
ADDITIONAL DESIGN IDEAS FOR VOLTAGE-CONTROLLED FILTERS;
- by Bernie Hutchins

You have perhaps noticed that filters are popular - people love to know about
them and use them. I have often wondered just why this is that filters seem to have
a general appeal, and I am not sure, even though I share this love of filters. It
perhaps has something to do with our feeling that all filters (not just electrical)
are for the purpose of blocking out something unwanted, and somehow making the world
a better place! We learn this when we sift sand for the first time as children.
Here we will be taking a look at some more filter ideas, knowing that this will be
a popular article, as all filter articles are. I wonder though if filters are
always the most efficient way of getting the results we want in electronic music.
It seems that when they are used as timbre modulators, there are simpler ways of
doing things. We perhaps should look at timbre modulation from a more general
viewpoint in a later issue.

Here, we want to tie up a few loose ends regarding four-pole filters, and to
look at ways of applying the new Solid State Music SSM2040 1C. We will also be
looking at VCF 's from the point of view of the front panel (panel space) and from a
human engineering viewpoint.

. CORNER PEAKING OF A FOUR POLE FILTER:

The four-pole low-pass filter is an old friend by now. It is often used in
modular synthesizers, and may be the only filter used in some prepatched performance
oriented synthesizers. We know about all we need to know about how the basic filter
works. See for example the discussion in EN#41 , July 10, 1974 (reprinted in the
Musical Engineer's Handbook, Chapter 5d). The conventional form of the four-pole
filter consists of four single-order sections connected in cascade. This means that
the total response is fourth-order and the final roll-off rate is 24db/octave.
However, the fact that the sections are individually first-order means that the corner
is not going to be very sharp. This is why a regenerative path is almost always added
to this filter to add resonant "corner peaking". If we were completely free with our
design, we would design a sharp fourth-order filter directly, but since we want to
use voltage-control, we have to be restricted to sections that are easy to control.
Thus, the four cascaded first-order sections with regeneration area very reasonable
engineering compromise. Here, we will want to look at corner peaking quantatively.
Before, we have taken only a qualitative look, and this structure is too important
to leave as a loose end.

The fourth-order filter is shown in Fig. 1. Each one of the sections has the
same transfer function is the simple RC low-pass shown in Fig. 2, and a typical
voltage-controlled realization is shown in Fig. 3.
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With g in Fig. 1 equal to zero, we have the easy case of four cascaded first-
order sections, and the overall transfer function is just the product of the four
sections. Thus we have:

This transfer function has a denominator that equals zero when s = -1/RC, and since
there is a power of four in the denominator corresponding to this root, it is a
fourth-order pole. That is, it is a fourth-order transfer function, and since there
is only one pole position, there must be four
poles all on top of each other at the position
s = -1/RC. The pole-zero plot in the s-plane
is shown in Fig. 4. Note that the poles are
all real, since they lie on the o-axis. We
will want to take a look at the effect of the
regeneration and see how the poles move as g
is made to increase in magnitude. We can
say that we expect that since we get a sharper
corner, some of the poles are going to have to
move out into the imaginary region of the
s-plane, and up closer to the ju-axis.

When g is no longer zero, we must allow for the feedback loop. First note
that the original chain of four first-order sections is independent of this feedback
path - it will just be processing a different input - and it is still true that:

V°ut/V' = (1 * SCR)4 (2)

Also, from the simple summing condition:

V ' • Vin + 9Vout < 3 >

Equations (2) and (3) are easily combined to obtain the transfer function with
feedback: ,

T a ( s ) = - J-j - (4)9 (1 + sCR) 4 - g

At first sight, equation (4) seems to be a simple alteration of equation (1), but
we shall see that things are actually very much different. While equation 1 gives
a denominator in a nicely factored and useful form, equation (4) is not factored and
we have at the moment no way of knowing where its poles are. First, we have to
"unfactor" (multiply out) the power of four in the denominator of equation 4 so
that we can include the -g term inside. It will also save a lot of notation to
measure frequencies in terms of units of 1/RC, so we can set RC = 1 . With this,
the denominator of equation (1) becomes:

