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        LINEAR AND EXPONENTIAL RAMPS                                                       

                                                      -by Bernie Hutchins 

 

INTRODUCTION  

     A major element of what we call “signal analysis” is “Fourier analysis”, but certainly not 

exclusively that.  We of course need to know what we mean by “signal”, which is largely by 

examples and by inference.   On the other hand, it is likely less ambiguous what we mean 

by analysis – we usually mean we are extracting (detecting?) some information contained 

in the signal.   An associated issue (as to what actual information is contained) is how the 

information got into the signal in the first place.   

 

     Two cases are seen here.   Perhaps the information was imposed on the signal to form 

a familiar communications “channel”.  That is commonly called “modulation”.   We have the 

notions of original and recovered information in such schemes.  On the other hand, the 

information could be naturally “incorporated” by some (possibly obscure) process.  Most 

likely, in this case, the information is unknown in its details, and often, even in its certainty 

of inclusion.   [ Here we risk confusion in that the term “signal” is sometimes used to refer to 

the information inside.  That is, the signal is, in this instance, perhaps better referred to as 

“the data”.  For example, some look for a “temperature signal” to be extracted (somehow) 

from data that represents the width of tree rings centuries before any proper thermometers 

were known.]   In the case of an unclear notion of information (at least for testing), the 

analysis or detection is not judged by the success we might find in “demodulation” in a 

communications channel.  We are in fact too often lacking a proper notion of a fully right 

answer.   The extracted information would need to be vetted against what is physically, 

likely correct, and how well it compares to other evidence – and how replicable the result is.   
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     Fig. 1 is a comparison of the two views.  We do not intend to pursue the upper path in its 

sense of a communications channel but rather in the sense of the generator of a test 

procedure.   Given input data (perhaps as parameters) we “synthesize” a well-defined test 

signal, and thereafter test the analyzer to see of the known test input is recovered (longer 

purple arrow).  This is exactly what we do when we ask (perhaps in a teaching situation), 

what the DFT (Discrete Fourier Transform, or FFT: Fast Fourier Transform) of a sequence 

of time domain sinewave samples would look like in its frequency transformed (“dual”) 

domain .  These initial trials test and calibrate our procedures.  In the lower portion of Fig. 1 

we assume we don’t know the input information or the means by which it influences the 

generation of the signal samples.  We just have the signal (green arrow).  Our analyzer 

then produces some output as “acquired”.   The hope is that this is useful in learning about 

the desired information (data – perhaps non-Fourier) in the signal.    

 

 

WHAT ARE WE LOOKING FOR? 
 

     If we claim to be doing “signal analysis” it is most likely that others will assume we mean 

some form of Fourier analysis [1-3] or possibly something like “wavelet analysis” [4] 

(somewhat similar) or related mathematical modeling (such as polynomial representations 

[5], system identification such as Prony’s method [6,7] or some lesser known functional 

usages (like Kautz functions) [8].  We mean to suggest that these and others should be 

considered, with the specific choices being a matter of determining what we are looking for. 

 

     Reasonable assumptions are probably that the information in the signal is not obvious 

just by observation.  That is, likely the signal has noise (perhaps a lot), is finite length (else 

what!), and we don’t know very well where the information is in the signal (beginning,  
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middle, end, everywhere?).  In our examples here, however, we perhaps exaggerate the 

information for a better illustration.   For instance, if we have a random signal with a linear 

trend (ramp upward) we may construct a signal visibly rising, or if there is a periodic 

component, we may make this oversized.  We can easily, subsequently, investigate what 

happens if the information is better hidden.  

 

 

LINEAR RAMP: A THREE FEATURE EXAMPLE 

 
     Fig. 2 shows a signal composed of three components as generated by the three Matlab 

lines: 

 

                    xr=2*(rand(1,300)-1/2); 

                    xt=3*[0:0.001:0.299]; 

                    xs=0.4*sin(2*pi*[0:299]/20); 

 

This is a random component xr (uniform distribution) between -1 and +1, a ramping “trend” 

xt of slope 0.003, and a sinusoidal xs of amplitude 0.4 with a total of 15 cycles (300/20).   

