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This newsletter is concerned mainly with filters. We start off with a study of

the bandpass filter and analyze it from a mathematical and musical point of view. 1In
particular, we develope some applications where the filter produces control signals.
The filter has been used for years to produce complex patterns for "scope art" and it
should be realized that these same patterns are useful as controls for musical

parameters.

Secondly, we are presenting the first two of the ENS-76 voltage-controlled

filters. These came out a little earlier than we planed and since we found some very
useful improvements, we decided to get them out right away. In particular, we have
developed filters achieving high-Q at high frequency using a compensation technique that

was available

in the literature.
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THE Banprass FILTER RespoNse AND ELECTRONIC Music APPLICATIONS:

-by Bernie Hutchins, ELECTRONOTES

A typical bandpass filter response is shown in
Fig. 1. The principal parameters which characterize
the bandpass response are the center frequency (the Fig.
maximum response) and the "Q" of the filter which is
a measure of the sharpness of the response. The Q
of the filter is generally taken to be the center
frequency divided by the 3db bandwidth f,-fp-

The voltage-controlled bandpass filter has an obvious function in electronic
music in that it can filter a complex waveform and thus control the harmonic content
that appears at the output. Other uses are of course possible. With a high Q and
white noise at the input, the filter passes a narrow band of frequencies which serve to
define a feeling for musical pitch. The sharper the response, the clearer the feeling
for musical pitch at the output. The sharp response bandpass filter can also be made
to “ring" by exciting it with an impulse and letting the energy thus inserted decay
as it oscillates. These applications are suggested by figures 2a, 2b, and 2ec.

waveform time e

W.n. time impulse
Fig. 2a Fig. 2b Fig. 2¢

E ; freq g : freg é ; freca
:’i ' l : : : T — .'/\

—r

FREQUENCY RESPONSE

Although inductors are seldom used in audio filters these days, it is often useful
to use them "on paver" to demonstrate certain principles which may not be so clear with
active RC filters. A well known LC bandpass filter
is shown in Fig. 3, and is probably familiar to

readers who have studied radio frequency circuits 0——1Yn”\—“4} - —o
where inductors are most certainly practical. We V L C v

in out
can easily derive the transfer function for the
series RLC circult in Fig. 3 by just considering Fig. 3 R
it to be a voltage divider, and using the complex RLC BANDPASS
(Laplace) frequency variable "s". By dinspection =
we have:
- Vout _ R
TEY - Vin R+ sbL + (1/sC) (k)
Clearly we are interested in the "resonant"case where sL = —(1/sC) in which case T(s)
becomes R/R = 1, its maximum value. This happens for a particular value of s which we
shall denote sq. Thusg, séa= -1/LC, and we can let Sp take on the value jw, and we then

arrive at w, = 1//LC. Next we note that nothing prevents us from multiplying the top
and bottom of equation (1) by s/L and this gives:

- s(R/L)
TG = RO T 17 (2)

This second form of equation (1) shows more clearly the fact that the denominator of
T(s) is really second order. Furthermore, we can identify the constant term in the
denominator (1/LC) with the square of the center frequency (wéz)and this will prove
a useful reference point. We will then want to consider the coefficient of the s term

in the denominator, and will find that it is this term which determines the sharpness
(Q) of the bandpass response.
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The approach we shall use to show the relationship of the coefficient of s and the
Q of the filter will be to first assume the correct answer and then show that it all works
out right. Thus, the general form of the bandpass response will be assumed to be:

As

T(s) = Vagre (wO/Q)S T woz A = constant (3)

Note that for the moment we have not shown that the Q in equation (3) is the same as

the Q described in the first paragraph of this report. We shall just note that since we
propose that Q be dimensionless (since it is the ratioc of frequencies), the constant w,
is needed to keep the denominator second order in the dimension of frequency. Thus what
we have done in equation (3) is reasonable and will be justified by the final results.