(1 + s)4 = s4 + 4s3 + 6s2 + 4s + 1 (5)
and the denominator of equation (4) becomes:

(1 + s)4 - g = s4 + 4s3 + 6s2 + 4s + (1-g) (6)

To obtain the poles of equation (4), we need the solutions to the equation

s4 + 4s3 + 6s2 + 4s + (1-g) = 0 (7)

Unfortunately, this is a non-trivial "quartic" (4th power) equation. Standard
handbooks tell us how to solve quadratic, cubic, and even quartic equations, but
the quartic soultion is fairly involved, and you could easily spend hours doing
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"bookkeeping" type algebra only to end up with useless results due to a mistake
somewhere up the line. [Look up the procedure in a reference such as Abratnowitz &
Stegun, Handbook of Mathematical Functions, Section 3.8.3 if you want to see how much
of a mess you might be in for J . There must be an easier way. We will use here a
principle we have used before called "Never underestimate the power of knowing or
suspecting the correct answer." The basic idea here is to guess what two of the
complex conjugate poles are, and this gives us a quadratic factor of equation (7) if
we are right. We can then divide this quadratic factor into equation (7) to give
the remaining quadratic factor, which can easily be factored down to first order with
the quadratic equation to give the other pair of poles. That's "guess two" and "get
two". First we have to guess at least one set of answers to get some idea where the
poles are. We will use something else we know about the network to do this.

We know the performance of the network when g = 0, and we also know the general
effects of corner peaking. Happily, we also know something about the extreme case
of corner peaking - the network will oscillate. In order to see how and why the
network can be made to oscillate, we need to consider briefly in review the response
of a first-order section. That is, we want to consider the frequency response and
phase response of a section with transfer function:

T(s) = 1/(1 + sCR) (8)

To get the frequency response, we substitute jw for s in equation 8, and take the
magnitude of T(s), |T(s)| = [T( ju) -T(-ju)]l/2. This gives:

1/2

It is clear that when u= 1/RC, | T ( s ) | = 1//2 . Also, the phase response is given as
the inverse tangent of <n/(l /RC) which will amount to 45° at u = 1/RC. Now, it is only
necessary to make again a point just made above - the string of four first-order
sections is independent of the loop - it always acts as a simple four stage low-pass
filter. Thus, for four stages at frequency 1/RC, the total loss is C\ /&)'* = 1/4, and
the total phase shift is 4-45° = 180°. Hence, a gain of 4 and a 180° inversion is all
we will need to sustain oscillation.

This is the one extra data point we need to get going. We know that when the gain
g = -4, we get oscillation at 1/RC. Since we are measuring frequencies in terms of
1/RC in the main part of this analysis, this means that the oscillation frequency is 1.
An oscillation corresponds to two poles that set on the j w - a x i s at the frequency
of oscillation and its negative value. Thus we expect that a gain of -4 results in
a pair of poles at +j and -j. Substituting g = -4 into equation 7 gives:

s4 + 4s3 + 6s2 + 4s + 5 = 0 (10)

Since we say there should be poles at +j and -j, then (s - j) and (s + j) should be
factors of equation (10), and the product (s-j)(s+j) = s2 + l also is a factor. Thus,
we should be able to divide equation (10) by s2 + 1 and come out even*. In fact, if
we do so, the result is s2 + 4s + 5. This in turn can be factor by the quadratic
formula into (s + 2 - j)(s + 2 + j). In summation, we can rewrite equation (10) as:

(s - j)(s + j)(s + 2 - j)(s + 2 + j) = 0 (11)

We can now list all four poles of the oscillating network:

s = +j
s = -j
s = -2 -fj
s = -2 -j

*If you have forgotten how to do this, see AN-57.
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g--4
We can now plot the poles for two extreme

cases of feedback: no feedback (g = 0) and
feedback for g = -4, corresponding to oscillation.
These pole positions are shown in Fig. 5. We
note that as expected, there are poles on the ju
axis that cause oscillation. The new thing we
learn is the position of two other poles in the
case of maximum feedback. Clearly all four poles
have separated from the -1 point and split to
four different corners in a symmetric pattern.
We have not yet determined how the poles
migrated from -1 to their new positions. Again,
we will want to do some guessing, but here we
just show the migration by wavy lines as a
confession of ignorance.