As suggested, just using the original black data, you can pretty well see the ramp, and can 

almost see the periodic component (15 wiggles).  But initially suppose we only have the 

300 black data points.  If we resort to the FFT of Fig. 2, what can we expect? This is seen 

in Fig. 3.  Keep in mind that we are looking at just one example for the random component 

here.  Each run looks different.                                 
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      We see in Fig. 3 a DC term at k=0.   Further, this term is somewhat larger than we 

might expect from a random signal, but is fully expected from a glance at Fig. 2.   (We do 

see that it tips upward.)  Further, here we see reasonable evidence of a significant 

component at k=15.  [We did choose to generate this so that the 300 samples had 

exactly15 cycles.]  If we had not done this, we could expect a number of adjacent FFT bins 

of significance.  So-called FFT “leakage” [9].    The remainder of the spectrum (note the 

signal was real so we only need to show the first half of the FFT) is ragged, but might be 

flat if we averaged a bit (below, and previous discussed [10]).   Note that except for the 

large DC term, we don’t see much to suggest the ramp.    But any imbalance of polarity (not 

just a ramp) could be the cause or a large DC term if we guess based only on the FFT.  

 

     So – what should the FFT of a ramp look like!  Well, first of all, if this is data 

corresponding to something real (physical), we can’t have a linear trend!   For a limited 

period of time, it can ramp up or down, but not forever.   All Fourier components we deal 

with go on forever in time (or are periodic).  So we can’t have a linear trend, (which ramps 

to infinity) and expect to find it in Fourier Analysis.  For a FFT (or a Fourier Series) we 

would have periodic components.   Thus the ramp (blue on Fig. 2) is one cycle of what we 

would call a sawtooth with period equal to the full length of the signal (300 samples here).  

And we have evidence of this in the FFT, as we shall see. 

 

     Since it is difficult to see through all the noise, we know the trick of averaging (or just 

adding) a whole bunch of equivalent random examples.  Fig. 4 shows the average of 1000 

trials like the one that produced Fig. 3. 
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     As expected, we show the raggedness of the random amplitudes of the spectral 

components has been averaged away (say in the upper 90% of the FFT).  We see as well 

the strong DC (k=0) component and the periodic component (k=15).   What we see easily 

here, which was hard to see in Fig. 3, is the strong components beginning at k=1 and 

rolling off quite rapidly.  If we had an actual sawtooth, its Fourier Series would fall off as 1/k.  

Here we see the k=2 as being 0.5105 relative to k=1, and k=3 falling to 0.3786 relative to 

k=1 – roughly the Fourier Series result.  But the FFT results fall only to the average of the 

random components.   This is of course not just purely sawtooth – we had the random and 

periodic components too.   But, hopefully, it is convincing that this is the FFT’s response to 

the linear trend.    

 

     We have thus dealt with the linear trend, as the FFT sees it as a sawtooth.   The 

example in Fig. 2 shows two different ramps.  The blue one is the one (going through 0 at 

time 0) that we used to generate the data (the Matlab code for xt).  Remember that we 

used this to make the test sequence.  The red line is recovered from the data.  This was 

found as a least-squares fit to all 300 points.  Because of the random component, each run 

is different.  Please note that we chose a particularly bad example.  Many examples would 

not cross over.   The red recovered result would be more parallel to and be a closer fit to 

the blue.  We wanted to show an example that did not mislead the reader into supposing a 

generally more favorable result.  So how do we actually get the red line? 
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      The least-squares fit to noisy data (a “Scatter-Plot”) is often called a “linear regression” 

in signal processing and in statistics.   If one Googles “Least Squares Linear Regression” 

one soon finds many tutorials and videos.  Too many of these are a superficial discussion 

of what one is trying to do (fit a line minimizing squared error) and/or an over-detailed 

discussion (cook book) of how to compute the slope and intercept of the regression line.  

Presumably, most or all of these are correct and equivalent.  If you just want the result, 

perhaps you don’t need to know why this works.    

 

     In fact, many engineers are annoyed by the sometimes stereotypical view of an 

engineer as a person who knows how to look in the right handbook for the right formula, 

plug in the right numbers, and do the math (arithmetic!) correctly.  Thereafter, the bridge 

does not fall down!   Many engineers have an admirable preference for a colleague who 

derives or re-derives procedures right at the “chalkboard” and then checks the result 

against all available supporting evidence.   This keeps reliance on memory (or a cache of 

references) in a reasonable perspective.   

