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INTRODUCTION  

     One useful function of Electronotes, our main publication, recently, (since 2010 and 

most recently in 2013 and 2014) has been in a “review” mode.  Some of this reviewing is 

mostly a summary or tutorial effort.   Yet at times (six of them) I have used the term 

“Revisited” in titles to suggest that the topic under discussion was to be one for which we 

decided to pick up loose ends; or to some degree expand.  In thinking of topics which I 

considered true revisits, I thought in particular of Through-Zero FM in EN#206 [1], Pulse-

Width Modulation (as an ongoing periodic process – not just envelope driven) in EN#216 

[2] and Self-FM in EN#217 [3].   These were topics I considered to have been left hanging 

for various reasons.  All three were “analog” topics that we were lately able to explore 

further with digital methods of analysis (programming). This is not to say we necessarily 

could propose a practical digital means of synthesis.   

     To this revisit list (officially denoted as revisited, or just de facto) we here add the 

notions surrounding Variable-Slope (V-S) Filtering.  A few weeks back John East asked 

about this – wanting to know if any definite conclusions about its implementation, and its 

usefulness had ever been made.  I could not come up with an immediate answer to either 

question.  So this did appear to be a loose-end topic worthy of a revisit.   
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     Thinking that there were perhaps three Electronotes articles on the V-S topic (I had in  

mind articles by Lester Ludwig and Normand Provencher, I did a search through the back 

issues and was surprised to find many more articles, including the fact that we actually had 

a V-S option for a VCF in the ENS-76 series of designs in EN#72 [4], and this was a good 

lead going backward to what seemed to be the first mention in EN#59 in Dec. of 1974 [5]. 

     In the EN#59 article I mention the first suggestion of a V-S filter as being from Lester 

Ludwig in what was probably summer of 1974.  I do remember his asking.  He was never 

embarrassed to suggest unconventional approaches at least in a “why can’t we” cloak.  The 

notion of somehow averaging integer multiples of 6db/octave for desired slopes was 

something we considered at that time.  Also mentioned in EN#59 was a second impetus of 

the idea based on an Aud. Eng. Soc. paper by David Luce (then at Moog) which was 

presented at the spring 1975 AES convention and later published [6].  I do not have this 

paper at hand, but my description reminds me that David was remarking on how the 

spectra of “real” (acoustic) instruments had roughly a fixed frequency start to a low-pass 

and a cutoff slope that became shallower as amplitude got larger.   That is, a louder tone 

had more high frequencies.   This was not drastically different from the notion that as a tone 

got louder a cutoff frequency increased.  With the “standard patch” of a synthesizer it was 

common to have similar control envelopes (very often, the same envelope) for amplitude 

(to the VCA) and for the cutoff of the VCF.    

 

     At this point it will be most useful to show a figure of what a VS filter does and how it 

differs from our more usual filters, and this is shown in Fig. 1 which is a fairly complicated  
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diagram.  Note that the frequency response curves here are done “log-log” so that the   

asymptotic roll-offs are straight lines.  The responses here are all Butterworth (BW) for 

convenience (great convenience) as we shall see.   Thus we have a typical lovely collection 

of BW responses – the green curves for orders N=0, N=1, N=2, N=3, and N=4.   The N=4 

curve is actually overplotted with dashed red.  All five responses have a BW cutoff of fc=2, 

where they all go through a magnitude of 1/   = 0.7071 (or -0.1505) on the log scale.  We 

have chosen fc=2 so that when we consider a harmonic spectrum as the input to these 

filters, we can have two harmonics (f=1 and f=2) in the passband, so that there is always at 

least one harmonic to reinforce the pitch of f=1, while harmonics 3-8 are in the roll-off 

region.    

     In addition to the five green BW responses with cutoff 2, we also plot the red curve to 

the right that is a 4th-Order BW with cutoff 10.  Note that this was chosen to pass all 8 

harmonics.   Our eight-harmonic waveform is thought of as being obtained just by 

summation – it is not a commonly found waveshape.    

      With all this setup in mind, we can suppose that we want to initiate a musical tone with 

the filter in the red/green N=4 position which has significant rejection above the 2nd 

harmonic.  We then suppose that as the tone progresses, we want to let more harmonics 

through the filter.  [At the same time, we likely have a larger amplitude in mind. Perhaps the 

amplitude even jumps up suddenly and then immediately begins to decay as would be the 

case with so many percussive instruments.]   That is, we want to let the spectral energy in 

the green-shaded triangular region through.  There are two ways to do this as shown. 