So how did the poles get from -1 to the four corners? One answer we can give
is "smoothly" because we know from our experience with the resonance control on four-
pole filters that the response is continuous and does not jump in sudden steps. We
can make guesses about the path (I guessed first that they followed circles, but that
was wrong.), but there is another way available to us if needed. This is to observe
that since the poles start at -1, and two of them end up on the ju-axis, then they
must have crossed the line a = -0.5 (or any similar choice). Thus, there must be a
solution(for a certain value of g)that places poles at -0.5 ±bj, where b is not known
yet. Such a pair of poles result in a quadratic factor s2 + s + (0.25 + b2). We
can then divide this quadratic factor into equation (7). When we get to the bottom
of the division, terms in s must cancel as must the constant term, and since we can
adjust b as needed, and g is also a free choice, this can be done. This is
illustrated below:

s2 + s + (0.25-t-b2)
3s 2.75 - b2)
4 s 3 + 6 s 2 + 4 s
s3 -(0.25+b2)s2
3s3 +(5.75-bz)s2 + 4s
-3s3 -3s2 -3(0.25+b2)s

(1 - g)

(2.75-b2)sz+ (3.25 -3b2)s + (1-g)
-(2.75-b2)s2- (2.75 - b2)s -(2.72-b2)(0.25+b2)

(0) (?)

In order for the s term to cancel out, it is necessary that:

3.25-3b2-2.75 + b2= 0.50 - 2b2 = 0 or b = 0.5

In order that the constant term cancel out, it is necessary that:
(1-g) - (2.75-b2)(0.25+b2) = (1-g) - (2.5)(0.5)

(12)

or g = -0.25 (13)

With b determined as 0.5, we place our first set of poles at -0.5 ±0.5j. Also, the
second quadratic factor just determined above is s2 + 3s + (2.75-b2) becomes
s2 + 3s + 2.5, which by the quadratic formula gives poles at -1.5 ±0.5j. These poles
lie on the straight lines that would connect the original poles at -1 to the final
poles in the corners in Fig. 5. That is, it appears that the wavy lines we drew
should really have been straight. By repeating the procedure, it is possible to
show that the lines (pole loci) are really straight (or that we are very unlucky!).

The migration of the poles is now determined at least in that we know the paths
and the limits of these paths. What remains to be done is to find a relationship
between pole position and the feedback factor g at points other than those we have
just tested individually. Eventually, from the pole positions we expect to learn
about the characteristics of the frequency response.
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To determine the exact

relationship between the feedback
factor g and the pole positions, we
first observe that we have shown
that the poles move out from -I in
a square pattern. It is convenient
to define a new "r" (resonance)
variable to measure the size of the
square as in Fig. 6. The value of
r runs from 0 to +l as g goes from
0 to -4. In terms of r, the four
poles are located as follows:

(-1 + r + jr)
(-1 + r - jr)

(-1 - r + jr)

(-1 - r - jr)

Knowing all four poles in this way allows us to reconstruct the denominator of the
transfer function as the product of all (s - p) where p is the pole. Thus, the
denominator is:

-2-j

(s + 1 - r - jr)(s + 1 - r + jr)(s + 1 + r - jr)(s + 1 + r + jr) (14)

We can multiply this out, keeping only constant terms, and comparing with equation
(6), this can be set equal to (1 - g). The constant terms that are obtained in the
multiplication of equation (14) are ir1* + 1. Hence 1-g = 1 + 4R*1 and:

g = -

It is the fourth
power in equation
(15) that accounts
for the fact that
in our example
with poles at -0 .5
(half way across) ,
g was only -0.25,
while for r = 1
(all the way across
to oscillation) g
had to reach -4.
For convenience, a
plot of the
required value of
g as a function of
r is given in Fig.
7. Later we will
want to look at
this when selecting
a means of control-
ling the value of
the feedback g in a
practical module.