 

     Here we will suggest the reader concentrate on the notion of attempting to fit a straight 

line to more than just two points – impossible to do exactly.  Instead, we resort to 

minimizing the total squared error.   This minimization process is the well-understood 

procedure of solving the co-called “Normal Equations”.  That is, we use the calculus 

procedure of minimizing by setting partial derivatives equal to zero.  This really is 

straightforward (see the two-page App Note [11] if you have forgotten this.)  That’s it.  We 

have more equations than unknowns, and the procedure is basically the same for many 

more points and higher order regression curves (polynomials beyond a straight line).  This 

becomes familiar as the “pseudo-inverse” or “least squares inverse” of the matrix 

representing all the equations.  The use of the over-determined equations was a 

fundamental feature of (frequency domain) “Generalized Frequency Sampling” [12] and has 

been brought in frequently recently [13a, 13b, 13c, and 13d, 14].  In the present example, 

the setup is exceptionally simple.  Plenty of examples of applications and code.   

                                                            

     Specifically here we assume a straight line x(t) = b + mt where we seek the values of b 

(axis intercept) and m (slope).  If we have two points, say x(1) and x(2) we write two 

equations:  

                                                                         

                                                                                                                                       (1) 

                                                                         

 

which are easily solved for b and m.  If we add a third point, we now have three equations: 

 

                                                          

   

                                                                                                                                    (2) 
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and these we can’t solve exactly.  Here is where the classic textbook case of least-squares 

fitting comes in [11, 14] in a convincing manner.  So what could prevent us from writing 300 

equations for 300 data points?:                

 

   

                                                             
 
                                                          
 

                                                              
 
                                    …………                                                                                         (3) 
 

                                                               
   

                                                                   
 
                                                               

 
In theory, we could handle this in exactly the same manner we did three points.  In practice, 
even going to just 4 or 5 points presents pages and pages of algebra for which one is 
unlikely to avoid errors.  Thus we look for the general solution, as recently reviewed [14] or 
as found in many texts [15], in terms of the matrix representing the equation set.   
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Here we have the 300 by 2 matrix M (tall and skinny – certainly not square) and the 

parameter vector p: the two unknowns b and m.  All the 300 values of x are known.  Thus 

the job is to invert the matrix equation for p.  We can’t possibly solve this by hand.  If we 

have Matlab, we can use one of three methods.  The simplest would be to just ignore the 

equation above, and use the built-in polyfit as:  

 

                            p=polyfit([0:299],x,1) 
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which fits a polynomial of order 1 to the 300 points of x.  It just does that.  (p = [b, m] here).  

The second Matlab function uses the pseudo-inverse pinv as: 

 

       p=pinv(M)*x'                                                                                                               (5) 

 

The third method which is illustrated here for Matlab but which is more general is: 

        

       p=inv(M'*M)*M'*x'                                                                                                       (6) 

 

which only requires a square matrix inversion.  Here the single quote is a transpose.  

Frankly, you decide if you need the transpose by guessing and seeing if you get an error.  

The same is possibly true to the three Ms in the third method.  Keeping in mind also that 

the matrix products must “conform” it is generally possible to just fudge around a bit until it 

obviously gives a proper result.  Without the Matlab code, the matrix solution, in common 

matrix notation, is: 

 

      p = (MtM)-1Mtx                                                                                                               (7)            

 

where the 
t
 signifies transpose and 

-1
 signifies a matrix inversion.  (The data x may or may 

not need to be transposed depending on the program.)    

 

 

THE EXPONENTIAL RAMP 
 

     Above for the linear ramp we have cautioned that it can’t correspond to anything “real” 

because we can’t have it running on forever; because it ramps to infinity in both directions.  

This may be an issue we barely mention, let alone worry about.  We know the ramp only 

applies locally; or not unusually, it is part of something that resets periodically (a sawtooth). 

 

     The exponential ramp here is understood to be the case where there is some system 

that ramps toward and exponentially approaches some target level.  This is familiar as the 

well-known series RC [16] such as we use in electronic music envelope generators.  This 

“ramp” has a curved shape, and is fundamentally different from a linear ramp.  