Since we will be concerned here with the values of the frequency response that are
down 3db from the peak, it will be necessary to determine the actual frequency response,
not just the transfer function. To do this we evaluate T(s) for s = jw and take the

magnitude [T(jw)l = [T(jm)-T(—jm)]li‘f2 - This is applied to equation (3) and we shall set
A=1 for convenience.

|T(w)] = jw . - Y2 (4a)
()2 + 0% 4 o (-jw)? - A28 4,2
) 12
= s (&b)
‘(%2 qwz_,_:l_ﬂf,%ﬂ) . (woz S - Jwgw )
i 1f{2
= w® - / (4e)
- I
2 2 1/ 2
| 9 2/“’0 - / (4d)
1 + @2 (zo ; w?)
L o]
[ 2 2 if2
= Q /wo ‘l ? (4@)
1+ @2 [_w_ } _wa]z
LUO w

The final result (4e) may seem a little awkward at first, but it is in a form that will
be very useful to us. Tor example, we can see directly from this that when w=w,, the
frequency response is a maximum since only a one is in the denominator. Secondly, when
we go to look at the 3db points (half power points), we will just want to see how a

denominator of 2 will occur, and this is a matter of setting the second term in the
__denominator equal to one. g B

By consulting Fig. 1, we see that the frequency fo is a unique point in that it is
the only value of frequency that has no other frequency value giving the same response.
All others have two frequencies for a given value of response, and oune of these is below
fa and the other is above. We will want to use equation (4e) to find a relationship
between such points. It will be convenient to use radial frequencies cortresponding to
the notation of equation (4e). We could use any value of response in what follows, but
it will be most direct if we choose the frequencies where the response is down 3db from
the peak value. The lower frequency is wg, the center is wg, and the upper one is W, -
It is then clear from equation (4e) that the 3db points are related by:
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Wy We w

- - e (5)
Wo We Wa WhH
This is easily solved to give:
P
wowy = W5 (6)

Equation (6) is quite interesting. It says that the center frequency is the
geometric mean of the upper and lower 3db frequencies (and in fact, of any two frequen-
cies having the same response value). This is a very convenient way of finding the
actual center frequency of some low Q bandpass filters which have a broad top as it may
be difficult to locate the maximum response of such filters. Also note that the center
frequency is not the average of these values, although this is an excellent approximat-
ion for high Q, and is often used for high Q cases. However, for low Q, be sure to
determine the center frequency as the square root of the product.

Next we want to determine the 3db bandwidth wy -w
Using equation (6) we get: 5

Ix which will be denoted by B.

“o wj
B = |w - = | - o il 1 (7)
[on = wg] [h th [wﬂ, sz}
We then select one of the 3db frequencies (wy) and arrive at the expression:
w w
- h ___0_1
5 = [ Wo wh @

From equation (8) we can arrive at the expression:

i tw 2 2
[mh -—°] - L (9)

o “h Yo
We can now complete the task by observing that for 3db down, the frequency response

]T(jw)l should be down by v2 and thus the denominator in the brackets in equation (4e)
should be 2, and thus:

w w 2
Q2[w3 ——w‘f’—J =1 (10)

o 3

where w3 is one of the 3db frequencies, for which we can use Wh- Substituting into
equation (10) from equation (9) gives Q2B2/w012 = 1 or:

Q= we/B = w,/(wy —wy) = £of (£ = fg) (11)
Thus equation (11) verifies equation (3) and the information on Fig. 1.

The importance of the above calculations is that we can now pull the most
important of the bandpass parameters (f, and Q) directly from the transfer function of
the network by cross-matching against equation (3). For example, the transfer
function of the RLC series circuit can be used and it can be shown that Q = (1/R)YYL/C
As a second example, consider the well known bandpass RC active filter of Fig. 4.