Fig. 7

Resonance "r" as a Function
of Feedback "g"
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The frequency response of the four-pole
filter with feedback can be determined from
the pole positions which we have just determined.
For example, with g = -2.63, the poles are
positioned at r = 0.9 as shown in Fig. 8. A
graphical method can then be used to determine
the frequency response. First we select any
one point where we want to know the magnitude
of the frequency response (for example, IDQ in
Fig. 8. We then measure the distances from
the poles to the point UQ. These are shown
as dotted lines in Fig. 8. The final step is
to divide 1.00 by the product of these four
distances. This is repeated until enough
points are obtained to sketch in the full curve.
For more information on this method, see AN-45.

Fig. 9 shows a comparison of
a theoretical (graphically
calculated) frequency response
and an experimentally measured
response corresponding to the
pole positions shown in Fig. 8.
Note that the high peak at a
frequency of 0.9 is due mainly to
the close approach of the pole at
-0.UO.9j to the ju axis. The
peak shown illustrates the meaning
of "corner peaking." Note that
the peaking is quite extensive
{this is a log plot) and in many
ways the response resembles a
bandpass response.

A better feeling for the
effect of corner peaking can be
obtained from a study of Figures
10 through 13, which show the
response for increasing values
of r. Fig. 19 shows the response
when g = 0, and is just the expected flat roll-off with a corner that is not too
impressive compared to a Butterworth corner, for example. We can begin to see the
final 24db/octave from Fig.10, but there is still a ways to go. Fig. 11 shows the
effect of feedback of -0.25 corresponding to r = 0.5. While the poles have moved
half the way to their oscillation positions, there is relatively little change in
the curve, as can be seen by the dotted curve representing the original g = 0 curve.
Note that feedback does lower the DC response level. Fig. 12 shows the curve for
a value of r = 0.75 (g = -1.26) and we see a much improved corner with some ripple
and overall gain loss. Probably, this reminds us of a second-order Chebyshev as
much as anything, and in fact, with two poles moving to the rear, the close-in part
of the curve is very similar to a two-pole system. Fig. 13 shows even more
feedback (g = -2.63, r = 0.9) and a response that is looking less and less low-pass
and more and more bandpass. Beyond r = 0.9, we are mainly working with a high-Q
response very much like a bandpass.

From Figures 10-13, we can see that there is relatively little change that
we might expect to become important musically until a value of r that approaches
0.75. This requires feedback of -1.26 or greater. The significance of this is
that in some feedback schemes we are concerned with relatively small amounts of
feedback, and therefore employ such things as log pots and exponential responses
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to obtain very fine control. Here, we are mainly interested in a range from 25% to 100%
of the maximum value. A log pot, which gives 15% resistance change for the first 50%
rotation would be a waste here. In fact, even the bottom 25% of a linear pot would be
wasted. Thus we might even suggest a resistor
in series with the pot to raise the whole thing
up some, and a "reverse audio" pot would seem
ideal for controlling resonances in the range
of 0.9 to 1.0 where things change very rapidly
as far as the response is concerned. Some
suggested feedback circuits thus appear as seen
in Fig. 14. In the first, a resistor has been
added to a linear pot. In the second, a bypass
resistor is used (assuming feedback to a summing
node). The final circuit uses a reverse audio
pot to control feedback. The reverse audio pot
is a backward log pot - most of the resistance
change is in the first 50% of clockwise rotation.
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SUMMARY OF FINDINGS: The effect of the feedback or resonance control of the usual
form of the traditional electronic music four-pole filter is to spread the four poles,
which are initially piled up at -1/RC, out in a square pattern. The frequency
response of the filter is understood in terms of the new pole positions. Whi le a
small amount of feedback results in a substantial displacement of the poles (Fig. 7 ) ,
this large displacement has a relatively small effect on the frequency response
curves (Fig. 11). Large amounts of feedback result in relatively little additional
pole displacement, but more substantial changes in the frequency response curves
(Figures 12 and 13). The implication is that controls used to set the resonance of
the filter should have special features to increase resolution at feedback levels
between 25? and 100?^ maximum (just the opposite of a log pot, for example).