 

     Fig. 5 reminds us how a first-order RC low-pass follows a series of steps at its input. 

The green steps with the blue transitions represent the input while the red waveform is the 

output [16].  The first two steps correspond to an “AR” (attack/release) envelope generator 

as used in electronic music.  The first misconception to address here is that the network 

somehow knows the direction of the step (up or down) and responds differently to that 

polarity, being convex if charging up, and concave if charging downward.  This would be 

illogical in the first place.  Further, we see that consistently the red waveform moves rapidly 

in the direction of the step levels (green) and then slows asymptotically.   It consistently 

“discharges” exponentially to the green.  
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     A second thing to note is that the target level can be negative (300 to 400), that it may 

cross zero (400 to 500), and need not discharge to zero (500 to 600), but see below as 

well.  Here we have also chosen a time constant so that the red curve gets well within the 

plotting width of the target green levels within the 100 time intervals allotted. In theory, it 

never gets there of course.  So, for example, the discharge from 1 (apparently) toward 0, 

from 200 to 300, did not actually start at 1, but was slightly less.   The overall view 

suggested by Fig. 5 is that the system “chases” the changing step levels.  So there is no 

notion (as there was with the linear ramp) that it could run away positively or negatively.   

 

     Less conveniently, we have to ask if we could use the data of the curve (red) to obtain 

the parameters of the segments.  With linear segments, we looked to obtain the slope and 

intercept for a segment.  How do things change with exponential segments? 

 

     Fig. 6 shows the case of just one segment.  Here we assume that the input is v0 to the 

left of t0, and becomes v1 right of t0.   This is an offset step.  It is probably safest to assume 

that left of t0 the input has been v0 for a very long time.  The network has a time constant  .   

Thus we have four unknowns, v0, v1, t0, and      In fact, you could of course read the first 

three unknowns (actually, all four) from the graph, but we are postulating that you just have 

the data.  In fact, we show in Fig. 6 four red samples between 4 and 8, perhaps with the 

idea that four data points should support a solution for four unknowns.  Thus, suppose we 

only had the four red points.  Find the exponential.  Not so easy!  We will in a moment write 

down the general equation for the exponential, so could write four instances of this 

equation.  But these won’t be linear equations of course.    
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     Here we have assumed that the level v0 is well established.  This serves as a baseline 

for what follows, which is a charging by a step of amplitude       . and it is not difficult to 

just write by inspection: 

                                       
     

                                                                                   

 

If we knew the three values v0, v1, and t0 we can solve this for      Solving for the point 

corresponding to the black dot [v0=1, v1=4, t0=2, t=5.7, v(t)=2.5674] , we get   =2.3, exactly 

the value we used to generate the curve in Fig. 6, using: 

           

                             
    

                 
       
     

            
                                                                          

 

Here we note that we have estimated the unknowns v0, v1, and t0.  We have enough of the 

curves to see the two voltage levels, and the upward transition at t0 is sharpest at t0. Thus 

we can solve for      In fact, we could also without much difficulty estimate    from the 1/e 

time of the charge, which is about 63% of the amplitude of the step.  This would be just 

beyond t=6 on the curve. 

 

     Now suppose we have four data points (like the red dots in Fig. 6).   That is, we know 

v(t) for four values of t (4.3, 5.3, 6.3, and 7.3).   We have, presumably, taken these within  
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what seems to be a charging region.   It would not matter in theory if we took them in a 

relatively flatter region, but we prefer some wider range of v(t) to avoid numerical problems.  

So we plug these in as four instances of equation (8) – and we are OUT OF LUCK.   These 

are not linear equations.   

 

     So, in this case, we make the attempt at an exponential model – i.e., Prony’s method  

[6, 7].   Surprisingly (I was surprised) this doesn’t work in general.  We are still out of luck.  

Above (Fig. 5) we emphasized the general “equivalence” of the array of exponential curves, 

and this remains the case.  Except the first two curves (really the second curve only) is 

untypical, and yields to Prony.  The problem is that the other curves are DRIVEN. The input 

is NOT zero.  This we shall presently look at in some detail.  Before doing that however, we 

note that we can rather exactly compute a discrete version of Fig. 6 as Fig. 7.   