     Looking mainly inside the blue box, if we leave the filter characteristic alone, we can 

move the cutoff from fc=2 to fc=10 as suggested by the heavy red arrow.  This works, and it 

very much the way most VCF’s work in a “standard patch”.  [Well, it would not be unusual if 

the filter characteristic also had an enhanced corner typical of a Moog four pole low-pass.]   

Note that the slope does not change.     

      In contrast, the second way would be to have the slope “flap” upward (heavy green 

arrow), “hinged” at the cutoff, in which case the four BW cases above show steps crossed 

in the transition.  Fully up (N=0), the response becomes flat.   We will consider this flat like 

the cutoff 10 BW – the difference in gain can be adjusted if this is an issue.  The point is 

that the triangle is let through.   

     As the tone ends, typically the low-pass would go back down, or the flap would go back 

down.  This return to the low amplitudes with higher harmonics being reduced faster is 

typical of acoustic sounds.   In addition to all the simplifications here, we probably should 

note that since we are changing the filter with time, it is certainly NOT time-invariant, and a 

quasi-stationary notion of frequency response is necessary (as it always has been in our 

VCF work).     

     So that’s the basic idea. 
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     As we review, we find some major theoretical offerings by Normand Provencher [7], 

Lester Ludwig [8], and Lee Powell [9] with additional brief notes by Normand [10,11], and 

these are valuable, although not easy reading.  What we don’t see, even in connection with 

the working circuit [4] is commentary on how well it works (sounds!).  Not unlikely there was 

an element of expectation that as more and more people tried this, we would have useful 

evaluations.   But, perhaps this was too extensive a construction to expect many people to 

have tried it.  In fact, we don’t know if anyone else tried it!   As for just reporting on what we 

heard initially, that is not here either.  For certain a part of this absence is the difficulty of 

describing, in words, what something sounds like.  This was a common problem with many 

things we tried.   

     In thinking about this today, I have wondered a couple of things.  (1) If we compare V-S 

to the standard VCF tone generation, is there a distinct difference?  (2)  If so, can we make 

the case that the V-S result is at least of comparable virtue, if not better?   (3)  How does 

the V-S compare, over all, to all the methods in our bag-of-tricks? 

     What has happened in the nearly 40 years, since the V-S was first suggested by Lester, 

is that we have some vastly more efficient tools (digital generation) than we had originally.  

It turns out, as we see below, that we can calculate results that we might have needed to  

examine with analog hardware, and we can even calculate results that are not available 

with analog hardware (like the continuous BW we use below).  This means that we don’t 

even need to simulate a V-S filter digitally – we just calculate the signal.   

 

DIRECTLY CALCULATING THE SIGNAL 

     We did not say exactly how we calculated the frequency response curves in Fig. 1, but 

all we did was use the standard formula for the BW low-pass response: 

                   
 

      
 

  
   

                                                                                                                                                                  

where fc is the cutoff frequency and N is the order.   Equation (1) will prove to be the key to 

the calculations that follow.  In Fig. 1 we plotted a log-log representation to make the point 

about the straight line slopes that result in such a case.   Fig. 2 and Fig. 3 will also be 

calculated using equation (1) to make two points.  First, Fig. 2 is a corresponding linear-

linear plot of the same BW responses, which is at least as traditionally published as Fig. 1.  

Fig. 3 makes the (perhaps astounding) point that, for the equation, N need not be an 

integer.  Thus we can achieve a closed-form expression for a variable slope by plugging in 

non-integer values of N.   The asymptotic slope would be 6N db/octave.  (This does not 

mean that we could design an actual circuit and breadboard it on our benches.)   So we will 

provisionally set aside the issue of whether or not this is a “real” BW filter and take equation 

(1) as a convenient formula for computing the magnitudes of harmonics to be used in our 

additive synthesis approach to studying the V-S filtering approach. 
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     Keeping in mind that equation (1) is strictly applicable only to a Linear-Time-Invariant 

(LTI) system, in which case we are not correct to interpret it further than at best “quasi 

stationary”, we will nonetheless think of a time varying filter with magnitude (we are ignoring 

phase) of |T(f,t)| where the cutoff fc or the order N varies (N no longer restricted to integers). 

     There are thus two time-varying cases.  In the conventional case of the usual VCF we 

have in mind that the cutoff frequency is a function of time.   Typically in our music work this 

cutoff varies slowly, like once for a tone of duration lasting a good fraction of a second to 

several seconds.  Taking the cutoff to be some function of time fc(t), equation (1) becomes 

equation (2) as: 

                  
 

      
 

      
   

                                                                                                                                                                  

To our embarrassment, it would seem that over the years we have given little thought to 

fc(t)!   Fig. 4 shows our usual “standard patch”. 

