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REVISITING
MUSICAL SCALE MATHEMATICS

-by Bernie Hutchins

INTRODUCTION:

Back in the earliest days of Electronotes | received a mailing from Sebastian von Hoerner
at the National Radio Astronomy Observatory in Green Bank, W. Va. with a paper called
AUni ver sal Musi c 0 e nyihterestagito me. Intheé conieat ®f orgexfthis e me |
main research interests, he speculated on whether or not an extraterrestrial intelligent life who
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developed music in some sense might have developed a 12-tone-per-octave scale as

humans have. In the process, he was perhaps more to the point saying why we ourselves

have 12 tones per octave in our chromatic scale, from which we usually select subsets for

such scales a majorand minor7-t one scal es, pentatonic scal es,

| wrote back to him asking where it would be published, or if he was submitting it to me for
Electronotes. He was kind enough to offer a version of it to me for Electronotes. This we
published [1] and at least three related papers exist [2-4]. Further | learned that Sebastian
was currently at Cornell for the term and had an office that was a full 100 yards from my
physics lab. So | met him in person, and heard a seminarpre sent ati on of AUNni
Yes, Carl Sagan was there i the closest | ever got to actually meeting Carl Sagan!

The i mportance of AUniversal Musico is that
why 12 tones are chosen (as providing best approximations to the simple ratios of 3/2, 4/3,
5/3, and 5/4) within a reasonable set of choices of total tones, but a very convincing
explanation that has dominated my understanding since then [5]. Further, it was easy to
analyze the problem using a computer program with various error criteria [6] and for many
years, | gave this problem as a homework exercise in the use of a least squares solution.

Unt i | recentl vy, | dondt recall thinlkhiendg Unfi vam
Musico by a wide margin. Bel ow we will revie
di scussi on. But first, | was trying to think

the Acircle of fifthso.

AROUND THE CIRCLE WITH FIFTHS (or FOURTHS)

The basic idea of the circle of fifth (described for at least 300 years) is that you assume
that a perfect musical fifth should be an exact 3/2 ratio. A fifth is five notes of a major scale,
like C to G. If we build all notes on fifths (assuming this can be done) what other notes do we
get. If you are near a piano, sit down and press the lowest C that is available. Then go up a
fifth to G. Another fifth takes you to the D, then to the A, and so on (see Fig. 1). Perhaps if
you had to guess, you would have no good idea as to whether or not this was going anywhere
useful. Yet we do find we get back to C seven octaves up. So for the piano, it works. If we
assume that in addition to a fifth being a perfect 3/2 ratio, an octave is exactly a 2:1 ratio, this
high-end C should be at a frequencyof2'=128, or sevemoto.ct aliteds ( 34
129.74634, or 12 fifth, which comes out a bit sharp to about a 1.36% f e r (Nate: la case
you were thinking about it, 128Y'? = 1.4983041 = 2*2, the equal tempered fifth i of course!)
But, to a very good approximation, we do get 12 tones, based on this alone.
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Seven Octaves C to C

c 6 D A E B F# c# 6# D# A F c
6b Db Ab Eb Bb

1 3/2 9/4 27/8 81/16 243/32 729/64 2187/128 6561/256 19683/512 59049/1024 177147/2048 531441/4096

= 129.74634

Fig. 1 Circle of Fifths (not 128)

The reader is invited to try this with a circle of fourths (starting on C and going to F, etc.),
assuming a perfect fourth is a 4/3 ratio. You will find this closes back on C after five octaves,
but in 12 fourths. The upper C is now at 31.569292 = (4/3)*? instead of at 32, so it is bit flat
(about 1.35%) this time, instead of 1.36% sharp the way the circle of fifths was. So again, we
get all 12 notes. (Likewise, 32%%= 2512 =1 3348399, the equal tempered fourth). (For
reference, recall that a half-tone, like C to C#, is about 6%.) Would it work with other perfect
ratios? What about a perfect third = 5/4? Nope, that gives you only three notes (C, E, and
G#). What about a perfect sixth? Nope - that gives four notes (C, A,F#, and D#).

We may well have been very comfortable with this explanation. But, if there is a
preference for those other consonant ratios, how well are we doing on them?