 

 

 

DETERMINING FEEDBACK FROM DATA 

 
     First, in the case of an exponential ramp decaying to zero, we know that the analog 

case is (Fig. 8A), in response to an impulse,  
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so that for a time interval T, the output 

decreases by a factor of: 

 

                                                      

 

This in turn suggests two different digital 

equivalents for the RC circuit, Fig. 8B 

which is exactly equivalent to Fig. 8A for 

the impulse case, and Fig. 8C which is 

equivalent for the case of a step, the DC 

gain of network C being 1/(1-a) from:   

 

      
 

      
                    

 

so that: 

        
 

   
                    

 

Although the only differences between 

Fig. 8B and Fig. 8C are a delay of 1 and 

a gain of (1-a), this is necessary to 

allow for the discrete nature of the 

digital networks.   Note that the 

continuous-time network (Fig. 8A) will 

work for either the impulse (a Dirac 

delta) or a step.   In the case of the 

Dirac delta, we regard the input Vin  

as being zero (grounded) except at time 

t=0 a charge is instantaneously applied 

to the capacitor to make the output 

equal to 1.  Thereafter, the output 

decays exponentially as in equation 

(10). 

 

     Solving for the decay factor a is a trivial example of Prony’s Method [6] and can be seen 

from equation (10): 

 

                                                                                                    

 

for which the discrete time-version is (Fig. 8B): 
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In consequence, any two consecutive values taken during a discharge phase constitute 

one equation in one unknown (the unknown a). The second part of Prony’s method is a 

simple use of initial conditions.   For example, from equation (14) we have: 

 

                                             
    

    
                                                                                                                         

so: 

 

                                                                                                                                                           

                                                 

     Above (around Fig. 5) we have made the point that all exponential ramping between 

step levels is largely equivalent.  So – can’t we apply an equation such as (14) to any 

output segment.  No we can’t – only to segments discharging to zero!   This we will 

elaborate on just below and attempt to get around after that. 

Fig. 9 shows the response of Fig. 8B (the digital network with output at top) for three 

different inputs.  Here we have set a=0.9, which would correspond to sampling interval T = 

-ln(a)RC = 0.1054RC [equation (11)], in the analog case.  This would mean that 9.49   
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(1/0.1054) samples would be the RC time constant and indeed, counting down about 9 to 

10 samples gets us down to about 1/e (37%).   Of the three plots in Fig. 9, the top one 

(Impulse) is the simplest.  We can use any pairing of points after the impulse to solve for a.  

[The equations are easily modified if for some reason we prefer non-consecutive points.]  

Thus the entire discharge is shown in green (okay to use).  In contrast, the rectangle 

(middle plot of Fig. 9) is not usable in the red charging portion (however – stay tuned); 

although after the rectangle ends, it is perfectly good (green) and is identical to the impulse.  

Continuing to the bottom plot, neither portion (both red) of the stair down is usable (again – 

stay tuned).  Based on the rectangle case, we are not surprised that the first (upper) step 

does not work.  So what is new in the bottom plot is that the step to 1/2 discharge does not 

work either.  This is because the discharge is not to zero – the system is sill “driven”.    

 

With regard to the determination of the multiplier a from the data, Fig. 10 here is an aside.  

This shows the corresponding curves for the lower (delayed), Fig. 8C.   They look pretty 

much like the top two plots of Fig. 9.  As mentioned, the difference is a delay of 1 sample, 

and a gain of 1-a (which is 0.1 here.  The only really interesting thing here is that now, the 

rectangle response (or step) agrees with the analog RC circuit exactly. 

 

     Back to the issue of finding the parameters of the exponential ramp from the data, we 

have said that it seemed necessary that the network be undriven – thus discharging to 

zero.  Yet the reader has noted that we said that what is apparently a convex charge is 

really a discharge to a non-zero target level.  We could easily propose (for example) 

subtracting the middle sequence of Fig. 9 from 10 so that it looks like a concave decay.  

Indeed this would obviously work.   In fact, we can propose adjustments to scales and 

offsets so that any segment could potentially work.   We expect this is somewhat obvious.  