     

 In Fig. 4 we show the usual cascade of a VCO (Voltage-Controlled Oscillator) into a VCF 

and then a VCA (Voltage-Controlled Amplifier).   The VCO produces a frequency controlled 

(typically) by a keyboard by an exponential relationship to a linear control voltage, and we 

also feed this frequency control to the VCF so that the cutoff of the filter tracks the VCO.  

But the VCF is “dynamic” in that it changes its cutoff during any one tone, and hence has a 

second control voltage supplied by an envelope generator.  As suggested, this second 

input is typically summed with the linear control prior to exponential conversion that 

produces the cutoff fc.  Also typically the envelope is the same as the one that controls the 

amplitude via the VCA.  It could be a separate envelope, but typically all envelopes have 

exponential sections of seen in the “AR” (Attack-Release) as in Fig. 4.  The important thing 

about the time-varying exponentials of the envelopes is that they give natural-sounding 

amplitude decays (Release here) as opposed to linear decays that end too abruptly.  

[Physical system (acoustic musical instruments) decay at least approximately 

exponentially.]          
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     Thus in Fig. 4, we have two thought-out connections.   (1)  It makes sense that the 

keyboard controls both the VCO and the VCF in an exponential manner.   They “track”. 

Note well that this is an exponential function of voltage (not of time).  (2) Further it makes 

sense that the VCA controls amplitude as a linear function of an exponentially time-varying 

envelope.   But we have, more or less ad hock, connected the amplitude determining 

envelope (or similar) to the exponentially-controlled VCF by summation.  We need not 

quibble with this choice, especially at this time in history, and likely this is a situation where 

the general nature of what is done, not the exact details, is what matters.   The point is that 

we really don’t know what fc(t) should be!   

     A somewhat parallel situation is found with the V-S filter, except there would seem to be 

no pre-established reason to have an exponential relationship already in place.  The slope 

would not seem to have to track the keyboard, although the cutoff fc would continue to do 

so.  The envelope to the VCF would instead go directly to a slope control.  There is no 

apparent reason not to start with a linear relationship to slope control, probably in response 

to something like the AR (time exponential) envelope.  This is not a situation dictated by 

tradition (there is no tradition for V-S).  And since we are just programming anyway, we can 

experiment quite easily.   

     Making the slope variable is a simple matter of making N a function of time N(t) so that 

equation (1) now becomes equation (3): 

                  
 

      
 

  
      

                                                                                                                                                                  

We are now in a position to use an additive synthesis approach of calculating amplitude 

functions |T(f,t)| for each frequency f of interest, multiplying them by corresponding 

sinusoidal waveforms, and summing to simulate the filtering.  We can then look at and 

listen to results. 

 

THE EXPERIMENTS 

     We now attempt an experiment.   This will be a Matlab program that creates a file to 

study, and rather than just presenting the program we want to show a diagram that better 

illustrates the structure of the program, as we are doing a number of subtle things, and we 

need to be aware of where choices were made (and where alternative choices are certainly 

possible).  Fig. 5 shows the scheme.  

    As suggested, the test setup here is basically additive synthesis simulating a filter, and 

as such, we have in mind a set of input components fk each multiplied by corresponding 

frequency response magnitudes Tk, and then summed before being amplitude shaped. For 

example, the input frequencies might be the harmonics of Fig. 1.  The point is that the 

frequency response is time varying and derived from an envelope by a complex   
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relationship.  We show this processing from the envelope to the Tk, k=1,2,…M in two steps.   

First there is the need to take an envelope and scale/range it to some standard range (the 

“Envelope-to-Parameter Converter” box) appropriate to the box above it.  For example, 

perhaps we need to adjust to a typical standard VCF range to fit a variable cutoff frequency 

fc(t), equation (2).  So perhaps fc=2 is at the bottom of the envelope (at 0), (the second 

harmonic), and the top of the envelope (E), is where we want a cutoff fc=10, with a linear 

control relationship (as in Fig. 1).  If on the other hand, we have a V-S filter the bottom of 

the envelope might be the N(t)=4 case while the top of the envelope might be the N(t)=0 

case.  That is, the V-S filter “flap” opens as the envelope rises.    Once this is set, the actual 

Tk(t) can be calculated from equations (2) or (3).  Or we might be implementing the 

equivalent of a Moog 4-Pole VCF in which case we would use a more general equation for 

the frequency response, which would work fine since the order would be a fixed integer.  