THE THIRD, FOURTH, FIFTH, and SIXTH : JUST INTONATION

Having decided to look at the circle of fifths, and decided that the fifth should be the ratio of
3/2, what other small integer ratios should we examine? First it may not be obvious that we
are even concerned with ratios of small integers. If asked, we might parrot back the idea that
exact ratios of small i nt ecpsetosmallintegersi(thusmasos n a nt
of large integers, or truly irrationalones)ibeat 6 and are fAdi ssonant 0.
complicated than that (see discussion later in this issue). When adding up two sine waves,
they may and do beat as an observable (by ear and on a scope) amplitude variation, often
very annoying. The same is not generally true of such waveforms as sawtooth, square, or
pulse, - those with sudden jumps. We have primary and secondary (subjective) beating. So
the exact details matter. Likewise the notion as to whether or not a pair of tones is dissonant
is a matter of individual experience and culture. Many people (such as myself) find
di ssonance just another (wel c®SmelletiiddDntealce® | to
have our scale tones in small integer ratios as an axiom. Note that we do want ratios that are
within one octave, between 1 and 2. Our already chosen ratios of 3/2 and 4/3 are of this type
we require.
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Clearly we might look at continuing from 3/2 to 4/3 and then to 5/4. Indeed, this we will
associate with the position of athird(@afimaj or 0 t hird), | i ke E of
opposite direction, we might consider 5/3, what we will take to be the sixth (like A of a C major
scale). So now we have a third, a fourth, a fifth, and a sixth. This (with the root) will turn out
to be five of the seven tones of what we need for a major scale.

Nothing prevents us from choosing the number of tones and the scale tone pitches any
way we like. But even as we agree to this freedom, in choosing simple ratios, we ca n ldetp
mentioning a major scale as though it was obviously already there (that why we mentioned C,
E, F, G, and A). So as a solid point of reference here, perhaps we do need to mention what is
usually done. This is the 12-tone equal-tempered scale. In this development (available for
perhaps 200-300 years or so0), the 12 tones within an octave are all equally spaced, at the

same RATI O. This ratio is the Atwel fth root

m =2 (1)

Fig. 2

1.066.. 1125 1.111...
16115 9/8 10/9 Just Tempered

1 o/4 43 312 5/3 2
1.261.333... 1.5 1.666...

CJDJEJFGQJA]EB]C

/

12599 13348 14983 16818 Equal Tempered

2 =1.0594631... ['J21 =1.122462...
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The tones generated with equal temperament (see below) are not small integer ratios.
Indeed we are looking to choose a musically transposable scale that we can use that
approximates the actual tones (that we might ideally prefer) to a very satisfactory degree. In
what we do below, we are talking about small
but we will look to the equal-tempered tuning ratios as a very familiar and useful reference for
comparison.

CIRCLE OF FIFTHS

Tone Circle First Oct. Ordered Eq. Temp Just C Scale
0 1.0000 1.0000 1.0000 1.0000 1 C
1 1.5000 1.5000 1.0679 1.0595
2 2.2500 1.1250 1.1250 11225
3 3.3750 1.6875 1.2014 1.1892
4 5.0625 1.2656 1.2656 1.2599 5/4=1.25 E
5 7.5938 1.8984 1.3515 1.3348 4/3=1.333... 3
6 11.3906 1.4238 1.4238 1.4142
7 17.0859 1.0679 1.5000 1.4983 3/2=1.5 G
8 25.6289 1.6018 1.6018 1.5874
9 38.4434 1.2014 1.6875 1.6818 5/3=1.666... A

10 57.6650 1.8020 1.8020 1.7818

—
-

86.4976 1.3515 1.8984 1.8877
12 129.7463 2.0273 2.0273 2.0000

CIRCLE OF FOURTHS

Tone Circle FirstOct. Ordered Eq. Temp Just C Scale
0 1.0000 1.0000 1.0000 1.0000 1 e
1 13333 13333 1.0535 1.0595
2 1.7778 1.7778 1.1099 1.1225
3 2.3704 1.1852 1.1852 1.1892
4 3.1605 1.5802 1.2486 1.2599 5/4=1.25 E
5 4.2140 1.0535 13333 1.3348 4/3=1.333... F
6 5.6187 1.4047 1.4047 1.4142
7 7.4915 1.8729 1.4798 1.4983 3/2=1.5 G
8 9.9887 1.2486 1.5802 1.5874
9 13.3183 1.6648 1.6648 1.6818 5/3=1.666... A

10 17.7577 1.1099 1.7778 1.7818
11  23.6770 1.4798 1.8729 1.8877
12 31.5693 1.9731 1.9731 2.0000
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Fig. 2 and the table on page 5 just above contain a goodly amount of information. Our
overall goal is to explain how the four tones E, F, G, and A are positioned, and to set a
background for the two additional tones we ne
some degree). In the just tuning version, we have decided to give the four initial tones ratios
of 5/4, 4/3, 3/2, and 5/3 respectively. Integer ratios are lovely, but we also need to express
them as decimals. For example, we will be discovering the ratios 9/8 and 10/9 i which one is
larger 1 right off the top of your head!