F N

'
>
»

o
-
%
4

Fig. 4 R1 c
ACTTVE BANDPASS | I——J
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It is not our purpose here to show how transfer functions are derived, so we will just
give the transfer function of the network of Fig. 4 as:

-5/R1C
s? + 25/RyC + 1/RqRyC2

T(s) = (12)

From this we can easily get the center frequency and Q¢ by comparing with equation (3).
wo = 1/CVR1R2 Q = (VRp/R1)/2 (13,14)

The above filter is fine as a fixed filter where great precision is not needed.
There are however other active filter configurations that give better bandpass response
at higher wvalues of Q. These can be found in books on active filters. We want to look
here at two more examples, but instead of following up on the circuit of Fig. 4, we will
be looking at the state-variable filter, and the "biquad" circuit as these are the types
of networks we will be using in voltage-controlled filters. There are several forms of
the state-variable filter which are in common use. The calculations for some of these
are a little complicated because it is generally easiest to use the standard inverting
integrator. In voltage-~controlled filters using the CA3080 however, it is quite easy
to make a non-inverting integrator, so we can then get the required negative feedback by

summing into the simple inverting summer. The basic structure thus reduces to that shown
in Fig- 5 A AAA

WA

i b Fig. 5 STATE-VARIABLE FILTER

%a

integrator integrator -s/RC
TE) = T RR, i
1/sCR 1/sCR v sT kRS T
VB vout

From this, it is clear by comparing with equation (3) that wg = 1/RC and Q = Rn/R'
which is a simple and easy to remember result. Note in particular that both wg, and
Q can be set simply and independently. This is a nice thing to have in a voltage-

controlled filter for electronic music.

The structure of the "Biquad" is shown in Fig. 6. This filter has a bandpass and
a low-pass output. Note that it is different from the state wvariable.

AAAAA,
VAN

AMA- Fig. 6 BIQUAD ACTIVE FILTER

]C [ -s/RC

T(s) =
D s* + (RO)s + 17857
| L

From the transfer function, we note by comparing with equation (3) that w_= 1/RC and
Q= RQ/R. Here we see that the Q is set by the ratioc of one independent resistor (RQ)
and one resistor (R) which is a frecuency determining resistor. 1In fact, it is clear
that the Q and w, rise together as R decreases. The reader can easily see that this
means that the filter has a constant bandwidth. That is, if the bandwidth is 50 Hz for
a center frequency of 100 Hz, the Q is 2. Now, by decreasing R, we would eventually
arrive at a point where the center frequency is 1000 Hz. If Q were constant, the bhand-
width would be 500 Hz. But the Q has gone up by a factor of 10 and is now 20, and the
bandwidth is still 50 Hz. Generally, the musical wvalue of such (constant bandwidth)
filters is not is great as constant Q filters. But, there is one thing to note. We
will see soon that a constant bandwidth filter has a constant ring time, unlike the
constant Q filter which rings longer at lower frequencies. We shall want to take a
careful look at this later, and we should also note that with voltage-controlled Q, we
may be able to get constant bandwidth with the state wvariable filter as well.

EN#71 (6)
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While on the subject of voltage-controlled filters, it should be noted that there
are at least two ways to insert a signal into a state-variable VCF. The first way is
basically as shown in Fig. 5. The second way provides a "Limit" input through a
voltage-controlled Q section and has been used by Terry Mikulic in his filter in EN#34,
page 17. Below in Fig. 7a and Fig. 7b we show the two methods where we have taken RC=1
to keep things simple.

Fig. 7a Ths) = VB/Vin
_ s
STATE VARIABLE 82-F(1/Q)s T 1
STANDARD INPUT v +=i S v
B 1/s T
Fig. 7b -1 T(s) = V_/V.
B" "in
STATE VARIABLE - § e § 7 — s/Q
LIMIT INPUT
+1 -1
AT
V‘ .
in

