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DISPERSION OF “TONE BURSTS” AS A 

MEANS OF FORMING MUSICAL SOUNDS 

 
INTRODUCTION: 
 

Just about everyone who first thinks about musical tone synthesis begins by supposing that 

there would be some merit to first considering the formation of tones from what we call “tone 

bursts” which are finite length segments of sinusoidal waveforms.    For example, if we want a 

musical note at A = 440 Hz we might take 440 cycles of a sinewave and play them out during 

one entire second.  That’s of course 440 cycles/second, or 440 Hz.   None of us actually 

expect this to do the whole job, but it is a start.   What could go wrong?  A lot.   

 

     Among the problems with tone bursts are the fact that even though they are derived (in 

theory) from continuous, infinite-duration sinusoidal waveforms of a single frequency, when 

truncated to finite length (as we always must do), they have additional frequency content – not 

just a single frequency.   The notion of Fourier Analysis is an important mathematical tool for 

looking into this. But it is a tool, and does not tell us the whole story. 

 

     Complicating the story is the fact that (1) we always hear what “really” happens with our 

ears, and they are not compelled to be Fourier analyzers, and (2) we have a long and rich 

tradition (perhaps “cultural prejudice”) that influences what we will accept as being a candidate 

for, or actual musical tone.   
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     For example, we are likely to write “fail” to the 1 second, 440 Hz tone burst as a musical 

tone.  Something funny (contrary to our listening experience) happens at the very start, and at 

the very end, and the middle is somehow boring.   Here we worry about transient effects and 

steady state, as well as the idea that the ear needs to be “challenged” to hold our interest.   As 

our readers likely already know, at the very least we would want to add an amplitude-

controlling “envelope” to turn the tone on and off gradually, and we would probably want a 

starting signal that is rich in harmonics, and then we might well filter this dynamically as the 

tone progresses in time so as to produce a time-varying “spectrum”.   In doing this, we are 

really imitating the traditional sounds we have come to expect.   Sure some new sounds would 

seem to be invited in (intellectually thinking), but sadly, the synthesizer designer needs to sell 

equipment to musicians who in turn need to sell music to the public.  

 

     Accordingly the notion of starting with a simple tone burst is modified by starting with a 

harmonically richer wavefrom and adding amplitudes dynamics and spectral dynamics (the 

latter by means of filtering, modulations, distortions, etc.).  Here we want to use the idea that a 

tone burst (of a sinewave or other waveshape) has spectral components that can be separated 

or “dispersed” in time. 
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     Fig. 1 shows the general idea of what we have in mind.  In the top panel we have simply 

three cycles of a sinewave tone burst, and the middle panel is not much more interesting – just 

showing what happens if we delay this burst.  This simple time delay is deceptively 

complicated if we consider the problem in the frequency domain.  In this case, in order to 

achieve a pure time delay, each frequency component (of which there are an infinite number) 

needs to receive an appropriate phase shift so that they all line up.  This is actually a well-

known “linear phase” requirement.   But if we want a delay, we just think in terms of a time-

domain realization, not in terms of linear phase. 

     Now, in all other cases, the alignment is lost!   Different frequencies are delayed by different 

amounts, and are “dispersed”, spread and shifted in time according to the system that is 

involved.   Dispersion is a well-studied phenomenon, particularly in communications where a 

tone burst (famously a dot or dash of Morse code) is launched into a channel of the 

atmosphere to find its way to a receiver.   In this case, if different frequencies are subject to 

different phases (and amplitude changes in the general case), the components of the tones 

are spread wider and shifted.  Potentially this can result in garbling at the receiver.   

     In our synthesizer work, dispersion is virtually non-existent. (We don’t engage in phase 

shifts of more than a few cycles at the very most).  However, here we want to see if we can 

use dispersion to modify a simple tone burst so that it takes on the characteristics of signals 

we have come to find useful as musical tones.   This is suggested in the bottom panel of Fig. 1.   

Note here that we have achieved, based on the three-cycle input, a much wider signal, one 

that has amplitude shaping, and one which seems to change in frequency (higher to lower) as 

the tone progresses.   Thus we achieve some of the characteristics of a useful musical tone 

that we suggested we needed. Clearly this is interesting.  Is it useful? 