Fig. 2 shows a keyboard, with the notes of a C major scale marked in red. Above the
keyboard in blue we show the chosen ratios 5/4, 4/3, 3/2, and 5/3, with their decimal
equivalents below the blue numbers, in red. Below the keyboard, in green, are the decimals
for the corresponding equal-tempered scale. These are the numbers:

g )

forn=4,5,7,and 9. We note the very impressive agreement with the decimal versions of
the simple ratios (green and red decimals). This is kind of the whole message. This good
agreement is a bit of luck. Itis not luck that we chose a total number of tones that worked
best (for a relatively small number of tones total), but it does seem to have worked out better
than we had much right to suppose could happen.

Next we look at the dissection of the small integer ratios (brown numbers) shown above the
keyboard. For example, we had 5/4 and 4/3. So in going from E to F the frequency increased
by 16/15= 1.0666¢ . -sfTaapéd i ahimauscaade. AhWhén
musi cadt eifaultlhe r at i o, ofltl25mAppropBatety enolt, 2 full-stes 9 / &
seems to be about twice half-step. The third jump from G to A is from 3/2 to 5/3, which
multiplies by 10/9 or 1.111é in this ca-step. S
is about twice the half-step. In summary here, we find one choice for a half step (16/15) and
two possible choices for a full step (9/8 and 10/9). It is very useful as well to note the equal
tempered ratios (black numbers below the keyboard) for a half-step, and for a full step. Note
that the equal tempered ratio for a full step (1.1224621é¢ ) i s bet ween 10/ 9
(Il arger ). So everyone i s more or | ess in

o0~
O wn

We could have laid out this scenario by trying different numbers of total tones per octave.
Indeed we have done this before [6], and will look at this again shortly here. However, we
have also reviewed the circle of fifths and the circle of fourths as a hint about the choice of 12
tones. The table on page 5 shows the data for these two choices - the upper half being for
fifths, and the lower half for fourths. There are seven columns in the table. The first column is
just the number of the tone from n=0 to n=12. Column 5 shows the equal-tempered ratios,
including the four cases from Fig. 2, green numbers. Columns 6 and 7 repeat the information
for the four small integer ratio cases from Fig. 2.
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So now back to column 2. This is the frequency ratios for the circles. So itis (3/2)" for the
upper portion, and (4/3)" for the lower portion. These quickly exceed 2, so are returned to the
first octave (column 3) by dividing by the appropriate power of 2. The third column is thus a
bit scrambled. But we have now located 12 different tones, and these can be put in
ascending order, column 4.

We directly compare the ordered columns (column 4) to the equal-tempered ratios of
column 5, and the four just-tempered choices of column 6. Note that the circles provide
sequences of tones that are similar to the equal-tempered methods. The circle of fifths is of
course perfect for the G, and the circle of fourths is perfect for the F, by definition. But all and
al |, not a bad set of numbers supporting the
Aaccidento of a preference for smal.l i nteger
general range (finite resolution of frequencies by the ear, and finite length hands!).

So thatodés really only four notes (five with
major scale, and seven more for the full chromatic scale. What we have to work with is the
suggestion that a half-step might be 16/15, and a full-step 9/8 and/or 10/9. How does this
help?

. 15110/9
Fig. 3 15
g 16/15 32/27
16 ,.
1 9/8 \Preferred 1|w|
s
16/15 6/5 225/128 15/8
0/8

1 Arool5/4 | 413 312 | 513 ]15/8] 2

/10;’9 9/8 |g;g |1E-'15|

Preferred

9/8 |10/9
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Fig. 3 shows some obvious manipul ations. L
note B between A (5/3) and the octave C (2). We have a full step (A to B) and a half step (B
to C) to get from A to C. Can we build this from our proposed ratios? Yes, if we place the B
at a full-step (chosen as the 9/8 option) above 5/3, there is exactly 16/15 more needed to
reach C. So aratio of 15/8 (approaching 2) for B seems locked in (brown numbers in Fig. 3).