Thus each of the Tk; T1, T2, …TM of Fig. 5 is a time-varying control curve, calculated for a 

particular study.       
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      It turns out that the “tools” available to do this experiment are not complicated.  The 

problem is deciding exactly what to do.  The following are considerations to be understood 

here: 

     (1)  We desire here to hear the results, which means that the tones under study must be 

in the audio range and on the order of a second long.  For example, perhaps 300 Hz for 1.5 

seconds, which would be 450 total “cycles”.  Thus we can’t expect to see the details if we 

plot the whole thing.    

     (2)  Also in terms of listening to results, we don’t want to have just a gated tone 

(Off/On/Off) but something with a proper envelope.  The simplest meaningful envelope is 

simply an instantaneous attack (On) followed by an exponential decay, that typical of 

percussive and/or very short tones.  A more complicated envelope tends to confuse our 

observations – at least for a start. 

     (3)  Here we are concerned with time-varying filtering.  We will not be trying to 

understand an associated frequency response.  Instead we will have curves of amplitudes 

vs TIME (not frequency) which tell us how particular components evolve with time (the Tk of 

Fig. 5).  The curves may resemble frequency response curves, but are different.  

     (4)  While we will be imposing an envelope before listening to synthesized tones, when 

we plot the tones we will do this plotting in small sections (just hundreds of samples), 

without the envelope, so that changes in amplitude do not confuse us. 

     (5) Particularly as we will be playing our results, it will be useful to specify our harmonic 

components to be filtered in terms of typical frequencies, so instead of f, 2f, 3f,…8f we 

prefer things like 300 Hz, 600 Hz, 900 Hz, . . .  2400 Hz. 

 

EXPERIMENT 1:    JUST AMPLITUDE ENVELOPED 

     Can we form a tone from 8 harmonics and impose an exponentially decaying envelope 

on it?  Of course we can.   We choose (arbitrarily) 16,000 samples at a 8000 Hz sample 

rate, with frequencies of 300, 600, 900, 1200, 1500, 1800, 2100, and 2400 Hz.   This is 

strongly pitched at 300 Hz, and about 2 seconds long.  To this we apply an exponentially 

decaying envelope e-3t.  The result is shown in Fig. E1-a, and as mentioned, we basically 

only see the envelope since the details are lost in the 16,000 samples.   Fig. E1-b shows 

the first 12.5 milliseconds of the waveform prior to multiplying by the envelope.  [Because it 

is so short, the enveloped version is an identical plot here.]   We see in Fig.  E1-b the sum 

of the eight sinewaves (blue) and the 300 Hz sinewave (red).  Note that the higher 

frequency components (to 2400) are approaching half the sampling frequency (half being 

4000).  So while adequately sampled, there are only about three samples/cycle and the plot 

LOOKS rough.   
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EXPERIMENT 2:   FIXED FILTER 

 

      In Experiment 1 we just established a baseline case, and have done no filtering. All 

eight component frequencies started out at amplitude 1 and decayed exponentially.  In 

Experiment 2, we just do a fixed low-pass.  Here we choose a fixed 2nd-Order BW with the 

cutoff at the second harmonic of 600 Hz.   This is only a bit more exciting than Experiment 

1.  Fig. E2-a shows 12.5 ms of the waveform that corresponds to Fig. E1-b.  Note that a 

good deal of the higher harmonic content is removed (blue curve) and we also again show 

the 300 Hz fundamental in red.   Fig. E2-b shows the eight harmonic amplitudes as a 

function of time, and this is not too interesting as they are all constant in time (the filter is, 

after all, fixed) but we do see the roll-off of the higher harmonics.  If we made a 

corresponding figure for Experiment 1, it would have been one line at amplitude 1. 
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EXPERIMENT 3:     MOVING FILTER (VCF) 
 

     At this point, we have still just done two control experiments, leading to just an ordinary 

fixed filter.   Next we want to make the filter cutoff move.  Thus we need an envelope which 

we will convert to a control parameter, fc in this case, and then to a corresponding 

frequency response using equation (2) with N fixed at 4, and this gives us the quasi-

stationary frequency response values for each of the eight components.   