The reader should note that the only difference between the two is while Vip 1s fed
in through a +1 path in Fig. 7a, it is fed in through a +1/Q path in Fig. 7b. Thus, all
that we have really accomplished is an attenuation of the input by a factor of 1/Q, and
this carries through to the transfer functions T(s) as can be seen. We could convert
7a to 7b by just changing the +1 path to +1/Q and not use the second summer, but the
second summer shown in Fig. 7b is what we find in practical voltage-controlled ( setups,
and it is certain that the factor 1/Q is the same for both the input and the Vi feedback
in the case of Fig. 7b. The advantage of the limit input should be clear from a study
of the transfer functions. In the case of 7b, the peak of the bandpass (and of the
other outputs when used) is a constant as Q changes. This keeps the filter from
saturating when high Q is achieved,as the input voltage level is cut back when the Q
goes up. For fized @, there is probably no reason to choose ome structure over the other
if one just judges by the output sounds produced. When voltage-controlled Q is used, it
is a different story. When the regular input is used, the output amplitude level will
increase with Q, and the passband of course sharpens with increased Q. With the limit
input, only the sharpening of the passband occurs. Probably a filter with voltage-
controlled Q should have both types of input available.

TIME RESPONSE

At this point in our analysis, we want to take a look at the bandpass from the
point of view of its time response. Here is where we want to see exactly what happens
when we "ring'" the bandpass filter. The first thing we want to do is to take the
standard bandpass transfer function and factor its denominator (using the quadratic
formula):

T(s) = As » As (15)
52 + (W/Qs + wl (s + o +jug) (s + o =jug)

where o = (w,/20) and wg = wo¥l = 1/4Q2 as can be easily verified by substituting

back. We are interested in the case where the denominator becomes zero (and hence, T(s)
blows up). These are clearly values s and sp such that s; =«otjwy and s; =-o-jug.

These values are called the "poles" of the transfer function. WNote that the two poles
have a real part (a) and an imaginary part (wq) - Thus we have to represent them as
points in the complex "s-Plane" where s is the complex Laplace variable we have been

EN#71 (7)



finding useful. A plot of these pole positions is shown in Fig. 8. The s—Plane is

laid out in terms of a real axis (¢) and an imaginary axis (ju). More information

on the s-Plane can be found by reading the article on low-pass filters in EN#41, reprinted
in Chapter 5d of the Musical Engineer's Handbook. For the moment, we will just note that
we are interested in the value of a function (such as T(s)) of a complex variable (s) and
since the variable is complex (s = 0 + jw), we must represent its value as the elevation
of a surface above a plane (the s-Plane). The poles thus represent infinitely high points
above the plane. The portion of the surface around them is thus expected to be wvery high.
Note also that the point s = 0 causes the numerator of T(s) to be zero, so this point is
called a "zero" of T(s). In between these poles and zeros, we have a curved surface.
Points of equal elevation on the surface form flat contours, and these loop around the
poles and comnect up. We thus can plot contours such as the 3db (half power) contour as
shown in Fig. 9. For frequency response, we were interested on the value of the transfer
function above the ju-axis going from 0 to ». We can see that for s = 0, T(s) = 0 as
well. Moving upward along the jw-axis, we move to higher ground. When we reach w=wg, we
are near the highest point, but the zero at s=0 has in effect lowered the ground at wy and
the actual peak is not reached until we reach Wo- Beyond wg, it is downhill all the way

some idea about it even if we don't know all the T 1 ﬁ}* o
details. We want to take one more look at it, . !

as seen in Fig. 10 where we gee how the poles
move as Q changes. We saw in Fig. 8 that the Fig. 10 ———
poles were placed according to the values of ’///

to w = joo, * :
J jw N '}Jw
=0t g nn o .
J0aX Fig 9 $&h
E Fig. 8 0=0.85 s
! s-Plane T T T v
; % o
: — o s i % ‘..D
. X= pole of T(s) "’ . AT o ';’g’
' o= zero of T(s) / poie"ﬁh“_js'w’”r« i 0 :
: I PR G SSECIEES TF I
: t 3 .‘“--" 'r ! /,
—=Q=J0 o Kemeevan - g . "
& - ! -y W
d f = o Lo 3
{ 4 it “ucs
We have now had two looks at the way things ' # S
are placed around the s-Plane, and should have i H ,' /
} i
)

