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 WHAT ABOUT:  

       SELF-FREQUENCY-MODULATION 

 
INTRODUCTION: 

 
For some time we have suggested the use of Self-Frequency Modulation (SFM) as an 

alternative to using a bank of standard waveshapers [1].  A single continuous control clearly 

offered a wide range of timbres, with a range not unlike that from a sinewave to a sharp pulse. 

There is a certain economy evident here, with performance consequences that might go either 

way: you don’t get traditional waveshapes  (like triangle, saw, square and pulse) but you do get 

a continuous array.    

 

     Frequency Modulation (FM) has a proud and useful tradition in synthesized music starting 

with Bob Moog’s “clangorous sounds” described in his classic voltage-controlled exposition [2] 

and then through John Chowning’s digital implementations [3].   Dynamic depth, through-zero  

FM was clearly a magnificent tool implemented by Moog and Bode with a frequency shifter [4], 

in numerous digital computations, with analog circuitry [5], and with DSP processors [6].  The 

case of dynamic depth with exponential control was investigated [7] and an associated 

undesirable pitch shift was related.   

 

     Where does SFM fit in?  Is it merely as a waveshaper substitute?  Our VCO circuit with 

SFM  [1] offered dynamic depth.  This does involve a pitch shift.  Or does it – if we can block 

the DC, doesn’t the pitch shift go away – at least most of it?   The circuit has a 1 mfd blocking 

capacitor.   As far as I remember, we never looked at this in great detail.   
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BASIC SELF-FREQUENCY-MODULATION 

 
     The notion of SFM can be easily illustrated as having the output waveform of a Voltage-

Controlled Oscillator (VCO) fed back to serve (perhaps in whole as in Fig. 1a, or in the useful 

case, just in part, as in Fig. 1b) as the control voltage input.    

       

     Keep in mind that the control voltage Vc is generally thought to control the VCO frequency 

but it can also be thought of as controlling the rate of change of phase.  Thus in Fig. 1a, where 

Vc is connected directly to the output, Vout, as soon as Vout hits zero, the VCO just stalls.  See 

graph in lower left.  Here we are assuming a linear VCO.   Not very useful.   On the other hand, 

as in Fig. 1b, we can choose an offset Vo and a scaling of Vout such that the sum, Vc can never 

reach zero.  Here for our example Vo=1 and g=0.9, so with Vout restricted to ±1, Vc can never 

be smaller than 0.1.  [We note here that an exponential VCO would not stall.]  The waveshape 

in the lower right plot is typical of SFM as we know it. Clearly we are a long way from a 

sinewave, and there is an enormous DC component is this case. 
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     Fig, 2 shows more examples.  See also Appendix A for graphs of the frequency and of the 

DC level for a continuum of g.   The full Matlab code used to simulate this SFM is presented at 

the end of this report.   The methodology is: 

 

(1)  Assume we start with a cosine.  That is, the phase starts at zero and the first sample of the 

waveform is 1.   

 

(2)  Calculate the current value of the derivative of the phase as being proportional to the 

control voltage, which is the offset Vo plus a scaled (by g) value of the previous value of Vout. 

   

     dp/dt = π [ Vo + gVout(n-1) ]                                                                                              (1) 

 

(3) Increment the phase by multiplying by ∆t = 1/200 

 

     p(n) = p(n-1) + (dp/dt) ∆t                                                                                                   (2) 

  

(4) Finally, take the cosine 

 

     Vout(n) = cos[ p(n) ]                                                                                                            (3) 

 

     Indeed we find that as g increases, but is still held short of 1, the waveform changes from a 

cosine (g=0) and becomes more pointed on top (broader on the bottom).  This is because  as 

Vout is positive, and dp/dt gets larger, the cosine speeds along, but slows greatly as Vout goes 

negative.  In consequence, the period gets longer, and the frequency drops below 1.  Shown 

also in Fig. 2 are the FFTs (all FFTs here show magnitudes) , all scaled to the frequency of 1 

being the original cosine.  We see that while the waveform becomes “non-sinusoidal”, the 

harmonics are those of the lower pitch.  When used as a simple waveshape modifier (not 

dynamically through the time) we easily correct for the pitch shift by turning up the control 

voltage. 