 

     To be explicit, we set time t, the envelope e (Fig. E3-a), and the cutoff fc as: 

 

          t = 0 : 0.000125 :  2 - 0.000125   

          e = exp(-3*t) 

          fc = 600 (1 + 4*e) 

 

so as the envelope drops exponentially from an initial value of 1 down to 0, the cutoff drops 

from 3000 down to 600 (Fig E3-b).  Note that as time progresses (left to right in Fig. E3-c) 

the upper harmonics fall off first (as a function of time), except for the 300 Hz red 

component which is well below the cutoff at all times and remains at 1.  Note that when the 

cutoff reaches 600 Hz (at 2 seconds), the corresponding green curve is at about 0.707. 
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Here Experiment 3 is a basic example of what occurs with a VCF in a “standard patch” with 

two exceptions which we need to keep in mind.  First, for simplicity we are using only an 

exponential decay (Release) for the envelope, not a full ADSR (Attach-Decay-Sustain-

Release).  This could be implemented easily, and would cause the result to be reflected, to 

pause, and to change rates possibly.  Secondly VCF’s used in practice would likely have a 

peaking (resonance) near the cutoff (see bandpass experiment below). 
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EXPERIMENT 4:      VARIABLE-SLOPE 

 
    Here in Experiment 4 we have a V-S example.   We begin with the same (Fig. E4-a) 

envelope as was used in Fig. 3a except here we then derive from it not the cutoff fc but 

rather the variable-order N(t) (Fig. E4-b) giving the variable-slope according to: 

 

         N = 4 - 4*e  
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which means that we start with 0 slope (e=1) and the slope increases to N=4 (24 

db/octave) as the envelope e decays to 0.  Thus, as shown in Fig. E4-c, we start with 

everything getting through and close down the “flap” to just a 4th-Order BW – the same 

ending point as Fig. E3-c.  We see a very similar distribution as the time approaches 2 

seconds in both figures.   The difference is in the rejection processes.  In Fig. E3-c, we see 

the higher components disappearing somewhat more successively than in Fig. E4-c where 

they go out in more like a parallel attenuation.  It is also true that the fact that the first 

harmonic (300 – red curve) went up first was a surprise.  This is because the initial 0th-order  

BW was compelled to go through 0.7071.    

 

 

EXPERIMENT 5:  BAND-PASS 
 

     In a bit we will comment on what these V-S tones sound like.  But for the moment, we 

note that all the results for Experiments 1 through 4 have been listened too and that the 

results are just noticeably different, but not too conclusive.  In particular, the V-S result is 

far less “striking” than the very familiar resonant VCF sound so characteristic of the 

synthesizer.  Thus we might want to compare this to something like the Moog 4-Pole LP 

VCF [12].  A somewhat easier experiment that turns out more revealing is to use a Band-

Pass.  This we can do easily by employing the parameters of Experiment 3, Fig. E3-b, as 

the center frequency of a band-pass.  This means we can choose a Q (of 2) and compute 

the transfer curves for the band-pass by equation (4), reference [13], similar to what we 

have used above for LP.    The results are shown in Fig. E5. 
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      What we have in Fig. E5 turns out to be somewhat different looking than the low-pass 

cases.  (We comment immediately that the sound does have the “wwwwoooooowww” 

twang we are familiar with from the resonant low-pass analog filter.)   Note that here we 

have a band-pass of moderate Q sweeping from a center frequency of 3000 Hz at time 0 

down to about 600 Hz as time approaches 2.   This is especially evident from the green 

curve for 600 Hz, where the filter ends up.   Further we see the filter band-pass sweep over 

the harmonics at 2400 Hz, 2100 Hz, . . . . 900 Hz.   It never gets down to 300 Hz, although 

we see the red curve becoming sufficiently strong by time 2 that we understand a strongly 

pitched 300 Hz tone.   The point of the experiment was to identify the familiar “interesting” 

synthesizer sound, which commands our attention, mainly with the resonance and not so 

much with the moving (but flat, Butterworth) low-pass cutoff. 

 

 

THE SOUNDS OF THE EXPERIMENTS 
 

     We are at the point here where we have the pictures and understand them pretty well. 

What do the results sound like.  Here we are in the usual difficult situation of describing in 

words what something sounds like.  If we could do it well, we would record the sounds as 

an audio file and post that file.  But the differences in sounds are subtle and tend to escape 

the recording process.   Perhaps someone can do this well enough, and we would welcome 

such an effort.   In the mean time, we offer the Matlab file that produces the figures and the 

sound files (below).   The code is straightforward enough that it could probably be adapted 

to other program languages.  Indeed, actually using the program would offer a much wider 

variety of examples for the interested researcher.   

 

     There are five sound files generated here, corresponding to the Figures E1 through E5.  