@ and wg, and we obtained these two parameters .

as a function of Q only. Thus, we can plot a Q<% Q<%
"locus™ of points showing how the poles move as - [

Q changes. Here we show mainly Q from infinity Q=1

down to 1/2, as these are the only cases where ‘

the poles are complex (the Q = 1/2 case being \\\\ Q=1

the critically damped "Gaussian" filter case.) Q= o

Before considering filter ringing, note that the
peak of the frequency respomnse remains at Wg In all cases even though the pole freguency
wg changes with Q. This is because the zero at s=0 has pulled down the surface along the
the jw-axis across from wg as we have described above.

In order to understand filter ringing, we have to study the impulse response of a
filter, but first we have to see what is really meant by T(s). We have written T{(s) =
Vout/Vin and we are also accustomed to measuring frequency response using sine waves, S0
we might think that V,,¢ and V;, are functions of time. Well, they are functions of

time, but we can't write a function of one variable equal to a function of another variable
s0 what is meant by T(s) must be:

T(s) = Voutr(s)/Vin(s) (16)

where Vo, (s) and V4,(s) are the Laplace transforms of their time waveforms. [The reader
should take a moment to consider why it is that we can actually measure T(s) in terms of
sinusoidal waveforms which vary in time.] The meaning of this is that T(g) is a function
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that we can use to get the Laplace transform of the output if we know the Laplace
transform of the input. We want to ring the filter, and this takes a sharp spike
waveform or impulse. Mathematically, the ideal spike is the delta function &(t)

and the Laplace transform of §(t) is just 1. The reader will probably find this to be
probable (believable) if he considers that the Laplace representation is a form of
frequency representation (spectrum), and he probably already knows that a sharp spike
sounds like a "click" which is wideband noise, or a flat, constant spectrum, which can be

taken to be one. We can thus do the following:
T(s) = Vout(s)/Vin(s) or: Voue(s) = T(s) -V, (s) (17a, b)
for Vin(t) = impulse = §(t), Vip(s) = 1 (18a, b)
Thus: VOUt(S)impulse = T(s)-1l = '"T(s) (19)
Taking inverse Laplace transforms:
- -1 _ (20)
VOUt(t)impulse = |L "[T(s)] = h(x)

where the symbol [ indicates the Laplace transform (L_l is thus the inverse transform).
Equation (20) thus gives us the important result that the impulse response (in time) is
just the inverse Laplace transform of the transfer function T(s). We already have T(s).

Thus to find how the filter responds to an impulse, we just have to look up the Laplace
transform pairs in the tables, One such pair is shown below:

s _E.__-.. bebt _ aeat
(s - a)y(s - b) -qpr——m— b -a (21)

This is clearly of the same form as equation (15) for the bandpass filter. We could
now plug into the inverse Laplace transform to get the time waveform of the ringing

filter. However, the complete solution tends to obscure the important features rather
than enhance them. Instead, we will just note that terms like

e . —at -4

e( o —jug) - o0t Judt (22)
will appear. This is a decaying exponential (e_at) which controls the amplitude of a
sinusoidal term (e~J®dt), Thus, we can justify to some extent our intuitive notiom that
the ringing filter produces a decaying exponential sinusoidal waveform.

shown in Fig. 11. We note further that the exponential decays
2Q/w,. This is no surprise since we expect longer decay times
the filter. What is more of a surprise is that the sinusoidal
Wy as we might have expected. We can see however from Figures
high @, there is very little difference between wg and w

This waveform is
with a time comnstant 1/o=
as we increase the Q of
frequency is wg and not

8, 9, and 10 that for

&

Damped Oscillation eﬁatSin(mdt)

.

!

*
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An important formula on filter ringing is obtained by finding the amount of time it takes

for the amplitude to die out to 1/e of its original value. This is just a matter of
setting e ot = e~1 and hence Tring = 1/0 = 2Q/wg, which can also be written:

T = —Q (23)
ring i,
There are several important things to notice about equation (22). First, it is a

convenient way to measure Q in cases where the bandwidth is very small (thus for high Q)
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and where it would be difficult to separate the 3db points. Thus Q can be measured by
ringing the filter and finding the time constant of the decay envelope.

