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            The Difference Between All-Pass and Notch 

 

 Of course there is a large difference between an all-pass filter and a notch filter.  Or is 

there?   Except for the one notch frequency (and a nearby frequency range) we are 

generally interested in passing the original signal with no attenuation.  So it is often the 

difference in application rather than the gain at a particular frequency that is at issue.  In 

addition to this, there is another “apples-vs-oranges” difference best illustrated in Fig. 1.   

     In Fig. 1, we have in A a familiar notch, having a pair of conjugate poles in the 

negative half-plane (at 20° to the jω-axis) with zeros on the same radius.  The 

corresponding all-pass has zeros not on the jω-axis, but mirrored to poles as in B.   Note 

that in A the poles/zeros are separated by 20°while in B the separation is 40°.  Here we 

will be more interested in an all-pass case where the pole/zero separation is again 20°, as 

in C.  We want to compare the notch of A with the all-pass of C.  Note that the damping in 

the case of C is half that of A. 
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     Here we will be interested in cases with the geometry of Fig. 1A and Fig. 1C, but at an 

angle like 2.866 degrees (D=0.05) between the poles and zeros.   What this means can 

be appreciated from Fig. 1 if we consider the case where the poles and corresponding 

zeros are very close together and where we are relatively far from them, which would be 

the case for relatively low frequencies or relatively high frequencies, relative to 1.   

Viewed from such limits, the poles and zeros tend to shield each other and thus to cancel. 

In contrast, at a frequency close to 1, for the notch a zero is right in the path (the axis) 

while the poles is off to the left.   Thus the “supporting” effect of the poles is overwhelmed 

by the nulling of the unavoidable zero.   In the case of the all pass, the distances to the 

poles and zeros always cancel in corresponding pairs, but the phase angles add (double 

– the phase angle off the zeros being of opposite sign to the poles).    

 

     Fig. 2 shows the cases of the magnitudes of the frequency responses.  Here for the 

notch we show for comparison a lower Q (larger damping D=1/2), but want to emphasize 

the less damped (D=1/20) case.  This same D=1/20 is used for the all-pass.  Note the 

relatively sharp notch.  Also note that the responses are very similar (unity) for 

frequencies not close to 1.  “Far away”, the fact that the zero is waiting right on the jω-axis 

is not apparent in the notch magnitude response.    The frequency just wanders into the 

trap and the magnitude is forced to zero.    
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     In addition to the magnitude response, we are interested in the phase responses.  This 

is usually somewhat more difficult to interpret.   Here instead of taking the magnitude of a 

transfer function.  We compute the angle, the inverses tangent of the imaginary part 

divided by the real part.  This inverse tangent is subject to ambiguities of multiples of 2π.  

Fig. 3 shows the phase responses that correspond to the magnitude responses of Fig. 2,  

here showing the higher-Q (D=1/20 notch, D=1/40 all-pass) cases.  It appears that the 

phase responses are much the same for the notch and for the all-pass, except the all-

pass has twice the angle.   Can this be right? 

 

          In Fig. 3 for the all-pass we see a jump of +2π when the angle reaches –π which is 

what we expect from the arctangent passing through –π.  As we shall see in Fig, 4, this is 

what actually happens.   The jump of +π at angle –π/2 in the case of the notch, is more 

mysterious.   It is not just a property of the calculated trig function.   

 

     One useful interpretation of phase is to consider each singularity separately, and 

imagine ourselves situated at that point in the s-plane watching the actual frequency 

increase from ω=0 up the jω-axis.     The phase is the angle subtended by this segment. 

(Angles for zeros are opposite in sign from those of poles.)  Thus we see that for 

something like a single real pole, the angle is an arctangent of the frequency, starting at 

zero, and approaching –π/2 (-90°) as the green dashed curve of Fig. 4.   The dashed 

black curve of Fig. 4 corresponds to a 2nd-order low-pass (two poles), and runs to –π. 
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     The jump of π in the notch is explained by supposing ourselves to be sitting at the 

upper zero on the jω-axis as the frequency ω starts at zero, arrives at ω=1, and passes 

through.  As the frequency is less than 1, the angle is always the same, directly below.  

As ω goes through 1, instantaneously the angle is directly above, a shift of π.   It would 

be strange to suppose that we could have any instantaneous shift of π (or any discrete 

shift).  (A mechanical system such as a mass and spring could not do this except with an 

infinite force.)  But here, the shift occurs at an amplitude that is exactly 0 (the bottom of 

the notch) so it is possible.     