The choice for setting D is not so clear. But note that we need two full steps to get to E,
and that the suggested ratios (10/9) and (9/8), in either order, produce 5/4, the needed value
for E (blue or red numbers in Fig. 2). If we had to make a choice, we have that:

(10/9) = 1.11116.
+1%

(2212 = 1.1224626¢
+0.226%

(9/8) =1.125

so the choice of 9/8 first (red in Fig. 3) is closer to the equal-tempered result.

So that would get us pretty well to a major scale. It is perhaps surprising that if we go
through all our choices, we have:

(9/8)(10/9)(16/15)(9/8)(10/9)(9/8)(16/15) = 2

This scale only works in C major if we insist on the just tuning. But we are mainly interested
in how this leads us to the choice of the total number of tones for the equal-tempered version
which permits all keys and modulations (in the musical sense) between keys.

But we do want to consider a couple more tones here. Two are ones needed for the minor
scale. This means that we also need to know the ratios for E® and B®. Once we get to the
Abl ack keyso things wedave mooerpessibilittesng-orthe momenty a s
|l et 6s assume we still insist on just using (1
gives the possibilities of Fig. 3 above the keyboard. To reach the E® from C, two possibilities
are shown (purple and green), for which we likely prefer the purple, placing a 9/8 full tone
between C* and E rather than the 10/9 fill tone, as this gives us the ratio of the lower integers
6/5, and a nice continuation of the 3/2, 4/3, 5/4 downward sequence. EP chosen as 6/5 is
also 16/15 up from the 9/8 selected for D. For the B, we have options of going up from A or
down from B as shown (orange and grey). The lowest integers are in the ratio that puts B® at
16/9 (orange). Although the details are not shown, A® is best obtained (similarly) as 16/15 up
from G = 3/2, at 8/5. Fis not clear. These choices of E? and B” can be compared to equal
temperament, for E° as folows:
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(32/27) = 1.18518526.
+ 0.34%

(23'%) =1.1892071é  (equal tempered EP)
+ 0.9%

(6/5) =1.2

and for B:

(225/128) = 1.7578125

+ 1.1%
(16/9) . 1.77777776
+0.23%
(W12 = 1.7817974¢é. Y (equal tempered B

Another possibility for B® (not shown in Fig. 3) would be 9/5 = 1.8, which is 9/10 down from 2,
just using one of our full tone ratios. This would involve a new semitone ratio, 27/25 = 1.08
up from A.

The reader may wel Isillyautlof ofiywsirg 16416 d09, t hed 9/ 87?0
Indeed this is artificial. 1| n f act, the only real Arul eo of |t
small integer ratios. Nothing speaks directly to the density and uniformity or spacing, or even
the total number of tones in any scale, except as a user may wish for a tone not provided. It
is interesting to consider what the distribution of small integer ratios might look like. Fig. 4
shows the possible ratios that are between 1 and 2 for choices of a maximum integer of 6, 12,

24, and 48. Note that the choice of a maximum integer of 6 yields just five choices, the four

we used initially (Fig. 2) plus the 6/5 we subsequently added (for E®). It is further curious that

if you look at the cases below these, theyofc our se r emai n, butnearbhyey s ¢
competition. Well, not exactly that. For example, note that 5/4 (1.25) is present, but in the red

case, 7/4isnoti because we di dn Bytthegreeh case, 744 paps up,eas does,

for example, 7/5 (at 1.4), and these continue downward. Getting close to one small integer

ratio would mean that one of the integers would have to change slightly. For example, if we

had 3/2 = 1.5 and wanted another ratio very close to it, that might be represented by 3.01/2 or

301/ 200, and integers this | arge are not allo

EN#213 (9)



Fig. 4
Integers up through 6
* * * * + * *

6/5 5/4 4/3 3/2 5/3

Integers through 12

* HHEFE E F F F O F O+ + + % +  #* +
714
Integers through 24
* B e el O e e L e o o I i b s s +

Integers through 48
DS+ I+ B S <N e i+ i R - B R -+ - e R +

1 1.2 1.4 1.6 1.8 2

It is clear at this point that we have plenty of rational ratios to choose from if we wanted to
just have just intonation. But the advantages of small integer ratios become rapidly
unavailable if we try too hard to arrive at a particular decimal fraction. Just out of curiosity,
what would happen if we tried to represent an equal tempered scales as ratios? This is easy
to | ook at ratdfanttionMBhe tats furicton takes any decimal number and
attempts to find, within some precision that can be controlled (but not be made infinite!), a
rational approximation. The sequence 2"*? for n= 0 to 12 becomes:

1 196/185 55/49 44/37 349/277 295/221 239/169 442/295 227/143 3002/1785 1527/857 185/98 2

Just in case anyone supposed this would work.