)OBTAINING BANDPASS AND HIGH-PASS FUNCTIONS FROM A FOUR-POLE LOW-PASS:

One of the big "selling points" of the state-variable VCF is that it provides
several modes of operation ( low-pass, bandpass, high-pass, and notch) as simultaneous
outputs. Here we will show that it is possible and easy to obtain a full range of
functions from the basic four-pole low-pass. These functions are fourth-order in
this case, although the method is general and can give third, second, or first-order
as wel l .

It is obvious that we can "tap" any
of the four first-order sections of the
four-pole low-pass to obtain a first,
second, third, or fourth-order low-pass
response. What we will show is that it
is possible to do a weighted sum of all
four taps plus the input to obtain a
general fourth-order numerator for the
transfer function, retaining the original
fourth-order denominator. The summing
network is indicated in Fig. 15. From
the diagram, we get:

T(s) = c/( l+s)2 + d/(l+s)3 e/(l+s) (16)

as4 + (4a+b)s3 + (6a+3b+c)s2 + (4a+3b+2c+d)s + (a+b+c+d+e)

(Hs)
(17)

It is clear that by properly selecting values for a, b, c, d, and e, we can obtain
any fourth-order numerator we want. A trivial example is when a, b, c, and d are
zero and e = 1, in which case, we have our fourth-order low-pass back. We will want
to look at how we can obtain the necessary weightings, and then will want to examine
the effect of corner peaking of the low-pass "backbone".

Probably the most interesting case we have is the conversion to a four-pole
high-pass. To get a fourth-order high-pass, we need to get an s* in the numerator,
an all else must go. You can set up equations if you wish, but you can probably
just see that a should equal 1 and 4a+b should equal zero, hence b = -4, and so on.
The results for high-pass are:

a = 1 b = -4

which converts equation (17) into:

c = 6 d = -4 e = 1 (18)

(19)
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To test the theory, we can use a non-voltage-controlled setup of the type shown
in Fig. 16. The first-order sections have transfer function -l/(l+s). It is
simplest to just sum into an inverting summer, and the inversion in the transfer
function automatically makes every other coefficient negative, exactly what we need.

,1000p JOOOp JOOOp lOOOp

Summer
Added

16 Test Circuit of Fig.
for High-Pass Mode.

High-Pass
i Out

Fig. 17 shows experimental data on the filter of Fig. 16. The dotted line shows
the low-pass output of the original section. The solid line is the experimental data
on the high-pass output while the dashed line shows a high-pass roll-up that we would
have hoped to obtain. The reason it was not obtained is almost certainly a lack of
resistor precision (5% resistors were used). The solid part of the curve in itself is
sufficient to confirm the basic operation of the circuit according to theory.

Low-Pass
3.0

High-Pass

•Site

Fig. 17 Derived High-Pass
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We next want to see what happens when feedback is added to corner peak the original
low-pass filter. We want to know what effect this has on the derived high-pass. This
was examined here mainly by experiment. Fig. 18 shows a set of experimental results
for a feedback gain of -1 on the low-pass. The low-pass peaking is indicated by the
dotted curve. Note that the high-pass (solid curve) is relatively unchanged from Fig.
17. Again, in Fig. 18, the dashed curve shows the results we expect if better resistor
matching is used. Fig. 19 shows similar results for a gain of -3, which corresponds
to pole migration in the low-pass ,_, ,

II l:i-tTTto 93% of their oscillation
positions. The low-pass curve
is shown as the dotted line while
the high-pass curve is the solid
line. We note a sharp peaking
in both curves, but the two
response curves are not symmetri-
cal. The higher shelf region
of the high-pass as compared to
the low-pass can be understood in
terms of the zeros that have been
added to the pole-zero plot. The
s4 term in the numerator of T(s)
means that there is a fourth-
order zero at s = 0. It is
these zeros which kill off the
response at low frequency. The
response thus builds as the
frequency increases away from
zero. Once we have passed the
dominant pole which causes the
peaking, we still see the effect
of the increasing distance from
the zeros at s=0. The snail
circles on the solid curve of
Fig. 19 indicate points that
were calculated using the poles
of the low-pass corner-peaked
filter, and adding in the four
zeros at s = 0.