 

     There is much information in Fig. 4 and in Fig. 5 which is a follow-up.  Fortunately, we 

can look at it one detail at a time.   First we call attention to the calculation of the phase of 

the first-order LP (dashed green in Fig. 4) and the second-order LP (dashed-black in Fig. 

4).  The first-order curve is very gradual and is approaching –π/2, although it has a long 

way to go in Fig. 4.  This is because we have a real negative-half-plane pole at -1 and 

when ω gets to 1, the angle from the pole looking at the frequency (ω=1) we have 

reached -π/2 (-45°) but then the rate of increase slows down.  In the case of the second-

order LP, we have two poles, so the total phase shift approaches π, as suggested as the 

right side of the dashed black curve.  The shift is more sudden because of the two poles, 

and more importantly, they are very close to the jω-axis, so the subtended angle changes 

rapidly. Note that no finite zeros are in play here.  
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    We see (again Fig. 4) that the phase of the all-pass (blue) advances faster than that of 

the notch (dashed red) (disallowing for the instantaneous π shift of the notch – Fig. 3) and 

of the dashed black 2nd-order LP (Fig. 4). That rapid phase shift is kind of the main claim-

to-fame of the all-pass.  In fact, the phase off the mirror zeros should exactly double that 

of the low-pass (the angles being in the opposite directions, but being from zeros, have 

the opposite signs).  So what happens if we plot TWICE the LP phase shift (dashed blue  

of Fig. 4).  This is the doubling of a calculated angle and reaches -2π, which is outside 

the range of the arctan.  What we get is an exact fit to the all-pass phase (dashed light 

blue overplotting solid blue for the range from 0 to –π).  The continuation of the dashed 

light blue from –π to -2π is the shifted version of the all-pass from π down to 0 above.  

This leaves the actual phase curve (dashed red in Fig. 4 ) of the notch unexplained.    

     Fig. 5 is a follow-up on Fig. 4 which shows additional details.  The solid blue and 

dashed light-blue are the same as Fig. 4.   Here we recall that the poles of the notch and 

the all-pass were not the same.  Specifically we used half the damping of the notch for the 

all-pass so that the separation of the poles/zeros was the same.  That is, the notch had a 

damping of 1/20 while the all-pass damping was 1/40.   It is twice the angle of the D=1/40 

LP that matches the all-pass.    

 

     We now look at the phase of the D=1/20 LP which is shown as the dashed black curve 

in Fig. 5.  Here the notch phase is plotted as solid red, so we see that the D=1/20 LP 

exactly overplots the notch phase from 0 to –π/2.  Similar to the case of the all-pass, we 

see the dashed black from –π/2 to –π corresponding to the red notch from π/2 down to 0. 
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     We can now look at some time-domain responses (impulse and step responses) to 

supplement our understanding of the magnitude and phase responses.   These we do by 

simulation.   If we look back to Fig. 1 we recall that a notch and an all-pass had a very 

similar pole/zero plot, particularly as we kept the damping very low, and as we were 

agreeable to using half the damping of the notch for the all-pass.   This we suggest by 

comparing Fig. 1a and Fig. 1c for our postulated special relationships, the only significant 

difference being that the notch has its zeros exactly on the jω-axis while the all-pass has 

zeros ever so slightly in the right half-plane.  Accordingly we would not be surprised if the 

two had similar time responses.    

 

 

 

     

 Fig. 6 shows three cases of interest.   There are two cases of an all-pass: for D=1/20 

and for D=1/40.  Then there is that case of the notch for D=1/20.  Note first the similarly of 

the D=1/20 notch to the D=1/40 all-pass on the left side.   Further note that the D=1/20 

all-pass and the D=1/20 notch decay at the same rate, while differing in amplitude by 

about 2:1.   As we might expect, the D=1/40 all-pass decays slower (rings longer) than 

the two D=1/20 cases.  We might however, have expected the D=1/40 all-pass to have a 

larger response (initially) than the D=1/20 case.  What we do see is apparently because 

the zeros better “shield” the poles in the D=1/40 case.  See also the corresponding band-

pass results in Fig. 8 below. 
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    Fig. 7 corresponds to Fig. 6 except here we show the step response.  The results are 

similar for similar reasons.   One difference is that all three have the step response 

beginning at 1 at time=0. 