There is really an “Experiment 0” where we just listen to two full seconds, full amplitude, or 

all eight harmonics – sharp, jarring, and artificially unpleasant, suitable only as an alarm 

tone.  By imposing, the exponentially decaying envelope (Experiment 1), it becomes just 

tolerable, something suitable for a musical composition although not the most pleasant of 

tones.  We know that this amplitude shaping is necessary – you can’t just suddenly end a 

tone without creating a “click”.   It remains our observation that you can suddenly start a 

tone (exactly as we have done here) and that sounds fine.  This is almost certainly because 

we are accustomed to hearing percussive musical instruments (not to mention impulse 

induced sounds all day long from a multitude of sources).  You can have gradual start-up 

envelopes (a commented-out line in the program).   If the make the start-up (attack) too 

long, it sounds like a pipe-organ starting up.  Nothing new in Experiment 1. 

 

     Jump now to Experiment 5 where we used a band-pass.  The point here was to 

understand that it is the sweeping resonant peak that is responsible for the most 

characteristic “woosh” sound of the analog synthesizer.   This sound was what was new  
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and exciting – not like any acoustic instrument in particular.  It is this exploitation of these 

circuitry possibilities, along with some perhaps unintentional side-effects (such as clipping) 

that made the synthesizer so exciting.  All this despite what we knew or pretended to be 

investigating based on traditional acoustical instruments.  

 

     This leaves Experiments 2, 3, and 4: all low-pass cases.  Because we did not employ 

extra resonance, or other “tricks” (except through always-interesting errors!) we were within 

the realm of imitating traditional acoustical tones. [Indeed, in citing David Luce’s work, this 

was explicit.]   In consequence, none of the three experiments is going to jump out as a 

new, never-before-heard synthetic sound.  To some degree, this means boring!  In another 

sense, the subtle results are very instructive.   In particular, we wish first to know if a V-S 

tone is heard to be distinctive from one for which the cutoff moves, and secondly, if the V-S 

tone is in any sense “better”.   The answer to both questions can be “Yes” although some 

listeners would find it marginal.  All the more reason why it is perhaps difficult to record. 

 

     Here we have not done enough investigation.  Perhaps what is most important here is 

the laying out of possible tools.  So we will begin by describing the three tones exactly as 

produced by the program.  Recall that Experiment 2 was a fixed filter, Experiment 3 a usual 

VCF type, and Experiment 4, the V-S filter.  All three are similar when considered relative to 

the edgy, harmonically-rich Experiment 1 and the animated “woosh” of the sweeping 

resonant Experiment 5.  As produced by the program, I can hear no real difference 

between the fixed filter (Experiment 2) and the VCF case (Experiment 3), except one can 

just detect a change of timbre at the very end of Experiment 3.  Both are much more 

listenable (relative to Experiment 1) due to the reduction of the harmonics.   The V-S case 

(Experiment 4) sounds different from the other two in being a very natural sounding “ping” 

with a just enough animation in the upper harmonic evolution.   Based on this, we might 

think we have a winner.    

 

     If we compare Fig. E3-c to Fig. E4-c we notice that the harmonic evolution is much the 

same at the ends.  In the middle, however, the V-S case decays much faster. It matter not 

that the imposed amplitude envelope (e) is exactly the same, as the variations of the 

individual harmonic amplitudes out of the filter itself are different and dominate the apparent 

amplitude.  The tone in Experiment 4 seems shorter.   Since we do see this rather abrupt 

decay in Fig. E4-c, we might try to adjust this.  The decay rates out of the filter are more or 

less accidentally related to the control envelope by our “converters” and so, one way to 

make up apparent differences is to change the decay constant to the envelope.  The quick 

test here is to make the envelope of the V-S case longer, using e-2t instead of e-3t. Doing 

this, all three of Experiments 2 through 4 sound more similar.   

 

     Again, we have not so much found any definitive results as indentified some tools and 

some parameters.   Further, all this was done with no investment in building any hardware.  

More time and a more careful study seems to be indicated. 
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     I also made a preliminary effort at an internet search.  This did not yield anything solid 

– at least not at a first try.  I used the search term “Variable Slope Filter” and did find some 

links.  Most of these were from an electronic music viewpoint, including what seem to be 

available products.  Not much in the way of discussing technology.  Some mentioned the 

Electronotes articles.  The other search term I tried was “fractional order butterworth” and 

this looked interesting, including some very recent (2013) IEEE stuff (paywalled!). Two 

articles [14, 15] of apparent academic origins do come up, and are included here to 

encourage someone else to follow up.  While there are suggestions (like mention of Sallen-

Key) that suggest, perhaps, that someone is thinking about hardware, I did not find any 

circuits.   But I didn’t try all that hard.  
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PROGRAM – For Documentation Purposes 
 

% vs.m  Variable Slope - Experiments for EN#224 

% 

% 

% 

%  ORIGINAL TONE OF EIGHT EQUAL HARMONICS - ENVELOPED 

t=0:.000125:2-0.000125; 