  

     We do see the DC accumulating in the negative portions of the waveforms, and large DC 

components in the FFTs.   Is this of concern?  Of course, as this DC is fed back, it IS the 

cause of the pitch shift – if this shift is a concern, as it will be in dynamic depth.  A second 

concern is whether or not the DC is audible.  Of course, DC in the waveform is not audible, 

except as it may be fed through an enveloping or similar amplitude manipulation.  We kind of 

looked at this in a related study last issue [8], which involved PWM.  We kind of decided that it 

was not likely an issue.  Indeed, looking at Fig. 2D we note significant similarity between the 

peaking due to SFM and a narrow pulse achieved with PWM.   Likely the same results would 

be found here.  Accordingly, we will address the issue of the pitch shift.  First, let’s revisit the 

SFM of the ENS-76, VCO Option 3, an actual circuit. 
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REVISITING VCO OPTION 3 
 

     Without hesitation I would name VCO Option 3 [1] as the one circuit for which I have had 

the most questions over the last decade or so.  I can’t say that this is my favorite VCO.  But on 

the other hand, I never had much of an opportunity to develop any favorites – it was always a 

design/build/test/write-up mode – and then on to something else.  So here I rely, as I often do, 

on what I originally wrote, as tempered through later questions and occasional reflection.   

 

     Fig. 3 is the figure as it appeared as Fig. 14 in EN#75.  It is an exponential VCO with a very 

familiar “triangle core” and no waveshapers save the SFM feature.  Not even a triangle to sine 

was used.   Note well the inclusion of a large DC blocking capacitor (C-17) in the SFM path.  

This was included specifically because we also included a dynamic depth capability through 

IC-7.  I have no recollection of studying in detail if this was highly effective in removing the 

pitch shift such as that suggested in Fig. 2. However, I do not recall the problem not being 

solved, or at least minimized.  Here I rely on Fig. 15 of the original description, and no pitch 

shift was noted.   Clearly this was a sketch of what was seen on the scope, and it is possible 

(likely?) that subtle transients could be involved.  That is, small amounts of a DC or very low 

frequency control might come through.   In such cases, we would need to ask if they were 

audible.  And sometimes, these transients enhance a synthesized musical sound, as 

acoustical musical instruments generally have start-up transients.   

 

 

HIGH-PASSING THE FEEDBACK IN THE SIMULATION 
 

    Against the background of the simulations of Fig. 2 and the revisit of Fig. 3, we would like to 

show that if we block the DC in the simulation, we get rid of the DC components and the pitch 

shifting.  This is tricky to think about.   The harmonic generator seems first of all to be due to 

the peaking of the top of the waveform and the broadening of the bottom.  Is this asymmetry 

due to the DC?  Actually, the asymmetry would still be there without the DC, much as PWM 

has the same audible spectrum even when we removed the DC [8]. The exact waveforms will 

be different with different DC blocking schemes (high-pass filters) but the general ideas are the 

same. 

 

     This is a discrete simulation of an analog idea and we are not attempting to simulate the 

capacitor blocking.  Thus we use a digital (discrete time) high-pass, and the simplest is just a 

difference between consecutive outputs.   Even if you don’t understand digital filters, you can 

understand that a DC component is the same in consecutive samples, so subtracting them 

removes the DC.   This is what I tried first, and I thought it did not work.  Was I really going to 

have to use all that digital filter theory I was teaching not that long ago! 
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     No – because there was an indication that it was working.  The DC was gone.  The problem 

was that it looked an awful lot like no feedback at all.   Was this really a “gotcha”?   Well the 

key is the fact that there was a small indication of feedback.   Then it struck me that the 

problem was that I was still stuck on the idea that the gain should be between 0 and some 

value stopping short of 1.   Here I had a simple (simplest) high pass consisting of a zero at z=1 

in the z-plane.    For low, but non-zero frequencies, the gain of the filter itself was still tiny.  The 

frequency of interest was effectively 1 for a sampling frequency of 200.  In an analog context, 

we would worry about this extreme attenuation.   In a simulator, you just increase the gain. 

 

     Thus step (2) of the simulation became: 

 

     dp/dt = π { Vo + g [Vout(n-1) – Vout(n-2) ] }                                                                          (4) 

 

(see Fig. 4) and g can now exceed 1.  In fact, here results were stable through g=40.    

 

     

     Fig. 5 shows four examples starting with g=0 in A, to g=40 in D.  The results in Fig. 5 are 

different from Fig. 2 is several ways.   Most importantly, we see good success getting the DC 

and resulting pitch shift blocked.  For g=10 and g=25, B and C, we see very little pitch shift (the 

one listed may be mainly a numerical effect).  In addition, the waveshape is different.  Indeed it 

is more like a sawtooth mimic than a pulse mimic.  Different DC blocking schemes likely give 

still other shapes.  Note that the FFT shows harmonics that are multiples of the original pitch 

which is now very close to 1 in all the examples (not getting smaller as in Fig. 2).  In some 

sense, this shows that dynamic depth can be used if DC blocking occurs.  
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DISCUSSION 

 
     Having just declared victory, we nonetheless feel obliged to discuss this just a bit further.  In 

particular, how hard would it be to obtain a closed-form expression for Vout(t) rather than the 

simulation Vout(n)?   We can write the equations, but can we solve them?   