 

     Fig. 8 shows impulse responses for band-pass responses – the expected 

exponentially damping sinusoidal waveforms.  Here we see both band-pass responses 

starting at 1 at time=0 and decaying, with the less damped case (D=1/40, red) decaying 

more slowly.   No surprise, but here the blue curve is always smaller than the red one, 

except at t=0 where they are equal.   In contrast, in Fig. 6, the D=1/20 all-pass (blue) is 

greater than the D=1/40 all-pass (dashed red) for the portion plotted.   However, this was 

just a matter of the head start it got, and it is easy to see, by comparing relative 

amplitudes on the left and right sides, that the blue curve will dip below the red 

somewhere a little further to the right. 

 

 

PROGRAM 

 

The following code is included for full documentation.  The figure numbers in the code 

correspond exactly to the figure numbers of the text. 

 
% WN019.m 

a=0:0.005*pi:2*pi; 

x=sin(a); 

y=cos(a); 

figure(1) 

subplot(131) 

plot(x,y,'b') 

hold on 

plot([-1.2 1.2],[0 0],'k:') 

plot([0 0],[-1.2 1.2],'k:') 

pa=20*2*pi/360 

Dpa1=sin(pa) 

plot(-sin(pa),cos(pa),'xr') 

plot(-sin(pa),-cos(pa),'xr') 

plot(0,1,'ob') 

plot(0,-1,'ob') 

axis([-1.2 1.2 -1.2 1.2]) 

axis('square') 

hold off 

 

subplot(132) 

plot(x,y,'b') 

hold on 

plot([-1.2 1.2],[0 0],'k:') 

plot([0 0],[-1.2 1.2],'k:') 

pa=20*2*pi/360 

plot(-sin(pa),cos(pa),'xr') 

plot(-sin(pa),-cos(pa),'xr') 

plot(sin(pa),cos(pa),'ob') 

plot(sin(pa),-cos(pa),'ob') 

axis([-1.2 1.2 -1.2 1.2]) 

axis('square') 

hold off 
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subplot(133) 

pa=10*2*pi/360 

Dpa2=sin(pa) 

plot(x,y,'b') 

hold on 

plot([-1.2 1.2],[0 0],'k:') 

plot([0 0],[-1.2 1.2],'k:') 

plot(-sin(pa),cos(pa),'xr') 

plot(-sin(pa),-cos(pa),'xr') 

plot(sin(pa),cos(pa),'ob') 

plot(sin(pa),-cos(pa),'ob') 

axis([-1.2 1.2 -1.2 1.2]) 

axis('square') 

hold off 

 

 

D=1/20 

NN=[1 0 1]; 

ND=[1 D 1]; 

NN1=[1 0 1]; 

ND1=[1 1/2 1]; 

AN=[1 -D/2 1]; 

AD=[1 D/2 1]; 

w=[0:.0005:4]; 

TN=freqs(NN,ND,w); 

TN1=freqs(NN1,ND1,w); 

TA=freqs(AN,AD,w); 

% 

TL1=freqs([1],[1 1],w); 

TL2=freqs([0 0 1],AD,w);  

% 

 

figure(2) 

subplot(211) 

plot(w,abs(TN),'b') 

hold on 

plot([-1 5],[0 0],'k:') 

plot([0 0],[-1 2],'k:') 

plot(w,abs(TN1),':c') 

axis([-.5 4.5 -0.2 1.2]) 

hold off 

subplot(212) 

plot(w,abs(TA),'b') 

hold on 

plot([-1 5],[0 0],'k:') 

plot([0 0],[-1 2],'k:') 

axis([-.5 4.5 -0.2 1.2]) 

title ('Magnitude') 

hold off 

 

figure(3) 

subplot(211) 

plot(w,angle(TN),'b') 

hold on 

% 

plot([-1 10],[0 0],'k:') 

plot([0 0],[-10 10],'k:') 

plot([0 4],[pi pi],'c:') 

plot([0 4],[pi/2 pi/2],'c:') 

plot([0 4],[-pi -pi],'c:') 

plot([0 4],[-pi/2 -pi/2],'c:') 

                                                              

                                                              ENWN-19 (9) 
 

 