What are the details?   
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LOOKING FOR A MORE GENEAL SOLUTION 

 
     We have warned against directly using certain portions of output sequences if we want 

the right answer for the feedback factor a, and hinted that certain adjustments might make 

it possible to use additional segments.  What does a wrong answer look like?  Well this we 

can easily plot by continually monitoring the ratio between consecutive samples.  As stated, 

for some portions (green in Fig. 9) we consistently get the right answer, which is 0.9 in our 

examples.  In contrast, the red segments give us answers that are NOT 0.9.  These results 

are shown in Fig. 11 and correspond exactly to Fig. 9.  These serve to let us check for good 

areas.   Perhaps more usefully, we may be able to use this idea to establish there is a 

different, non-zero reference level that will work, and then solve for a.  

                                                               EN#226 (15) 

 



     Here we have a problem which is much 

easier that we might expect.  It might look 

like we need to do a software search, but a 

closed-form solution is at hand.   

 

     Consider the case as shown in Fig. 12 

where we have three consecutive samples x, 

y, and z which are known.  We seek to 

determine if there is some constant level e, 

where e is not necessarily 0, such that the 

samples are exponentially converging to the 

target level e.  Using the reference level e, 

we seek a ratio a that is the same for all three samples.  Thus we want: 

 

                    
    

   
  

   

   
                                                                                                                        

 

We can cross multiply the second and third terms in equation (17) and solve for e in terms 

of x, y, and z (happily the e2 terms cancel), giving simply: 

 

                    
      

      
                                                                                                                                                                                                                                                 

 

giving the charging target level, and plugging e back into (17), we find the actual value of a.  

For example, if [ x y z ] = [5 3 2], as actually drawn in Fig. 12, e = 1 and a =1/2.   If we have 

a convex set of samples, say [ x y z ] = [3 5 6], then e=7 (above the samples), and a is 

again 1/2. 

 

    This opens up the possibility of discovering the parameters of the exponential sequence 

of Fig. 9C (and Fig. 11C) which were not obtained originally because neither charge level 

was zero.  After computing the sequence, we easily computed the ratios of consecutive 

samples, and this was neither correct, nor even constant (Fig. 11C).  We can also compute, 

for consecutive samples, the target level e using equation (18) and the ratio a from 

equation (17).   This, aside from certain errors where there is a transition (around n=60), 

shows an outstanding degree or success.  Essentially Fig. 11C (complete failure to find 

a=0.9) now leads to Fig. 13B, near complete success.   This whole finding is likely easy 

enough to see if we were to just cut and paste (scale and shift) various curves and describe 

the operations in terms of simple arithmetic. 

 

     Yet one more example is to create a “mixed bag” of exponential ramps.  This we do by 

not just changing the target levels, but the exponential ratio factors.  It might seem a bit 

hard to come up with an idea as to how the ratio factors might change.  Yet readers of this 

newsletter are familiar with various “envelope generators” such as the ADSR generator  
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(Attack, Decay, Sustain, Release) where the different segments have different target levels 

and RC time constants (controlled by switching or with diodes, etc.).  So the result shown in 

Fig. 14 is actually relevant.  Here we have the segments according to the table that follows: 
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      Interval         Input x        a         DC Gain:1/(1-a)     Ramps to: 
 

              1-10                      0                 0.75                         4                                 0 

             11-60                     2                 0.75                         4                                 8 

            61-110                    1                 0.75                         4                                 4 

          111-160                    3                 0.90                       10                               30 

          161-299                   -1                 0.80                         5                                -5 

 

     The same procedure [equations (18) and (17) applied to triplets of samples] gives us the 

right answers.   We note happily that Fig. 14C shows the correct values of a are recovered 

(except at the transition regions).   Also, the fourth segment as seen in Fig. 14A and Fig. 

14B ramps to, and is recovered, as 30.   Having done all the previous rampings with a 

value of a=0.9, this looked perfectly correct.  But, at first, the input levels x of 2, 1, and -1 

seemed like they should have been, correspondingly, to 20, 10, and -10.  This surprise also 

looked correctly plotted (8, 4, and -5), and it was clear that we had not thought about the 

fact that the value of a was changing (that was the point of investigation after all).  The “DC 

gain” (equation 12b) was the amplification of x.   So, not only do we see faster 

convergences for lower values of a, but also lower gains.   