     Before going on, we should say what we have done here.  We repeatedly filtered the three-

cycle input with an all-pass filter.   This is equivalent to 30 all-pass filters in series.  Here the 

all-pass filters were 2nd-order (two poles, two reciprocal zeros) and identical.   Nothing prevents 

us from trying innumerable variations on this theme.   The reader has likely noted here that the 

reference to the “reciprocal zeros” gives away that this is digital signal processing (as if 30 

filters in series were not already a clue that this is really a digital computation).   

     Indeed the exercise here is going to be one that is largely a trial-and-error, note-by-note 

investigation.   While the degree of computation is quite large, the ideas are very simple.  We 

just make a simple filter (or incrementing parameters on successive filters) and loop the output 

of each one into the next – and look at and listen to what comes out.   The view here is not so 

much a processing such as we get from a filter during a tone, but rather more of a “pre-

processor” that gives us a better piece of raw material.  Instead of starting with a tone burst, 

you will be starting with something more inherently varies and hopefully more interesting at the 

very beginning.  Perhaps you can think of it as a sort of continuously-varying waveshaper. 
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THE ALL-PASS FILTER 

Note: 

     Here we propose to simulate dispersion using all-pass filters.  We choose all-pass because 

we want to leave the actual spectral content alone, even though the time alignment of the 

various components is to be intentionally upset.  So we need to start with a complete 

understanding of the all-pass.   We will be using second-order all-pass sections.   But first, we 

should form the most useful perspective: 

   There are many variations on this theme, even within the confines of parameters chosen for 

our proposed dispersion study.   Clearly, there are: 

      (a)  The parameters (poles and reciprocal zeros of a particular all-pass section). 

      (b)  The number of sections in series, and  

      (c)   ……whether or not they all have the same parameters. 

      (d)  The input signal, whether it is an impulse, a tone burst, or whatever. 

      (e)   Any decision to depart from strict all-pass. 

That’s a lot of experimental room!    If we were to examine the full space of the experiment, this 

study would revert to nothing more than a study of the use of all possible filters as “generalized 

resonators”.    

    Here we will need to restrict ourselves to the development of “tools” and to cases where we 

can learn, and illustrate things.   Thus we will generally be using a large number of all-pass 

sections in series (perhaps hundreds of sections) and our choice of input signal will be a tone-

burst so that the input spectrum is well defined (but because it’s lime limited, not just a single 

frequency).   In this way we can see how the various frequencies are separated.     

 

     A digital all-pass has one or more poles inside the unit circle and each of these has a 

corresponding zero that is in a reciprocal position that is thus outside the unit circle.  If the 

poles is at p = a +bj, the zero is at 1/(a+bj) = (a-bj)/(a2 + b2).  Here (a2 + b2)=r2 is the square of 

the pole radius r.  Because we are interested in real signals, we almost always choose poles in 

complex conjugate pairs.  Accordingly it is convenient to suggest that in total, that if we have a 

pole at an angle α and at radius r, we have a zero at angle α and radius 1/r, as well as 

conjugates of both (Fig. 2).  One pole thus defines an entire (two pole, two zero) all pass.         
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     Our dispersion-causing filter will be composed of multiple (tens or even hundreds) second-

order sections, which may all have the same pole/zero array, or may be different (Fig. 3).    

Here we indicate a simple three-cycle tone burst as passed through N all-pass stages. 

   

                                                                  EN#218 (5) 



     The formulation of the transfer functions of the all-pass section is straightforward.  The pole 

p1 is at:   

                                                                                                                                          (1)     

                                                                                                                                          (2)    
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                                                (5b) 

and H(z) can then be made unity gain by multiplying by r2. 

 

     The Matlab code snippet below shows how the numerator and denominator can be set up 

from the pole radius r and angle alpha.  It also shows how the signal x1 is filtered N times with 

this filter.  (Note that taking real parts in the code is just to remove a tiny accidental numerical 

round-off imaginary component).  