% 

axis([-.5 4.5 -4 4]) 

hold off 

subplot(212) 

plot(w,angle(TA),'b') 

title('Phase') 

hold on 

%  

plot([-1 10],[0 0],'k:') 

plot([0 0],[-10 10],'k:') 

plot([0 4],[pi pi],'c:') 

plot([0 4],[pi/2 pi/2],'c:') 

plot([0 4],[-pi -pi],'c:') 

plot([0 4],[-pi/2 -pi/2],'c:') 

axis([-.5 4.5 -4 4]) 

hold off 

 

 

figure(4) 

plot([-0.5 4.5],[0 0],'k') 

hold on 

plot([0 0],[-8 4],'k') 

plot(w,angle(TA),'b') 

plot(w,angle(TN),'r:') 

plot(w,angle(TL1),'g:') 

plot(w,angle(TL2),'m:') 

plot(w,2*angle(TL2),'c:') 

% 

plot([0 4],[pi pi],'c:') 

plot([0 4],[pi/2 pi/2],'c:') 

plot([0 4],[-pi -pi],'c:') 

plot([0 4],[-pi/2 -pi/2],'c:') 

% 

hold off 

axis([-.2 2 -7 4]) 

figure(4) 

 

 

figure(5) 

TL22=freqs([0 0 1],[1 D 1],w); 

plot([-0.5 4.5],[0 0],'k') 

hold on 

plot([0 0],[-8 4],'k') 

plot(w,angle(TA),'b') 

plot(w,angle(TN),'r') 

%plot(w,angle(TL1),'g:') 

plot(w,angle(TL22),'k:') 

plot(w,2*angle(TL2),'c:') 

plot(w,2*angle(TL22),'g:') 

% 

plot([0 4],[pi pi],'c:') 

plot([0 4],[pi/2 pi/2],'c:') 

plot([0 4],[-pi -pi],'c:') 

plot([0 4],[-pi/2 -pi/2],'c:') 

% 

hold off 

axis([-.2 2 -7 4]) 

figure(5) 
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% IMPULSE RESPONSES 

VH=zeros(1,16000); 

VB=zeros(1,16000); 

VL=zeros(1,16000); 

dt=0.002 

D=1/20 

imp=500  

for n=2:16000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ imp; 

   imp=0; 

end 

VN=VH+VL; 

VA=VH-D*VB+VL; 

VB05=VB; 

VH=zeros(1,16000); 

VB=zeros(1,16000); 

VL=zeros(1,16000); 

dt=0.002 

D=D/2 

imp=500  

for n=2:16000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ imp; 

   imp=0; 

end 

VAhalf=VH-D*VB+VL; 

VB025=VB; 

figure(6) 

plot([0:15998]/500,VN(2:16000),'k') 

hold on 

plot([0:15998]/500,VA(2:16000),'b') 

plot([0:15998]/500,VAhalf(2:16000),'r:') 

plot([0,16000]/500,[0 0],'k') 

plot([0 0],[-2 2],'k') 

axis([-1000/500 16100/500 -0.15 0.15]) 

hold off 

title('Black: Notch, Blue: AP, Red-dot: D->D/2 AP')  

   

 

VH=zeros(1,16000); 

VB=zeros(1,16000); 

VL=zeros(1,16000); 

dt=0.002 

D=1/20 

s=1 

for n=2:16000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ s; 

     

end 

VN=VH+VL; 

VA=VH-D*VB+VL; 

figure(7) 

plot([0:15998]/500,VN(2:16000),'k') 

hold on 

plot([0:15998]/500,VA(2:16000),'b') 

plot([0,16000]/500,[0 0],'k') 

plot([0 0],[-2 2],'k') 
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VH=zeros(1,16000); 

VB=zeros(1,16000); 

VL=zeros(1,16000); 

dt=0.002 

D=D/2 

s=1 

for n=2:16000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ s; 

end 

VN=VH+VL; 

VAhalf=VH-D*VB+VL; 

plot([0:15998]/500,VAhalf(2:16000),'r:') 

 

 

 

axis([-1000/500 16100/500 -0.2 1.2]) 

title('Black: Notch, Blue: AP, Red-dot: D->D/2 AP')  

 

hold off 

 

 

figure(8)  

plot([0:15998]/500,VB05(2:16000),'b') 

hold on 

plot([0:15998]/500,VB025(2:16000),'r') 

plot([0,16000]/500,[0 0],'k') 

plot([0 0],[-2 2],'k') 

hold off 

axis([-3 35 -1.2 1.2]) 

title('BP Imp Resp Blue D=0.05  Red D=0.025') 

figure(8) 
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