Another response function
that is of interest to us is
the bandpass function. This
will be obtained if we can set
a numerator to s2 in the
transfer function and get rid
of everything else. The set
of summing parameters that
will achieve this are:

It may bother you a little
that a and b are zero so only
three stages are tapped, and

Fig. 18 Derived High-Pass

with Corner Peaking g = -1

-0.2-j-

tt0.il

attt

with Corner Peaking g = -3
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you might wonder how the filter knows it is fourth order if it only has contact with
three stages, and not five. The answer to this seems to be that there are two stages
of low-pass filtering that have an effect before the taps are reached. If it were the
case that the first three stages were tapped, not the last three, then the filter coulc
not be fourth order. It is a simple matter to set up a circuit similar to that in
Fig. 16 to realize the necessary summing network, and experimental results are shown
in Fig, 20. Ignore for the moment the g = -3 curve. The shallower curve should be
a bandpass rolling off on each side at 12db/octave, because this is a fourth-order
bandpass. Both sides are sharper than 6db/octave (a 45° angle), although it is a
little difficult to be sure exactly what they are. The g = -3 curve shows the effect
of corner peaking. Note that the lower side of the curve sharpens considerably
while the upper side remains the same.

' fnnGSEEFi r rrrmr
BlilMfnMn fciiiszi

We have shown that the basic theory seems to work out in practice. In addition,
s notch response^and any number of other special responses can be obtained. A notch
with second-order p^tgs at +j and -j can be obtained with a numerator s^ + 2s2 + 1
obtained with a =1, b = -2, c = 2, d = -2, and e = 2. However, with this notch, as
with most high order notches, component precision must be very high or the notch
washes out. Our experiemntal data with 5% resistors gave a notch only down by a
factor of 4.

We should mention that this same method works for second order as well (and can
probably be extended for higher orders). For second order, there would be two low-
pass stages and three summing coefficients a, b, and c. For high-pass, a = 1, b = -2,
and c = 1. For bandpass, a = 0, b = 1, and c = -1. For low-pass, a = 0, b = 0, and
c = 1. For notch, a = 1, b = -2, and c = 2. See AN-71, to be published.

The idea of feedback to the input from the summed output rather than from the
low-pass output of course comes to mind. In the high-pass case, it does not work
because as we have discussed before, all high-pass filters come down somewhere, and
there is usually associated phase shift which will meet all the conditions of the low-
pass filter as an oscil lator. Hence we get oscillation at high frequency. In the
case of the bandpass, it is possible to feed back the summed (bandpass) output to get
corner peaking. Our experiments showed that the results were much the same as with
the low-pass peaking.
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[f> PRESENT DAY VCP_ DESIGN OPTIONS

For many years, the four-pole low-pass and the state-variable V C F ' s have been
the principal choices for electronic music. Filter structures that combine the
main advantages of the state-variable (multi-function) and the four-pole low-pass
(fourth-order response) are attractive new options. The state-variable and the
four-pole low-pass are well understood (Musical Engineer 's Handbook, Chapter 5d, and
elsewhere in back issues of this newsletter: in particular, EN#71 on the ENS-76 VCF
options). He have also demonstrated that a two-section state-variable approach
can be used to combine advantages of state-variable and four-pole (EN#58) . In the
present report, we have shown that a four-pole approach can be used to arrive at
multi-functions. In many ways, we seem to have two roughly equivalent choices
for developing a new type of filter. [There is also the "dual-shift" filter that
was discussed in EN# 81]. In some cases, we can get help in choosing between
design options by considering different amounts of hardware required, but here, all
the methods we have considered require about the same amount of hardware, so we must
look for more subtle differences in making a choice. It will be simplest to just
tabulate the design factors that are different for the different approaches and then
discuss some of the more important differences.