Secondly, note that for fixed Q, the ring time gets shorter as frequency rises. This
is an important musical result, although it is not possible to say ahead of time if it is
particularly useful or if it is a drawback. On the one hand, we know that manv acoustic
musical instruments have faster decay at higher pitches (the piano for example). On the
other hand, we may want to use the ringing filter as a self-enveloping system where we
would otherwise use an envelope generator (fixed time constants) and a VCO. 1In this case,
the shorter decay times at higher frequency that would result from the ringing filter
would be a drawback. However, we can have both results if we wish by using voltage-
controlled Q. This is a good case for suggeésting that Q should double for each one volt
change of control. This would allow us to set up either constant number of decay cycles
(fixed Q) or constant decay time (using voltage-controlled Q). These setups are shown
in Fig. 12a and Fig. 12b. Note that a constant number of cycles for 12a is implied by
equation (23) since Tripg-fg = number of cycles = 7Q, which is a constant for a constant

I
mpulse ﬂ ﬂ - Bandpass Impulseﬂ ﬂ VCF Bandpass

In | Q Freg Tn ] Q Freq

iiiﬁiﬁfézzgi freq. EYCles in 3;;;;;55%%22? freq.

- decay
Fig. 12a Constant Q Tt

Gl
Fig. 12b Constant Decay Time

We now turn our attention to the question of the detuning from W, to wg where

wg = w, V1 - 1/4Q2 (24)

This detuning for different values of Q is shown in Fig. 13.

Q wd/wg Ring Cycles (1/e) Ring Cycles (1/e®)

0.5 0 - 0.16 0.95
FIG. 13
0.6 0.55 0.19 1.15 -
0.7 0.70 0.22 1.34 TABLE OF DETUNING
0.8 0.78 0.25 1453 VALUES DUE TO
1.0 0.87 0.32 1.91 DAMPING OF FILTER
1-5 0.94 0-48 2.86 [Ring C}Tcles dOWn
2.0 0.97 0.64 3.82 ta Lie® da
3.0 0.986 0.95 5.73 approximately to
expected audible
4.0 0.992 1.27 7.64 range. ]
6.0 0.997 1.91 1t.5
10.0 0.9987 3.18 19.1
50.0 0.9995 15.9 95.5
100.0 0.999987 31.8 191
From the table above, we can make one preliminary comnclusion. For a detuning wvalue

which we might expect to notice (say 1%), we would have a Q of about 4, and a total number
of audible cycles of only about seven. This may not be enough for the ear to detect a
proper feeling for pitch. A study of similar cases causes one to conclude that it may not
be possible to detect this detuning by ear — hence its musical importance is very small.
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Before we discuss some additional applications of bandpass filters, we should say a
few additional words on what we have discovered so far. First note that equation (22)
is really a damped sinusoidal of some form. Thus, we can look at the damped oscillation
as shown in Fig. 11 as being of the form:

e_atSin(mdt) (25)

The zero crossings of this waveform are clearly at times where 8in{wgqt) = 0, which is

just what we expect from a sinusoidal. However, the individual lobes between the zero
crossings are not sinusoidal lobes. You could prove this by differentiating equation (25]
and setting the derivative equal to zero. It will serve here however Co just note that
the maximum and minimum points of the waveform fall at points in time that occur before
the midpoints between zero crossings. For example, the maximum point of the first lobe
will occur when the rate of change of the upward sinusoidal is equal to the rate of change
of the downward exponential. Clearly this 1s before the normal peaking point of the sine
wave (which occurs at the midpoint between zero crossings), because at the normal maximum
of Sin(wgt), the combined waveform of equation (25) is moving downward because of the
exponential damping factor. Now, beyond the maximum point of the waveform in equation
(25), the exponential damping factor forces the sinusoidal down a little faster than
normal, which tends to flatten the normally more rounded portion. Yet, the exponential
damping works only on the amplitude of the sinusoidal (ome in this case) and not on the
waveform directly, so it is still necessary for the function Sin(ygt) to go to zero in
order to get the zeros of the composite waveform of equation (25},