S1=sin(2*pi*300*t); 

S2=sin(2*pi*600*t); 

S3=sin(2*pi*900*t); 

S4=sin(2*pi*1200*t); 

S5=sin(2*pi*1500*t); 

S6=sin(2*pi*1800*t); 

S7=sin(2*pi*2100*t); 

S8=sin(2*pi*2400*t); 

Sorig=S1+S2+S3+S4+S5+S6+S7+S8; 

Sorig1=Sorig; 

e=exp(-3*t); 

%e=[ [0:.001:.999],e(1:14801)]; 

Sorig=Sorig.*e; 
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figure(6) % Fig. E1-a and E1-b of Report 

subplot(211) 

plot(t,Sorig) 

axis([-.1 2.1,-7,7]) 

subplot(212) 

plot(t(1:100),Sorig(1:100)) 

hold on 

plot(t(1:100),S1(1:100),'r') 

hold off 

axis([-.0007 .013 -7 7]) 

% 

% 

% 

% ADD FIXED LOW-PASS 

N=2 

fc=600; 

T1=1 ./ sqrt( 1+(300/600).^(2*N)   ); 

T2=1 ./ sqrt( 1+(600/600).^(2*N)   ); 

T3=1 ./ sqrt( 1+(900/600).^(2*N)   ); 

T4=1 ./ sqrt( 1+(1200/600).^(2*N)   ); 

T5=1 ./ sqrt( 1+(1500/600).^(2*N)   ); 

T6=1 ./ sqrt( 1+(1800/600).^(2*N)   ); 

T7=1 ./ sqrt( 1+(2100/600).^(2*N)   ); 

T8=1 ./ sqrt( 1+(2400/600).^(2*N)   ); 

figure(1)  % Fig. E2 of Report 

plot(t,T1*ones(1,16000),'r') 

hold on 

plot(t,T2*ones(1,16000),'g') 

plot(t,T3*ones(1,16000),'b') 

plot(t,T4*ones(1,16000),'c') 

plot(t,T5*ones(1,16000),'m') 

plot(t,T6*ones(1,16000),'k') 

plot(t,T7*ones(1,16000),'r') 

plot(t,T8*ones(1,16000),'g') 

hold off 

axis([-.2 2.2 -.1 1.2]) 

 

 

S1=S1*T1; 

S2=S2*T2; 

S3=S3*T3; 

S4=S4*T4; 

S5=S5*T5; 

S6=S6*T6; 

S7=S7*T7; 

S8=S8*T8; 

SLP=S1+S2+S3+S4+S5+S6+S7+S8; 

SLP=SLP.*e;  

figure(10) % Fig. E2-a of Report 

subplot(211) 

plot(t(1:100),SLP(1:100)) 

hold on 

plot(t(1:100),S1(1:100),'r') 

hold off 

axis([-.0007 .013 -3 3]) 

% 

% 

% 

 

 

 
                                                              EN#224 (19) 



 

% MOVING LOW-PASS - ORDINARY VCF 

fc= 600*(1+ 4*e); 

figure(7)   % Fig. E3-a and E3-b of Report 

subplot(211) 

plot(t,e) 

hold on 

plot([0 0],[-1 2],'k:') 

plot([-1 3],[0 0],'k:') 

axis([-.1 2.1 -.1 1.2]) 

hold off 

subplot(212) 

plot(t,fc) 

hold on 

plot([-1 2],[0 0],'k:') 

plot([0 0],[-1000 4000],'k:') 

hold off 

axis([-.1 2.1 -200 3200]) 

N=4 

T1=1 ./ sqrt( 1+(300./fc).^(2*N)   ); 

T2=1 ./ sqrt( 1+(600./fc).^(2*N)   ); 

T3=1 ./ sqrt( 1+(900./fc).^(2*N)   ); 

T4=1 ./ sqrt( 1+(1200./fc).^(2*N)   ); 

T5=1 ./ sqrt( 1+(1500./fc).^(2*N)   ); 

T6=1 ./ sqrt( 1+(1800./fc).^(2*N)   ); 

T7=1 ./ sqrt( 1+(2100./fc).^(2*N)   ); 

T8=1 ./ sqrt( 1+(2400./fc).^(2*N)   ); 

figure(2)  % Fig. E3-c of Report 

plot(t,T1,'r') 

hold on 

plot(t,T2,'g') 

plot(t,T3,'b') 

plot(t,T4,'c') 

plot(t,T5,'m') 

plot(t,T6,'k') 

plot(t,T7,'r') 

plot(t,T8,'g') 

hold off 

axis([-.2 2.2 -.1 1.2]) 