OTHER EQUAL-TEMPERED SCALE POSSIBILITIES

It is not obvious (to me at least) why an equal tempered scale of 12 tones should work as
wellasitdoes. | guess some would wonder why it doesn
is to start with the assumption that all tones should be placed at equal ratios and we want
good approximations to the preferred small integer ratios. What number of tones should we
choose? We look for small error overall, in some sense, perhaps mathematically derived, or
perhaps just fit by hand (as in von Hornerés
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| have worked on this problem many times, and as mentioned, assigned it as a
homework problem many times (students love real examples of course). Further, it is a good
example of an engineering solution i a best answer given specified resources.

The problem is set up by first specifying the ratios 5/4, 4/3, 3/2, and 5/3 as the goal. The
proposed solution is to approximate these by selecting the closest ratios among those
available for some N-tone equal tempered scale: 2" where n runs from 1 to N. This is done
by a computer search. Itis easy to locate the equal-tempered tone that is closest to the
desired ratio. Then we can use some measure of the fit for a particular N. First and foremost
the total squared error is obviously one choice (Fig. 5). Other choices would be the total
absolute error, and the maximum absolute error. Here we will also look at the fit to the
individual ratios one at a time for additional insight. Some Matlab program we have used are
posted [12]. We have chosen to look at scales from 5 tones to 50 tones. Scales of fewer
than 5 tones give very large errors and are not of great interest. (This being distinct from the
notion of selecting 5 tones from among the larger set of, for example 12 tones, which is
clearly much used, as is obviously, the selection of 7 tones from among the 12.)

0.02— Flg 5

Total Squared Error

0.015

0.01— —

0.008

0 I { hd [TTII.TT¢T?rPOT!T.??=??9.'?.?.¢'=!¢.-
12 19 22 24 31 34 N

| | | | | | | | | | |
0 5 10 18 20 28 30 35 40 45 50 55
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From Fig. 5, we see the famous dip in the error at N=12, and better fits for such larger
values of N as 19 and 31. We note as well the general downward trend in the error as N
increases 1 exactly what we expect as our choices get closer together with increasing N.
Another point that needs to be made is that this differs slightly from our previous presentation
[4] because that presentation normalized the error to the value of the ratio. It makes little
difference.

Some additional remarks can be made. It should be clear that whenever we double the
size of N, we get back exactly the tones for the original N plus those in between. Thus
doubling the size of N candt be any wor se,
low error for N, then it is probably unlikely that doubling N will have any improvement. For
example, for N=12, we have good fits to the four ratios, and no improvement by using N=24.
On the other hand, N=11 is a poor fit while N=22 is quite good (better than N=12), so we know
that this doubling resulted in additional candidates of value. The change from N=17 to N=34
is clearly another example of this improvement.

The second error criterion we will consider (Fig. 6) is the total absolute error. Instead of
squaring the errors (thus emphasizing the larger ones) we add up the error magnitudes on all
four ratios. The general result is very similar to the squared error result. We see the same

009 Flg 6 N

0.08 —

Total Absolute Error

0.07— -

0.06 — —
0.04 — ¥ —

0.02— -

p LT L A

001 | | | \ | | | | \ | |
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features at N=12, 19, and 31 (although N=15 and 34 also look good). The third error test is
the use of maximum absolute error, and this is shown on Fig. 7. The overall result is similar
to Fig. 5 and Fig. 6. To better understand the difference between Fig. 7 and Fig. 6, suppose
we compare this to an exam that has four problems to solve. A student fails if the error is too
high 1 naturally enough. Fig. 6 would be the case where we use all four problems to
determine the grade (as we normally grade exams). Fig. 7 would be the case where we
grade the entire exam based on the one problem with the most error!

05l X Fig. 7

Maximum
Absolute Error

02+ -

015 -

0.05— —

Figures 5-7 do not indicate where the error is. This is perhaps fair enough because we are
in a kind of pass/fail mode. Music is famous forbeingsensi ti ve to i sol ated
audience dozes until the performer hits one wrong note! If you ever tried to play a piano
which had 98.86364% of its keys functioning properly (one bad key!) this is the same idea.
Thus above we were looking at an acceptable approximation to all four ratios.

