neil Johnson on the Synth-DIY site titled 

“Analysing 4-stage RC filters without the hot air” dated 21 Mar 2016.  You can get the 

full post by going to our Synth-DIY link and searching for electronotes:   

http://search.retrosynth.com/synth-diy/  

The take-away line from Neil’s post is:  

      “…As a worked example I used a 4-stage RC filter from Electronotes where 

          I show that actually it's not that difficult at all to analyse the unbuffered 4-stage   

           RC filter contrary to Bernie's protestations.” 

 

                                                       ENWN-42 (1) 

http://search.retrosynth.com/synth-diy/


     Indeed, Neil has provided a solution to a problem which we understood but never 

finished.   A pdf of Neil’s presentation is found here: 

http://www.milton.arachsys.com/nj71/index.php?menu=2&submenu=2&subsubmenu=14 

This describes a valuable finding (the poles of the unbuffered 4-pole which I previously 

declined to fight with).    Neil’s paper is basically commendable.  But I did wonder, upon 

reading the Synth-DIY text, what my protestation was going to be.  It’s in the pdf.  Neil 

correctly borrowed a figure from EN#210 (posted free) and properly acknowledged the 

source.  So I find my protest:  

      “I don't know how many times I have started out to actually solve the unbuffered            

       case (A). I always gave up, even after dropping back to the case where all the R's   

       and all the C's were equal. It clearly was not impossible - just excessively tedious.” 

 

Sure – I wrote than in 2012.   Note the word “tedious”.  Neil did solve the problem for 

which he gets pretty good marks.  The marks would have been higher if he had actually 

done the algebra I had declined to do.  But he did get the answer.  How?  Apparently he 

used an online program called “maxima” that chews up the algebra.  What was his 

excuse for running to a program?   He wrote: 

    

     “Expanding out the multiplication would be rather tedious by hand, so we use     

      maxima to do the algebraic gymnastics for us. Setting all resistors equal and all   

      capacitors equal simplifies the transfer function to the following expression:” 

 

The excuse in red (mine) and Neil’s in blue say essentially the same thing (“tedious”, 

and let’s set the R’s and C’s equal)!  The difference is the algebra crunching program 

Neil used.   

 

     My protestation above was not the only reason why I deserted the algebra problem.  

Immediately following the red quote from EN#210 I also said: 

 

       “More importantly, there was no “pot of gold” lurking at the end of the tedious path.     

          We already understood the general nature of the anemic results.” 

 

I abandoned the attempt in the late 1970’s.   

 

     I should mention that the setup of the impossible hand-algebra in my case 

(simultaneous network equations) was different from Neil’s (matrix 2-port cascade). 

Likely a program exists today to do the algebra with the network equations.  Apparently 

“maxima” does matrix multiplies with symbolic elements.   
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     Although Neil does not say so, the method of cascading 2-ports is not new.  Perhaps 

he should have referenced any of a vast number of network theory books, but the fact 

that such material is taught (more than 50 years) at the engineering sophomore level is 

probably reason enough to omit it, or perhaps it was referenced in previous Synth-DIY 

comments.  It does seem to turn out to be simpler than the simultaneous equations.  In 

fact, it can lead to the correct solution in about 1/3 page of hand algebra.  In fact, if all 

R’s are equal and all C’s are equal, the cascade of four-ports (Neil’s equation just below 

my Fig. 4) becomes:                        

                                                         
   

   
    

       
   

 
 

  
    

    
   

 

Squaring the 2x2 matrix and squaring the result is really not hard, and we only need the 

top left element.  For additional simplicity, let RC=1, and the denominator of  

          becomes: 

                                                               

This is the same result Neil got.  So it seems to be the right answer.  Neil solves for the 

poles by a strange procedure of factoring out an obvious pole at s=-1 and then solving 

the remaining cubic with an online cubic solver.  More directly in Matlab I just did: 

             roots([1 7 15 10 1])  

      ans =   -3.5321   -2.3473   -1.0000   -0.1206  

 

which is the same answer Neil got.  That is, four negative real poles.  In comparison, in 

the buffered case we have all four poles at s=-1, so without buffering, the poles spread 

along the negative real axis. 