 

 

S1=S1.*T1; 

S2=S2.*T2; 

S3=S3.*T3; 

S4=S4.*T4; 

S5=S5.*T5; 

S6=S6.*T6; 

S7=S7.*T7; 

S8=S8.*T8; 

SMLP=S1+S2+S3+S4+S5+S6+S7+S8; 

SMLP=SMLP.*e;  

% 

% 

% 
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% VARIABLE-SLOPE LOW-PASS 

% 

% or change decal constant 

e=exp(-3*t); 

% 

% 

N=4-4*e; 

figure(8)  % Fig. E4-a and E4-b of Report 

subplot(211) 

plot(t,e) 

hold on 

plot([0 0],[-1 2],'k:') 

plot([-1 3],[0 0],'k:') 

axis([-.1 2.1 -.1 1.2]) 

hold off 

subplot(212) 

plot(t,N) 

hold on 

plot([-1 2],[0 0],'k:') 

plot([0 0],[-0.3 4.3],'k:') 

hold off 

axis([-.1 2.1 -0.3 4.3]) 

fc=600; 

T1=1 ./ sqrt( 1+(300/600).^(2*N)   ); 

T2=1 ./ sqrt( 1+(600/600).^(2*N)   ); 

T3=1 ./ sqrt( 1+(900/600).^(2*N)   ); 

T4=1 ./ sqrt( 1+(1200/600).^(2*N)   ); 

T5=1 ./ sqrt( 1+(1500/600).^(2*N)   ); 

T6=1 ./ sqrt( 1+(1800/600).^(2*N)   ); 

T7=1 ./ sqrt( 1+(2100/600).^(2*N)   ); 

T8=1 ./ sqrt( 1+(2400/600).^(2*N)   ); 

figure(3) % Fig. E4-c of Report 

plot(t,T1,'r') 

hold on 

plot(t,T2,'g') 

plot(t,T3,'b') 

plot(t,T4,'c') 

plot(t,T5,'m') 

plot(t,T6,'k') 

plot(t,T7,'r') 

plot(t,T8,'g') 

hold off 

axis([-.2 2.2 -.1 1.2]) 

 

 

S1=S1.*T1; 

S2=S2.*T2; 

S3=S3.*T3; 

S4=S4.*T4; 

S5=S5.*T5; 

S6=S6.*T6; 

S7=S7.*T7; 

S8=S8.*T8; 

SVS=S1+S2+S3+S4+S5+S6+S7+S8; 

e=exp(-3*t); 

SVS=SVS.*e;  

e=exp(-3*t); 

% 

% 

% 
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% MOVING BAND-PASS 

fc= 600*(1+ 4*e); 

Q=2 

T1=1./ sqrt( 1+(Q^2)*(300./fc - fc./300).^2   ); 

T2=1./ sqrt( 1+(Q^2)*(600./fc - fc./600).^2   ); 

T3=1./ sqrt( 1+(Q^2)*(900./fc - fc./900).^2   ); 

T4=1./ sqrt( 1+(Q^2)*(1200./fc - fc./1200).^2   ); 

T5=1./ sqrt( 1+(Q^2)*(1500./fc - fc./1500).^2   ); 

T6=1./ sqrt( 1+(Q^2)*(1800./fc - fc./1800).^2   ); 

T7=1./ sqrt( 1+(Q^2)*(2100./fc - fc./2100).^2   ); 

T8=1./ sqrt( 1+(Q^2)*(2400./fc - fc./2400).^2   ); 

figure(4)  % Fig. E5 of Report 

plot(t,T1,'r') 

hold on 

plot(t,T2,'g') 

plot(t,T3,'b') 

plot(t,T4,'c') 

plot(t,T5,'m') 

plot(t,T6,'k') 

plot(t,T7,'r') 

plot(t,T8,'g') 

hold off 

axis([-.2 2.2 -.1 1.2]) 

S1=S1.*T1; 

S2=S2.*T2; 

S3=S3.*T3; 

S4=S4.*T4; 

S5=S5.*T5; 

S6=S6.*T6; 

S7=S7.*T7; 

S8=S8.*T8; 

SBP=S1+S2+S3+S4+S5+S6+S7+S8; 

SBP=10*SBP.*e;  

% 

% 

% 

% PLAY SOUNDS 

%               

pause 

sound(Sorig,8000) 

pause 

sound(SLP,8000) 

pause 

sound(SMLP,8000) 

pause 

sound(SVS,8000) 

pause 

sound(SBP,8000) 

  

                         *    *    *    *    *    * 
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