Two State-Variable 4-Pole plus Summers Two Dual-Shift

L°W SenSi«V^ Pa-llel « K"tt centred stages

Principal Need for Sw1tcn1-ng High Sensitivity Need for Switching
Drawback

Curves" R^ular Shapes Irreg^1t1« "I"1" Sta"es

Control of Double Control Sinqle Control Double Control
Resonance

First, we can look at the principal drawbacks. With the state-variable, which
normally has parallel outputs (simultaneous, LP, BP, HP and notch), when we try to
cascade two second-order sections, we have to swi tch the appropriate output of the
first section to the input of the second. Thus, there is a need for a special switch
(probably two-pole, 7-position, see ENI84 (17) ) . Wi th the 4-pole and summers, all
outputs can be parallel. The principle drawback of the 4-pole is that when summers
are used and when we go to fourth-order, the component sensitivity of the high-pass,
bandpass, and notch outputs is quite high, and precision components may be required.
The state-variable on the other hand is quite insensit ive.

A lesser drawback of the 4-pole with summers is that the response shapes are
not symmetrical when resonance is added. See for example, Fig. 19 of this report.
A lesser drawback of the state-variable is that both sections must have individual
resonance controls. Since we probably want voltage-controlled resonance with this
VCF, this means another transconductor is required, or with manual control, a dual
pot, which is probably more of a problem than the transconductor.

In many cases, we are very much interested in the amount of panel space that
will be required for a given design. In such cases, a filter with switched modes
and a single output (two positions on the panel) may be more useful than a filter
with parallel outputs (up to 8 positions). This might tend to favor the two state-
variable design, but of course, we can use a switch and single output with the four-
pole design as wel l , and the switch may be simpler in the four pole case.

Another point about panel space for VCF 's is that we may be able to implement
our frequency controls in a manner different from what seems to be necessary for
VCO designs. We may not need a fine frequency control for the VCF, although this
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seems essential for V C O ' s . Where panel space is really at a premium, a multi-turn
pot may be used for frequency level, coarse and fine together.

A final point about panel space and V C F ' s is that the VCF is generally just going
to require much more space than other modules. This is sure to be true if voltage-
controlled resonance is used. Some users also find a second envelope input to a VCF
useful. Thus, if you have to cut back on panel space, you must be willing to cut back
on VCF features as wel l .

Let 's take an example where you have available to build a filter four trans-
conductors all controlled in parallel, and as many op-amps for buffers or summers as
you need. This could be a SSM2040 chip and a few extra op-amps, or it could be formed
from CA3080's and other individual IC 's . The problem is to come up with a useful
fourth-order filter. If we have no regard for panel space, there are many things we
can do, and the designer probably has no problems in such a case. Here we want to
look at designs that will use a small amount of panel space. Two possible setups will
be described. Fig. 21 shows a two state-variable approach. Here we avoid switching
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on the input of the second stage by just feeding in the LP from the first stage. With
this arrangement, we have a regular state-variable (second-order) LP, BP, and HP, and a
fourth-order LP as well. The output panel space requires only two positions, a rotaty
switch and a jack. The second example is seen in Fig. 22 and is based on the four-pole
low-pass. Here we have provided summers for second and fourth-order low-pass and high-
pass. A single bandpass output (either second or fourth-order) seems sufficient
because the Q of the filter is variable. A second-order notch is used because the
fourth-order notch is to sensitive to component tolerance. As with Fig. 21, the output
panel space is only two positions, a switch and a jack.

At some point, we have to call a halt to electrical engineering to consider some
musical engineering and some human engineering. What do musicians need in filters to
make their music. For musicians where timberal control is not a big part of their
music, relatively little is required of the filters. Musicians who do use timber
variations as an important part of their music will require a lot of their filters, as
will musicians doing "imitative synthesis" of traditional sounds. But regardless of
their demands, they will describe their filters in terms of a "good feel" and a "good
sound" and probably only resort to terms like "four-pole" as a necessary "buzz-word"
to keep the engineer 's attention. Things like the shape of the frequency response
curve take a back seat to the feel and the sound and the ease with which the musician
is able to find the right knob. This is not an easy job by any means. Probably the
most important thing that new VCF designs and VCF chips can do for us is to make the
electrical engineering simple enough that we can consider some of the human engineering
aspects of filter design. We can begin to do things that are not just reasonable
electronically. In using VCF chips for example, we need not exploit all the
capabilit ies of the device (as in Fig. 21) but can use the chip because it saves
effort.
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