           

              p1=r*cos(alpha)+j*r*sin(alpha)  

              p2=p1'  

              z1=(1/r)*cos(alpha)+j*(1/r)*sin(alpha)  

              z2=z1'  

              num=real(poly([z1 z2]))  

              den=real(poly([p1 p2]))  

              for k=1:N 

                     x1=(r^2)*filter(num,den,x1); 

              end  
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AN EXAMPLE CASE 

     Here we will look at an example case in great detail.   This will illustrate the method and 

indicate the large amount of data that we have that we can examine, even from one test case.  

In fact, the output is so profuse that it also should suggest that the parameters of this test are 

somewhat arbitrary since it is hard to examine enough cases to choose a “best example”. 

    Here the input is chosen to be three full cycles of a sinewave that corresponds to a 

frequency of 1/16 of the sampling frequency (an angle in the z-plane of 22.5°).  Thus there are 

16 samples per cycle and 48 samples total.  We choose 25 passes through the same all-pass 

filter for which we select a pole angle α=30° (or 1/12 the sampling frequency) and a pole radius 

of r = 0.9.   Figure 4a shows the input, and Fig. 4b shows the output.  The 48 samples of the 

input signal here are offset from zero, starting at 51, just for clarity.  Further, the red circles and 

notations have been added for partitioning of FFT slices to be described later.  For the 

moment, note that the output is of a much longer duration than the input and clearly shows a 

frequency that seems to be changing (increasing for this example).  Note also that while the 

output is longer, it is also smaller in amplitude.   The output is not finite duration (the all-pass 

filter is IIR), so each pass adds to the length by about the length of the all-pass impulse 

response that it significant.  Here we have shown about 750 samples. 
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    Fig. 4a and Fig. 4b look very different and sound quite different as well.  Listening to Fig. 4a 

we hear the expected ever-so-slightly pitched short “thump”.  It is short enough that we hear 

“one thing” as its duration is within the time-constant of the ear, and we do not hear what would 

be annoying turn-on and turn-off transients in a longer burst.  In contrast, Fig. 4b is very 

noticeably pitched, and we detect a shifting pitch.  However there are no turn-on or turn-off 

transients here as the signal is clearly self-enveloped.   It is no surprise, perhaps, that these 

look and sound quite different.  Is anything the same?   Yes. 

     Figures 5a and 5b show the spectra of the two signals, corresponding to Fig. 4a and  

Fig. 4b.  They are essentially identical.  (There is a slight difference since 4b is, after all, ever 

so slightly truncated.)   For certain, the FFTs of the two are different, but as is our usual 

practice, here we are looking at the magnitude FFTs and we have agreed that all the all-pass 

filters do is rearrange the phases.   So this should not be any surprise.  Indeed, if they were not 

the same, we would have found ourselves searching for an error. 

     In this light, we further understand the importance of the time constant of the ear.  We often 

think of ourselves as hearing a Fourier Transform magnitude, the ear being considered “phase 

deaf” according to Ohm’s acoustic law.   Here we have mathematical evidence of the 

magnitude spectra being the same – yet we hear a difference.   Thus, we appreciate that the 

ear is most concerned with the newest material arriving, and in some sense discards older 

sound.  This observation is old news.  But it does indicate that if we want to examine this 

further, we are going to need to subdivide the output. 
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     Before we go on to partition the output signal, some comments about  the FFT calculation 

should probably be made.   The FFTs in Fig. 5 were both of length 750 signals, and the 

horizontal frequency axis is in units of the sampling frequency (running from 0 to 0.5 as is 

traditional).   When we use shorter segments (indeed, we shall use segments of length 48), 

shorter length-48 FFTs will be used and the frequency recalibrated in the usual way.   

     It has perhaps crossed the reader’s mind that the FFT of the three cycle tone burst should 

have been represented in its lower half just by a single spike at k=3, which would have been, 

0.0625 (1/16) of the sampling rate.  (Indeed, a bit later we will see this in “Panel 1” of Fig. 6.)  