 

New Findings 

     Fig. 1 (A, B, C, D, and E) show the variations on the basic fourth-order cascade 

under consideration here.  A is the original passive, unbuffered case that Neil (and I)   
end up with.  [If you prefer, consider the start to actually be the same circuit with a 

series of potentially different R values (R1, R2, R3, and R4, left to right) and potentially 

different C values (C1, C2, C3, and C4, left to right) instead of jumping to this special 

case.]   B is the case where buffers are used to simplify the cascaded interconnections 

to a simple multiply.  The case in D is this buffered arrangement with the positive 

feedback loop that made Moog’s four-pole low-pass so useful and popular.   Two points 

are perhaps worth mentioning: (1) the original ladder version of the low-pass Moog first 

used was not quite like D, although the response was the same, and (2) the buffering 

between stages is largely automatic, part of the voltage-controlled implementation.   
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     Ultimately we will address the reader’s question to me about what happens when we 

use feedback, as in Moog’s filter on the unbuffered cascade (E).  But first note that what 

we have done here is not just to make the sections have the same RC product, but to 

have all the R’s the same and all the C’s the same.  This is different.  If we had allowed 

the R’s and C’s of the sections to vary, as long as the RC products were the same, we 
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could have arranged that each successive section minimally loads the previous one as 

a sort of pseudo-buffering (C of Fig. 1).    { A version of this was recently posted [6].}   

For example, we might have the R of the first stage (Fig. 1 here) be 100 ohms while R 

of the second stage is 100 times larger (10k) and on to 1M and finally to 100M.  This 

would stress the range of possible resistors.  Each C would be adjusted to the 

corresponding R so that RC is the same for all.  In this case, the output impedance of 

one state would be no larger than R while the input impedance to the following stage 

would be no smaller than 100R.  This would look a lot like isolation, pretty much as with 

the buffers. 

     This leaves us with E to examine, and it should show any essential results.  With the 

feedback gain g, the denominator of the transfer function would become: 

                                                              

and this is all we need to solve for the poles and assess stability.  Clearly when g=1, we 

have a pole at zero (a pole at DC).  In addition, note that if g is equal to or greater than 

1, the system is unstable as the lasts term becomes negative, and the Routh stability 

criterion does not allow any sign changes in the denominator.  Any negative values of g 

would not violate simple Routh, but we then need to calculate the poles to determine 

stability or not. 

     [ As a sort of aside, note that we are calling the negative values of g POSITIVE 

feedback.  No feedback is either positive or negative until the phase around the loop is 

determined.  For example, in the Moog four-pole (Fig. 1, D) we obtained poles which 

are, as a function of g, moving from s=-1 (four of them) outward from s=-1 at the corners 

of a square.  Each stage of the length-4 cascade, at ω=1 thus has a gain of 1/    and a 

phase of 45º, for each of the four poles.  This is a total gain of 1/4 and total phase of 

180º.  By setting g=-4, we have a feedback gain of +1. ]  

     Here we will first see what happens with positive values of g (Fig. 2) and then with 

negative values of g (Fig. 3) and finally make a combined display in Fig. 4.  Here we are 

simply setting up a scan of values of g to be tested and calculating and plotting the 

poles using Matlab’s roots.     In Fig. 2, we have the four g=0 poles (all real and 

negative) plotted in green.  As soon as g goes to +1, we have the pole that was closest 

to s=0 moving exactly to s=0 (plotted in blue, with three other poles that are still stable).  

We are kind of finished at this point.  FOR example, with g=+2, we have the light blue 

poles, one of which is well inside the right half plane.  Here in fact note that two poles 

have met on the real axis and split into a complex conjugate pair.  Fig. 3 shows the case 

of g running from 0 to +20.   This reminds us more of the Moog pole locus.  In this case 

the feedback draws the real poles together in two pairs which then split to complex 

conjugate pairs.  The pole pair that are least negative will dominate (as with the Moog  
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circuit).  This pair are joined by the time we arrive at g=-2, and swing around, 

approaching the jω axis (plotted in red).  In fact, we rely on the root-finder program to 

show that the poles are still stable by g=-18 but have crossed to the right half-plane by 

g=-19.    

     Although we do not anticipate using this arrangement, basically because any 

voltage-controlled case would certainly offer free buffering, the plot showing the full 

sweep, with a finer increment, is attractive (Fig. 4).  This is a combination of Fig. 2 and 

Fig. 3.  It is one of those cases where we see pairs of real poles joining and splitting into 

complex pairs.  Which real pole (from the right of the left) goes up or down!  A 

meaningless question apparently.    In Fig. 4 we can enjoy tracing any pole starting at 

g=20, following a red path to g=0, having it turn green and proceed to g=-20.  Note that 

you can only use a path once.  And, there are exactly the set of paths needed.  Fun.   
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