 

     We should perhaps begin by noting that there is nothing remarkable about self-modulation.  

Fig. 6 shows a situation where we have added a second VCO to our scheme, assumed 

identical and identically initialized.  The first VCO is self-modulated and the second one is 

driven by the first – obviously.  The first has feedback, and the second does not. 

 

     Here we arrive at a point about feedback that is often overlooked or which is unmentioned. 

In Fig. 6, both oscillators are driven by the exact same control voltage, the essential part of 

interest here comes from the output of the first VCO.  Does the first VCO “recognize” in some 

sense, that the drive is its own output?   Of course not.  So as far as self-modulation is 

concerned, the first VCO is just responding to some voltage that happens to be from its own 

output.  It does not “know” this or respond in any special manner to its own product. 

 

     Thus, we have from our simulations some idea what Vout is – a periodic waveform, a series 

of harmonics.   We are accustomed to writing down FM equations in terms of a carrier 

frequency (as a sinusoid) and a program signal (also a sinusoid).   Here we are talking about a 

program signal that has multiple sinusoidal components.   Very familiar after all.  Further, 

another often made point about music synthesis with FM is that we are modulating, and then 

using the modulated spectrum as a musical signal, but not demodulating. 
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     A fundamental question here is whether or not the VCO is “linear”.   Note however that we 

very often use the term “linear” to address different issues.   For purposes of discussion, let’s 

assume the VCO is linear in the sense that the output frequency is a linear function of the 

control voltage.  Thus: 

 

          fout = K Vc                                                                                                                                                                               (5) 

 

That’s clear.  We equivalently suggest that this means the output waveform of the VCO is: 

 

          Vout = cos(2πfout + φ) = cos(2πKVc+φ)                                                                        (6) 

 

     At this point, we want to look at “linearity” in the alternative formal sense of whether or not 

superposition applies.  Thus we want to consider Vc to have two components Vc1 and Vc2. 

 

          Vc  = Vc1  + Vc2                                                                                                                                                             (7) 

 

For example, suppose  Vc1  = 2,  Vc2 = 3.2, and K=100 (Hz/volt). Then using equation (5) with 

superposition linearity, we would have 200 Hz corresponding to 2 volts and 320 Hz 

corresponding to 3 volts, and Vc = 5.2 would correspond to 520 Hz.  This is because we have 

chosen frequency as the output of the system being examined for linearity (the VCO).   

 

     [ Another way of stating this sense of linearity is that FM radio works.  Music or other audio 

signals carried as ordinary radio programs have multiple components and these do not 

become a hopeless jumble in FM.  We demodulate just fine.  FM is thus seen as more of a 

temporary mapping or coding.  We recover the program.   So much for equation (5) – what 

about equation (6)? ] 

 

     In the view of observing the spectrum instead of the recovered signal, we would suppose a 

control voltage of 2 volts would produce a signal Vout at 200 Hz.  A control voltage of 3.2 volts 

would produce a signal Vout at 320 Hz.   But as noted, a control voltage of 5.2 volts does not 

produce two frequencies (at 200 Hz and at 320 Hz) but one signal at 520 Hz.  This test of 

linearity (the output of the VCO is a voltage signal, not a frequency) fails.   So the way in which 

a VCO handles a multi-component control signal (as linear or not) depends on what you 

consider to be the VCO output (the frequency/spectrum or the time signal).   

 

     We have at times found it useful to consider a VCO as an integrator.  That is, the VCO has 

not so much a frequency, but an “instantaneous frequency” which is the derivative of the phase 

with respect to time.  Hence the VCO integrates to total phase.  This is pretty much the view 

used in the simulation, equations (1) and (2).    
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          So now we get to the point where we can write down equations, but not the solution.  So 

let’s just say it is not immediately apparent how to arrive at the closed from solution.   Here is 

the problem: 

 

     As in equation (1), we write in the continuous case: 
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Well.   Is this set up right?  If so - how do we solve it?                                     