The FFT of the 48 samples would have been a single spike. This is not a single spike because 

it is a tone burst of length 48 surrounded (as seen in Fig. 4a) by 702 zeros.  Indeed, if our 

available spectral analysis tool is just the FFT, and we need to estimate the Fourier Transform 

of a non-periodic signal (like just three cycles), our method is in fact to insert the signal (“zero 

pad”) in many zeros and take the larger FFT.   Here we did this same thing just to make sure 

the FFTs in comparing the input and the output were the same length.   Note that we did this 

intuitively, and that if we had not, we would in fact have not seen the exact same spectra in 

Fig. 5.   It would have been like using two different measuring tools. 
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    Our next step is to partition Fig. 4b and take the FFTs of segments of length 48 instead of  

the entire 750 samples.  This we look at as a means of simulating the finite window length of 

the ear and the way we hear the pitch changing. Fig. 5 shows both the original input and the 

dispersed output as having the same magnitude FFT, yet they appear in the graphs (Fig. 4) 

and sound different.   Fig. 6 shows the segmented FFTs in a series of 15 panels total.   

     The first panel is special because it is the FFT of the original 48 samples of Fig. 4a.  Note 

that as we mentioned, the result is a single spike at the frequency of 1/16=0.0625, as here we 

have no zero padding.   This is expected. 

     Note from Fig. 4b that we have segmented the output into 14 partitions numbered 2 through 

15.  We then took the individual magnitude FFTs of these partitions and plotted them as panels 

of Fig. 6.   In general, we note three things. 

     (1)  They are not single spikes, although Panel 6 is very similar to the original input of Fig. 

4a, except it is smaller. 

     (2)  The earlier panels show clustering at lower frequencies (below 0.0625) while the later 

panels cluster somewhat above the original frequency of 0.0625, 

     (3)  The energy decreases in the later panels (note well the change of scale) as is also 

clear from the time waveform of Fig. 4b. 
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     This display of FFTs as a series of panels is instructive as well as laborious.    That is –   

laborious to examine – once the program code is done you just press enter for each test.  

Perhaps more to the point, much of what we learn from the FFT series was already evident to 

us by an examination of the time waveforms.  For one example, we note that the nicely 

resolved spike of Panel 6 corresponded to a segment of the time waveform that was very 

similar to Panel 1 from Fig. 4a.  For Panel 6, somewhere in the middle, the output looked like 

the input.   

     As another example, we have said there is a general trend from low frequencies to higher 

ones as we go through the panels.  Indeed, the first partition of Fig. 4b looks to be little more 

than 1/4 of a cycle, and the corresponding FFT shows lots of energy at k=0, 1, and 2, as 

expected.  Yet, it is also clear from the time domain that there is a good amount of much 

higher frequency material (onset transients?) in those first few partitions of Fig. 4b, and this 

energy is seen in the FFTs – like in Panels 2, 3, and 4.    

     Thus in our follow-up studies here, we rejoice in the ability of the eye to examine the time-

domain plots for the essential details.  We don’t need the FFT so much.  Clearly we do not 

need to take FFTs of the whole output, as we see (Fig. 5) that it is just the same as that of the 

input in all cases.   Accordingly plots such as Fig. 4b will serve us well.  Not to mention that 

these plots are immediately interesting and informative, and complex enough to be 

entertaining (a fun program). 

 

REVERSING THE FREQUENCY TREND 

     We do not wish to claim that the dispersion results are inherently useful as musical tones.  

Possibly each one is interesting and the outputs are at least as interesting as the inputs, and in 

must cases more so as they have a more dynamic (evolving) spectral structure.  So our 

scheme here is to use both a visual and a sound presentation and to ask if we might well use 

the output as one tone of a musical presentation.  The answer seems to be a general “yes” 

with the proviso that the sounds, having a detectable varying pitch to some degree, tend to be 

tones of a lighter if not a comical nature.   