But we can take a look at the error on the individual ratios. We will call these Fig. 8E, Fig.
8F, Fig. 8G, and Fig. 8A corresponding to the C major scale. Fig 8E is immediately attractive
as it shows some interesting structure. However, this much structure is not evident in the
corresponding three figures that follow. We can take a look at these individually to see
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0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Absolute Error on Third
5/4 Ratio (E in C Major)

Fig. 8E

LI

55

6 9 12 15 18 21 24 272829 30 33 36 39 42 45 48
| | | | | | | | | | N
[ [
X Fig. 8F
Absolute Error on Fourth
4/3 Ratio (F in C Major) |
[ AR {T : H[ THT“M.MMJT
| | 12 | 17 1!3I 24‘ 29 | K} | 36 I-1-1 | 48 | N
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0.08

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Absolute Error on Fifth
3/2 Ratio (G in C Major)

, { ] [1 , W., THTHMMM,M

12 1517 1920 2425 29 30 3536 041 45 48 N
| | | | | | | |

15 20 25 30 35 40 45 50

Fig. 8A

Absolute Error on Sixth
5/3 Ratio ( Ain C Major)

AIIAIRIsIN U'HIMHH

112 19 24 36 38 48
| | | | | | | | | N

15 20 25 30 35 40 45 50
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what we can learn i mostly that the error at the individual ratio level jumps around quite a bit.
Some scale lengths that we have not heard from yet will show outstanding performance for
some patrticular ratios (we expect this).

With regard to Fig. 8E, the third of the scale, or E on the C-scale, ideally this is the ratio of
5/4 = 1.25. In the 12-tone equal tempered scale, it is 2% = 1.2599. Clearly this is the result
we get from 22°, 239 2 412 2515 26118 ‘and so on. Thus we see the same error for E starting at
N=3, and at all multiples of 3. Except at 48! And why do we have the same apparent error at
N=29, not a generally recognized multiple of 3! The error at N=29 is almost exactly the same
as for N=12, etc., by accident. The choices are for 1.2400 and 1.2700, so 1.24 is the closest
to 1.25. But the error is essentially the same magnitude, but of different sign, as the recurring
1.2599. Note: The fit at N=28 is an outstanding 2%%8 = 1.2495673.

What is going on at N=48, where the error is less, is that at this point, the 1.2599 choice is
no longer the best. The best choice is 1.2419 (2'%*%) that has become available and is better
than 2'%48. Actually, going back to N=45, the 1.2599 error was already abandoned (in favor of
24 = 1. 2407) wessilywed that faom éhe plot. For N=42, 2142 = 12393, s0 this
is the largest N such that the 1.2599 is still in charge. This case, where a particular solution
for smaller N is replaced by a smaller error solution for a larger N is of course expected. We
give the details here because the ease with which the computer program does this is to be
appreciated.

The equal-tempered scale for 12 tones is well known to have a sharp major third, and this
is reflected in the error. The fit to the sixth (Fig. 8A) is of about the same as to the third for
N=12, but the fits to the fourth (Fig. 8F) and the fifth (Fig. 8G) are much better. For the fourth
(Fig. 8F) we were |l ooking for 1.3333é. and
N=24, 36, and 48. Note that N=29 is somewhat lower (2%?° = 1.3322) and N=41 seems
outstanding (27! = 1.3330). For lower values of N, note that N=12 is better that N=19, and
here N=17 is also betterthan N=19. Al | t hese results we think

From Fig. 8G, the fifth, we see a graph that is very very similar to Fig. 8F for the fourth. In
fact, in examining this to comment on these four graphs of Fig. 8, | was convinced | had
accidently repeated one, and looked more carefully to see which one | had used! But they
are not identical (see Fig. 9) - the similarity seems to be the result of their being symmetrically
placed about the diminished fifth. That is, one (F) is a half tone below F*, and the other (G) is
a half tone above F*. In the equal tempered scale, F* is 2%'? or the square root of two, the
exact midpoint of the scale. So this is certainly true for the equal tempered scale, and the

geometric meanis: ¢ 7 ¢ 7 Mc . But could it be true if we put in the small integer ratios
instead of the equal-tempered values? Well, itis: - - =WC¢. A bit of an unexpected
result.
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Accordingly, there is not much new in Fig. 8G not mentioned in Fig. 8F. This leaves us to
consider Fig. 8A, the sixth. Note that this result does not have the same sort of symmetry we

had with the fourth and the fithas - - Vo 7¢. We do see N=11 beating N=12, and an

outstanding result for N=19 since 2*#*° = 1.6665.

OTHER POSSIBLE CAUSES ?