We have suggested above that the detuning from Wy to wqg [BEquation (24)] is not likely
to be detected by ear since in cases where there ig enough pitch shift, there are too few
cycles in the decay. The detuning may be more important at low frequencies (say 1 Hz.)
Even though the waveform is not directly audible in such cases, these low frequency
detunings may be detectable indirectly, as when they are used as control signals. It is
just this sort of use of the filter ocutput as a control signal that we want to discuss in
the suggested applications below. Also, in cases where the filter output is used to
modulate another process, there may be a great difference between a modulating frequency
that is exactly harmonically related to another frequency, and one which is only close.

There is another fine point which we are not able to completely rationalize here.
Perhaps some reader can provide us with the answer. First, we note that when we measure
the frequency response of the bandpass, the peak is always at Wg - Secondly, when we ring
the filter, it oscillates (exponentially damped) at a somewhat lower frequency wg. All
this is fine, but we now want to inquire about the response of the filter to a white noise
input (flat spectrum). Since the input spectrum is flat in this case, we expect the
output spectrum to have a peak at the maximum response point of the frequency response
curve (which is wg,). In another view, we can consider white noise to be a series of
impulses of random amplitude and random time of occurance. 1In this view, the response of
the filter is the superposition of the individual impulse responses, each of which is an
exponentially damped sinusoid with zero crossings corresponding to wg. For practical
purposes, thus probably makes no difference at all, but it would be interesting to know
if these two views do lead to the same result.

APPLICATIONS

We are very much accustomed to listening to the output signals from filters rather
than using them as a control for some other processing unit. The three primary applicat-
ions in Figures 2a, 2b, and 2c are examples where we listen to the output, The signals
from filters are of course usable as controls. An example of such a case is shown in
Fig. 14 where white noise is bandpass filtered at a frequency of about 7 Hz with moderate
to high Q (say about 100). The resulting signal is a useful vibrato signal which can be
applied to a VCO as shown. Experiments with this show that this is quite different from
vibrato produced with a steady state waveform. For one thing, the depth changes somewhat
randomly with a time constant on the order of a second or two. Thus, it sort of fades
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in and out during an extended tone {(and it is

usually extended tones which employ wvibrato). Fig- da

Another thing is that one can perceive the White

random nature of the process as some sort of Noise

subjective randomness in the output of the VCO.

This is not to say that the resulting vibrato

is more musical, or more natural, but fust that '

it does have an interesting property. Some persons Bandpasg

would perhaps describe it is a "spooky" vibrato as 7Hz

opposed to a "mechanical" wvibrato from an oscillator To VCO

control, and a "warm" vibrato which one would hear
from a singer, for example.

The wvalue of frequency modulation (FM) and dynamic depth FM has been demonstrated
both theoretically and through its use in musical compositions. A typical patch for

FM 1s shown in Fig. 15a, for dynamic depth in 15b, and for modulation by the ringing
bandpass filter in 15c.

Fig. 15b Dynamic-Depth Fig. 15c FM by Ringing
Freq. Modulation B s Filter
Bigw L
e 12 Tucoo HAAE- vco2 —e Veo  ——oe
exp p
x . in

exp lin

veol Hy veor slvea T.—Jrig VCF _%];,;_

) . Mod. 'rJeXp_m:env L e

L ]