[ It is worth noting that in the largest picture, we might look at the dispersion filter not as a           

tone-by-tone “generator” but as a processor such as a more traditional filter bank.  That is, our 

musical input could be a series of tone bursts (a melody if you prefer) input to the all-pass bank 

with each different burst getting a different “twist”, much as a traditional filter bank provides a 

fixed background “formant” to characterize the impression of an individual instrument.  ] 

     If we are concerned about individual tones, we need to ask about how well a particular 

generation method treats our general “low-pass” model of a musical sound as we generally 

expect them to occur.   That is, acoustical instruments (physical instruments made of usual 
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mechanical materials such as strings, wood, metal, plastic, air columns, etc., very generally 

behave in a manner of a low-pass filter.   Higher frequencies decay (mechanically damp) faster 

than low frequencies.  Thus all frequencies may occur at the beginning, but it is the lower 

frequencies that remain at the middle and end of a tone.   Because we traditionally have this 

with our mechanical instruments, we also find this as a preferred implementation with musical 

tone synthesis.   In this light, we might suppose that Fig. 4b has it backward (low frequencies 

at the beginning, high ones at the end).   This is really a matter of placing the all-pass filter 

relative to the input tone burst frequency.  

     Fig. 4b had the input signal at a frequency of 1/16 (=0.0625) the sampling rate while the all-

pass poles (and zeros) were at a higher frequency of 1/12 (=0.08333) the sampling rate.  What 

if we were to move the poles (and zeros) to a lower frequency.  For example, Fig. 7 shows the 

case where the poles (and zeros) are at a frequency of 1/25 (0.04 of the sampling frequency), 

thus below the input frequency of 0.0625. 

  

In this case, we clearly see a reversal of the situation of Fig. 4b in that we start with very high 

frequencies and encounter lower frequencies as the tone progresses. (Yes – we remember 

that high frequency buzz in the first partition of Fig. 4b.) 
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     Based on very limited data, the examples of Fig. 4b and Fig. 7 and a few more, is the case 

where the all-pass frequency is below the input frequency “more musical”?   This is a hard 

question to answer, but I think most listeners would say it is, in the sense of relating to our 

experiences.  Fig. 4b is, as we suggested, slightly more comical.  But you can have both 

available of course.  This is parameterized software – not solder! 

 

A DYNAMICALLY VARYING ALL-PASS PROCESS 

    It is possible and easy to make different passes through the all-pass section have different 

pole (and zero) frequencies.  Essentially the code at the bottom of page (6) is modified so that 

the filter numerator and denominator are calculated and updated inside the loop.  Figure 8 

shows the case where the angle starts at 0, and increments by 0.002 times the sampling 

frequency on each iteration until it reaches 0.048 during the 25th iteration.   

 

     Fig. 8 is not all that different from Fig. 7.  Before we forget, keep in mind that all of Fig. 4b, 

Fig. 7, and Fig. 8 have the same Fourier Transform (Fig. 5). 
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THE IMPULSE RESPONSE VIEW 

     We generally think of the notion of an impulse response of a filter as being fundamental, 

and this is something we need to look at here too.  So far, our inputs have been tone bursts, so 

there was a frequency associated with the inputs.  An impulse has all frequencies equally, so 

one “dimension” of our investigation is removed.  Fig 9a and Fig. 9b show two examples of 

impulse response for the case where the radius is 0.9 and the angles are 1/12 and 1/25 times 

the sampling rate, respectively.   Very roughly the two are the same except for pole frequency.  

Keep in mind that there are two poles, and that for the smaller angle they are closer together.  

So we still have two “dimensions” to the study.  What we see is that both are from higher 

frequencies to lower ones, but the total view is much more complex and needs further study.    

 

 A COMPLEX WAVEFORM IN (PULSE TRAIN) 

     Another “can or worms” appears when we add a “dimension” to the study by letting the 

input be a complex waveform rather than just a sinewave burst.  Here we have just shown one 

example, where the input is three cycles (16 samples each cycle) of a 1/4 duty cycle pulse.  

The reference here is the inset figure showing the spectrum of the output (same as input). 
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THE DISPERSION “FILTER BANK” 

     Back on page 12 (the red text), we suggested using the all-pass filters in the manner of a 

filter bank.   In this application, a series of simple sinewave tone bursts would constitute an 

input sequence of notes to be processed (a “melody”).  Each “note” would then be used to 

from an output sequence of more complex tones, as the individual burst happens to be 

processed.   Fig. 11a shows an elementary example.   Here the input tone bursts are all 

relatively short – just a few cycles, with frequencies as indicated (relative to a sampling 

frequency of 1).  The tone bursts are 48 samples long.   There are 35 passes through the all-

pass.  We see considerable differences in the shapes of the output tones (blue).   