As | have said above, the small integer ratio as a guiding mechanism for a 12 tone
chromatic scales (as supported into antiquity by the circle of fifths) has dominated my
thinking with regard t o sfomal94swhichp&dateddvenithe er s a
Musi cal Engi n e e(19853 whith gadela siillar presentation [5], and the error
minimization exercises (at least from about 1992) [6] tell me what | need to know. While we
probably dondt need an e x c uodsdor2006 37yeaes\y)itheret 0 as
was a secondary reason for writing this up now.
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Back in December 2007, when the January 2008 issue of Discover magazine arrived, |
noted an item [7] which reported on the findings of Dale Purves and his group in
Neuroscience at Duke. One does not expect a popularized science magazine to give many
details, particularly in a short item, or necessarily even to get the general ideas right, but they
serve us by providing | eads. Here they said
and this was interesting, although | assumed they got it backward. Although reported
correctly, the reason it is backward in the actual research (or just wrong) is that, as is often
the case, cause and effect are confused. See Appendix A for details.

The ear, the brain, psychoacoustics, and the physics of musical instruments (including the
human voice which is of course primarily for human speech) constrain what is possible, and
guide what actually evolves, at leastlongterm. Thi s fAbasi so drives both
which most likely co-evolved, toward different ends. Certainly the human vocal apparatus
was the first human musical instrument, but for thousands of years (Pythagoras studied
plucked strings about 600 BC) humans have produced mechanical musical instruments
(plucked and bowed strings, wind-driven pipes, drum membranes) which advanced musical
traditions and cultures. These could be produced and replicated with some precision.

Voiced speech is produced by vocal-cord-regulated pulses of air, with their harmonic
structure, subsequently filtered by an acoustical filter (the vocal tract) which has certain
(relatively weak) resonances. Human beings 1 specifically ( but far from exclusively) their
vocal tracts T are not made and replicated with precision. Formants are all over the place
varying with gender, overall size of individual humans, and almost with abandon. There are
really only two measurable formants in any voiced sound (principally vowels) and not only are
the frequencies of these widely spread, but the ratios varies widely. A plot of f; against f, (the
two lowest formants) in a plane shows large, often partly overlapping, i b a | | (ofofhestoer s or
Barney Vowel Char t sedtgin vonelsaureds. plfove wantriiogsaytwe have 12
tones in a scale, as opposed to perhaps 11 or 13, then we have to know our confirming data
to 1 partin 12, and we do not. Formants are simply not well-defined. Well, perhaps not so
bad considering that we wuse much o ffordatng and a me
we borrow these for making sounds. The point is that any suggestion that measured
positions for formants are reliable (even for vowels) is very unlikely.

[ As an aside, we note that formants are not necessary for language (obviously, you are
reading this) or even for speech. Speech progresses at a tiny bit rate (perhaps 50
bits/second) and is massively redundant in all respects. As basically a fascinating aside, to
illustrate that formants are not necessary, even acoustically, I ment i on James Gl ei ¢
wonderful book The Information [8]lwhi ch descri bes Atal king drum
two-tone drums which transmit messages through a dense jungle. Some sort of code? No i
they talk. The userdés |l anguage is tonal and wuses
they use for ordinary speech require the proper tonal sequence (pitch) within the word in
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addition to vowels (formants) and consonants. The drums only transmit the tones! Is this all

that is required? Certainly not, the tonal sequence could correspond to any number of words,

and giving just the tones would be highlya mb i gu ous 0 Gontexehelpsra bitel 6f you

have a pretty good idea what is about to be said, you hear it much better. But with the drums,

it is redundancy in the sense of a very round-about (and much longer) set of possibilities,

some standard, some invented on the spot, and it is for the human brain to juggles the

possibilities for what must make sense. | find this amazing. Especially as we would generally
ascribe drum communications to fAprimitive peo

So, with Discover acting to provide leads, | could find the actual paper, Ross et al [9]. |
do not really understand this paper. In some sense, it is reminiscent of the circle-of-fifths
back-casting its frequencies into a single octave. Here it is casting formants to an octave. In
approaching a new paper, it is bad to start with certain expectations (but try not to do this i
impossible) but this paper is just not convincing. No signal there!

So about Dec. 11, 2007 | emailed Pervus to ask if he was aware of the idea of just fitting
the fundamental low-integer ratios and thereatfter filling in obvious gaps. He replied quickly
that he was not, and | replied with attachments of [1] and [6], to which he replied with thanks,
and the suggestion that they took it seriously and would look it over shortly. This would not
be the first time, by any means, that | had noticed neurobiologists and perceptual
psychol ogists missing something quite apparen
their regular tool-kit. | heard nothing further.