 

 

NOISE IN EXPONENTIAL RAMPS 
 

     It is usually necessary to consider the effects of noise in the extraction of the parameters 

of a ramp.   In the case of the linear ramp, we wanted to use as long a sequence as 

possible.   The same is not true for an exponential ramp.  The reason is that for the 

exponential decay of the signal amplitude, the signal gets smaller even as the noise 

remains the same, so the signal/noise ratio gets smaller and the errors in the parameters 

build up.  This we saw in the case of the resonator [7].    

 

     We saw here that for the simple case of a first-order exponential decay, two consecutive 

samples (or any two samples if we do things right) we can extract the parameter as the 

ratio of the two samples.  In the noise free case, we get the same (correct) answer no 

matter where we start.  In the case of noise, the ratio will differ for different choices of 

sample pairs.  If the noise is relatively small, the error may well be small enough.  If the 

noise is relatively large, the errors can be large.  We also know that we can mitigate the 

errors by averaging many pairs.  We expect errors to tend to cancel.   This means that we 

would in general prefer to use a long sequence and get a lot of answers to average.  

Except that we can’t necessarily take a very long signal without including portions at the far 

end where the signal/noise ratio is very bad.  Fig. 15 shows our example network where a 

= 0.9 (Fig. 9A) and where the signal is large at the beginning (left) the calculated value of a 

is close to 0.9.  Every run of this program will differ, but we see the errors rapidly building   
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up as we move to the right.  So if we imagine a series of values already reasonably close to 

0.9, and we average them, we expect an even better result.  However, we also recognize 

that we are going to eventually pay the price as we move into the region (like by iteration 30 

in Fig. 15) where errors start to grow.   Here we are pointing out the problem, not 

suggesting an optimum solution. 
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     In Fig. 16 we want to show the averaging of far fewer calculations.  At the same time, 

we can point out an alternative.   Going back to equation (18) we pointed out that the value 

there calculated for the target level e could be plugged back into equation (17) to get the 

ratio a.  Very true, easy, and at times essential.  If we do plug this back in, e is in terms of 

knowns x, y, and z, and this gives us a in terms of just the known values of three 

consecutive samples x, y, and z.   We did not do this explicitly.  Sometimes we find an 

interesting result if we carry calculations all the way through – something almost “obvious” 

and often insightful jumps out.  This did not seem to be the case, but we can here look at 

the result.   It is: 

      

                         
                

            
                                                                                                                        

 

Nothing apparently insightful here.   What it is is a means of calculating a from the data.  

Note from equation (17) that when e=0, a is just the ratio of two consecutive values.   It is 

amusing to note that if the sequence is decaying to 0, then the value of z is just y times 

(y/x) or z = y2/x.  This when substituted into equation (19) indeed gives a = y/x right back. 

 

     The point here was to suppose that in allowing e to vary the response might be better 

disposed to noise averaging.   This appears to be a poor hunch (left for someone else to 

verify for sure).   

 

     Fig. 16 shows the case corresponding to Fig. 15 except for just the first 10 estimates of 

a noisy signal (noise uniform of amplitude 0.01).  This is the red circles with the average 

being the red line, which is not that far from the correct answer.   The average is in fact 

better than any of the red circle individual calculations (pretty much as expected).  Also 

shown are the calculations of a using equation (19), the blue stars, along with the blue-line 

average of the stars.  This is not as good as the simple ratio.  [Note that z is not simply y2/x 

or the two would be identical.  Instead z is noisy.]   Different runs of the program will of 

course vary quite a bit.   

 

 

SUMMARY 
 

     Fond as we are of Fourier analysis, there are objects that do not yield easily to standard 

methods, even though their nature is not complicated.   In the case of linear ramps, the 

simple component (a linear function of t) is simply not part of the usual Fourier basis.  

Likewise an exponential ramp is not conveniently included in a Fourier model.  Both should 

be understood as they are often included as information-bearing components of “signals” of 

interest.  We have shown how these two types of ramps can be manipulated with and 

without a Fourier methodology, and how noise can be accommodated to some degree in 

the analysis. 
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