  

     Above we showed that the positions of the frequencies of the tone burst (relative to the pole 

frequency of the all-pass filters), spread the tones and skewed the original frequency 

alignment. Here changing the burst frequency relative to the fixed dispersion filter bank makes 

each tone an individual item visually, and aurally to a lesser apparent extent.  The details of 

the processing of the notes are not clear at this scale.   Indeed, each of the five tones shown 

could be analyzed in detail as in Fig. 4 and Fig. 6.  It is clear that we have added an individual 

character to inputs that were just a few cycles of sine waves.   (Scales vary for plotting 

purposes.)   Of course each blue tone has the same spectrum as the red tone burst above.   
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     In the example of Fig. 11a we have chosen a short tone burst and a relatively large number 

of all-pass iterations, and the results are visually dramatic.   It is interesting if we change these 

input parameters a bit, as in Fig. 11b. 

     Here a couple of input frequencies are changed, but mainly we have made the red bursts 

longer (length 301) and decreased the number of all-pass iterations to 12.   Visually, there is 

far less variations (blue in Fig. 11b relative to blue in Fig. 11a).  Aurally, there are lesser but 

still distinct differences in the sounds of the individual notes.  (A lot depends on the playback 

rate.)   What is perhaps most striking here is the time shifts of the bursts.   The intervals 

between bursts are exactly equal in the red bursts of Fig. 11b, but clearly they vary their  

spacing in the blue versions.  One possible idea as that an exact regularity in an electronically 

generated sequence would be broken up to something more like the irregularities found in 

human playing – but this is just a suggestion.    

     One possible advantage to this bank is that it is a series structure.   This we can readily do 

because the filters are all-pass.   This is in contrast to a more familiar bandpass filter bank, 

which usually must be a parallel structure.  The problem with parallel structures is that when 

we recombine (sum) the channels, phase matters and is a big issue.  In a series bandpass 

structure, each channel is significantly (often strongly) attenuating all other channels, making 

signal/noise an overriding issue.    In theory, a series structure might be possible with a digital 

bandpass (floating point) implementation. 
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DISPERSION LEADING TO SEPARATION OF TONES  

     The classic example of dispersion would be to have two different frequencies, initially in 

alignment, each with a significant number of cycles, dispersed to the extent of being actually 

seen to be separated.    This we show in Fig. 13 for an interesting example.  Here we have a 

high frequency (0.0625 times the sampling rate) and a low frequency (0.03 times the sampling 

rate) as shown in red.  The signals are added and subjected to 200 passes though the all-pass 

filter with a pole frequency of 0.04 (chosen between 0.03 and 0.0625) times the sampling rate 

(radius 0.9) .  The separation (and spreading) of the individual tones is clearly shown.   This 

resulting transition of parallel tones to a somewhat stepped structure may be of musical 

interest.  
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DISCUSSION 

     Not much to add here.  I don’t recall if we ever discussed the possibilities of using 

dispersion before.  Certainly the applications of pure time delay are well studies as various 

phasers and flangers.   Bill Hartman summarized these effects and related them to time delay 

in a much appreciated paper [1].  Dispersion as such in communications is much studied and 

is related to such things as “whistlers” in radio communications (VLF radio artifacts of lightning 

strikes) and indeed, to the spreading of light in a prism.  So – it’s not new – we just have 

ignored it.    

     Here we have been talking about digital implementation.  In fact, we have remarked that a 

study of the phenomenon is largely unthinkable in an analog contest.   This is true, and we can 

consider digital processing of files of acoustically-produced music in this way as well as our 

notions of synthesizing new electronic sounds.   Is an analog realization (as opposed to a 

study) possible?   Sure.   We could envision an analog module that has one input.   This could 

lead to series of analog all-pass filters [2].   We would make no attempt to vary the poles/zeros 

– these would be fixed filters.  Presumably some digital study would suggest how to choose 

the general design parameters. Then perhaps we would have outputs (or a rotary selector 

switch) along the series, perhaps at 1, 2, 4, 8, 16 networks. Not that much panel space.   At 

some point, you would insert this in the signal path, much as we would a filter bank, “special 

effects unit”, or animator.    
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