The patch of Fig. 15a is standard, that of Fig. 15b is being explored (very useful for
percussion effects), and that of 15¢ is relatively unknown as far as we can tell.
Linear frequency modulation by a ringing bandpass filter is however a very useful way
of producing very interesting musical transients (usually attacks). We had an envelope
generator which did this back in EN#9, but it was not much used. As shown in Fig. 15c,
the bandpass is rung by the trigger from the keyboard. This damped expenential sinusoid
goes into the linear FM input of a VCO. Tt is well established that many musical
instruments produce very strange effects during the initial part of their tones. This
attack phase may have many frequency components which do not exist during the steady
state that follows. The bandpass filter rung by the trigger produces a useful waveform
for adding features during attack. Immediately after the trigger arrives, the output of
the bandpass is at a maximum (producing the deepest FM and thus the widest distribution
of sidebands). As the bandpass response decays, the modulation depth decreases, and
this means there is less and less energy in the sidebands, and more and more in the
central frequencies. A more complete patch for this method is shown in Fig. 16.
Fig. 16 Use of Ringing Bandpass
To Produce Complex Attack
Transients VCo » VCF VCA >
control voltage

Keyboard

Gate

Of course, you can also use the filter at very low frequency (1 Hz for example) and at
high Q to produce a control signal that lasts several minutes, and yet still does decay
uniformly, In another variation, a finite width pulse can be used (meaning, one which
has a duration longer than the time constants of the filter input stages). For example,
the pulse of Fig. 17 will cause a complex ringing in that the filter will start to ring
and decay on the positive going edge, and then will be restarted by the negative edge.
This complex transient is useful, and can be easily domonstrated by ringing the filter
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with a pulse from a VCO and altering the 7
pulse width. This can be used as a control 5%%%%& Finite Pulse Fig. 17
signal for ¥M as in Fig. 16, or as a timbre < - T
producing element by directly listening to
the output of the filter. 1In this latter

case, the frequency of the filter would \/‘L//\Ur\\

Complex
Transient

probably be in the upper audio range while
the pulse ringing it would be in the lower
audioc range.

While we have been discussing here mostly
bandpass filters, the same generally applies to
high Q low-pass and high-pass filters which can
also be rung. There may be some obvious
differences however. For example, with the
high-Q low-pass rung by a square wave, the
DC term will come through {(that is, the two Fig. 18 Low-Pass Ringing
levels of the square wave will be passed '__
through). This is illustrated in Fig. 18. It Nﬂf*————
is easy to think of patches where this sort of
waveform could give interesting results since it Out dv\r——-
is basically two levels with starting transients.

In

SUMMARY

Since the mathematics above may have obscured much of the useful information for
some readers, we will provide a brief summary of the important results as far as
musical applications are concerned.

1. The "Q" of a bandpass filter is obtained as discussed in the first paragraph.

Once a transfer function is obtained, the center frequency and Q can be easily
obtained by comparing with equation (3).

3. A state-variable filter provides constant Q¢ while a Biquad provides constant
bandwidth. When ringing the bandpass, constant Q means a constant number of
cycles during decay (shorter ring times at higher frequency), while constant
bandwidth means a ring time independent of frequency. Constant bandwidth can
be obtained with a state-variable by increasing Q with the frequency.

4. A "Limit" input for a state variable filter is often provided along with

voltage-controlled Q. This input supplies less signal to the filter as the
Q is increased.

5. A filter which is rung provides an exponentially damped sinusoidal waveform
(Fig. 11) (Equation 25). The frequency of this ringing is slightly below the
center frequency of the filter, but probably this detuning is not detectable
by ear.

6. The relation between Q, center frequency, and ring time to 1l/e = 37% is given
by equation (23). This equation should be carefully studied.

7. There are numerous applications of bandpass filters and other VCF's which use
the output of the filter as a control signal rather than using the output
signal as an audible sound. These include vibrato, linear FM, and a number
of schemes for generating complex transients.

8. There is a need for additional analysis and/or experimental measurments on the
output of bandpass filters excited by impulses and with white noise. In
particular, it would be useful to know the exact mathematical properties of
such outputs, and correlate this information with data on aural perception to
get a better idea of musical implications. For example, Metzger [J. Acoustic
Soc. Amer., Vol. 42, No. 4, 1967, pg 896] shows that the peak of the Fourier
Transform of equation (25) is actually below wg.
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