  

 

 

CONCLUSIONS – THE LOOP 
 

     As mentioned, based on the original design and tests, and what we have shown above, we 

believe that the SFM technique of Option 3 is valid and worthwhile.  So perhaps we should 

remark on why a lot of people have trouble getting the circuit to work.  In this respect, it is 

useful to note that this circuit is a loop.  Most VCO circuits have a loop, the “core” oscillator.  It 

is usually pretty clear if this is working or not.  Given this determination, the waveshapers tend 

to be branches off this loop.  Possibly one finds all but one waveshaper working, so you 

concentrate on that one branch.  The core oscillator provides its own test signal. 

 

     With this Option 3, with its self-modulation loop, something that fails in the loop can make 

the whole structure inoperative.   The loop provides the linear control current, and can easily 

shut the core oscillator down if it fails.  You need to be very careful with the connections, and 

be prepared to bypass sections appropriately.  For example, disconnecting the output of IC-7 

from IC-2 and instead running the left side of R145 directly to the (-) input of IC-2, and then 

starting with the pot PC-8 low should show if the oscillator runs and then if  the self-modulation 

(manually controlled) works.   That sort of thing.  Over the years I have made suggestions for 

testing the circuit, and many have gotten it to work and replied.   When I don’t hear, I am never 

sure if they succeeded to just gave up. 
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APPENDIX A 

 
Here we show frequency and DC for a range of g=0 to g=0.98.  As g gets even closer to 1, the 

period exceeds the range of n examined by the program.  This is enough anyway. 
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APPENDIX B – MATLAB PROGRAMS 

APPENDIX B1  FOR FIG 2 
 

% sfm3.m 

%   Fig. 2 

clear 

t=0 

delt=0.01 

vout(1)=1 

vout(2)=2 

p=0 

vo=1 

  

g=0.95 

nmax=1000 

  

for n=2:nmax 

   dpdt=pi*(vo+g*(vout(n-1)));   % original - no highpass 

   p=p+dpdt*delt;  

   vout(n)=cos(p);  

end 

 

figure(1) 

  

plot([-100 1100],[0 0],'k') 

hold on 

plot([-100 1100],[-1 -1],'m:') 

plot([-100 1100],[1 1],'m:') 

plot([0 0],[-1 10],'k') 

plot([1:nmax] ,vout) 

 

axis([-50 1050 -1.1 1.1]) 

hold off 

figure(1) 

 

  

maxvout=max(vout)  

go=0 
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for k=10:1000 

   if vout(k)>0.998 

      if go==0 

      cyclen=k+1 

      go=1 

      end 

   end 

end 

  

cyclen  

f=200/cyclen 

 

  

cycle=vout(1:cyclen); 

dc=sum(cycle)/cyclen 

CYCLE=fft(cycle); 

 

figure(2) 

stem([0:cyclen-1]*(200/cyclen),abs(CYCLE)) 

hold on 

plot([-100 1000],[0 0],'k') 

af=max(abs(CYCLE))  

axis([-0.5, 8.2 -0.1*af, 1.1*af]) 

hold off 

figure(2) 
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APPENDIX B2 FOR FIG. 5 

 
 

% sfm5.m 

% Fig. 5 

clear 

t=0 

delt=0.01 

vout(1)=1 

vout(2)=1 

p=0 

vo=1 

  

g=25 

nmax=1000 

  

for n=3:nmax 

   dpdt=pi*(vo+g*(vout(n-1)-vout(n-2)));      % here is the high-pass 

   p=p+dpdt*delt;  

   vout(n)=cos(p);  

end 

 

figure(1) 

  

plot([-100 1100],[0 0],'k') 

hold on 

plot([-100 1100],[-1 -1],'m:') 

plot([-100 1100],[1 1],'m:') 

plot([0 0],[-1 10],'k') 

plot([1:nmax] ,vout) 

 

axis([-50 1050 -1.1 1.1]) 

hold off 

figure(1) 

 

  

maxvout=max(vout)  

go=0 
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for k=10:1000 

   if vout(k)>0.998 

      if go==0 

      cyclen=k  

      go=1 

      end 

   end 

end 

  

cyclen  

f=200/cyclen 

 

  

cycle=vout(1:cyclen); 

dc=sum(cycle)/cyclen 

CYCLE=fft(cycle); 

 

figure(2) 

stem([0:cyclen-1]*(200/cyclen),abs(CYCLE)) 

hold on 

plot([-100 1000],[0 0],'k') 

af=max(abs(CYCLE))  

axis([-0.5, 8.2 -0.1*af, 1.1*af]) 

hold off 

figure(2) 
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