Subsequently however, the same lab at Duke produced a paper of which | have just
become aware, Gill and Purves [10]. This paper is well-presented and has interesting
information about a variety of scales. Here they are concerned with selecting scales that
resemble harmonic sequences, and not speech formants (although they do allude to speech
as a source of the harmonic training). The exact criterion used here to determine similarity to
a harmonic series may be new, but the basic idea of selecting scale tones from a harmonic
series is known and known to be limited to perhaps at most 6 or 7 harmonics, yielding only a
fifth and a major third. One problem is that as we go to higher and higher octaves, the
number of harmonics within that octave double, while the number of scale tones remains the
same. If you look to high enough octaves, you will eventually find harmonics in any position
you desire.

Here is an exampl e: Let écsfrom bto 8. iTkdus the harmanier i e s
numbers are 1, 2simplBtake thalfrequencies to bd these same integers. So
for the frequency range 1 to 2, the first octave, we have only the fundamental. We will of
course take the frequencies that are multiples of 2 to belong to the endpoints of the first
octave. Thus the second octave has harmonics (and frequencies) 2 and 3. The third octave
has 4, 5, 6, and 7. The fourth octave begins with 8.
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Next we divide the second octave by 2, the third octave by 4, and the fourth octave by 8.
This puts all frequencies back into the first octave. Finally, we arrange the results in
ascending order (there are repeats of course). The table just below shows the results:

Harmonic Back-Casted to Possible
Number  Frequency First Octave Sorted Scale Tone
1 1.0000 1.0000 1.0000 C
2 2.0000 2.0000 1.2500 E
3 3.0000 1.5000 1.5000 G
4 4.0000 2.0000 1.5000 G
5 5.0000 1.2500 1.7500 ?
6 6.0000 1.5000 2.0000 C
7 7.0000 1.7500 2.0000 C
8 8.0000 2.0000 2.0000 C
_I
Fig. 10
1 1.25 1.5 1.75 2
Harmonics Harmonic 5 Harmonics Harmonic 7
1,2,4,8 3,6
1.;599 ! ! 1.4983 ! 1.6;18 1.?;18
C C# D D# E F F# G G# A A# B C
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16 Harmonics - Numbers in Black

Fig. 11

1
2 3
4 5 6 7
8 9 10 11 12 13 14 15 16
* 1.1225 t 4 ¥ t * 1,8:"377
1.2599 1.4983 1.6818 1.7818
cC c#& D D# E F F# G G# A A# B c
| | | | | |
1 1.2 14 16 18 2
I I I
32 Harmonics - Numbers in Black Fig_ 12
1
2 3
4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 |21 22 23 |24 |25 26 |27 28 29 |30 31 |32
1.0395 1.1892 ! : : : * :
1.1225 1.8877
1.2599 1.4983 1.6818 1.7818
C Cc#& D D# E F F# G G# A A# B c
| | | | | |
1 1.2 1.4 1.6 1.8 2
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Fig. 10 does show evidence for a C major chord (C-E-G), but not much for a scale. In
particular the 7" harmonic (back-casting to 1.75) is not contributing a tone. Fig.10 plots these
results against the 12-tone equal-tempered scale positions (red stars). Fig. 11 shows a
similar result where we use 16 harmonics. Note that this looks very promising for the lowest
tones (C, C#, D, and D#), but fails completely for the upper portion. Fig. 12 shows 32
harmonics, making the point that you can eventually get better and better approximations if
you use enough harmonics (although most are not used at all). And of course, a 32™
harmonic of something like A=440 Hz is 14080 Hz and gets near the top of the hearing range.

The use of a harmonic series to argue for a particular scale is problematic. The argument
t hat fAconspeci fi c speeadh)arhins nsad faver hasmonid rdlatiomships puts
the argument further afield.  In the new paper [10], they do not mention the earlier paper [9].
And while they do (now) mention von Hoerner i they dismiss the ideas:

AA third approach has used error minimization algorithms to predict scale structures
under the assumption of competing preferences for small integer ratios and equal
intervals between successive scale tones [15,16]. This method can account for the

structure of the equal-tempered 12-tone chromatic scale but cannot account for any

of the five to seven-tone scales commonly used to make music. Moreover, no basis

was provided for the underlying assumptions. 0

(The two references, 15 and 16, are exactly [2] and [3] here.) | have to disagree with
everything said after fAbutd in the quote abov

First of all, the 12 tone determination by the error minimization gives the possible choices
of 12 from which we may then chose subsets for smaller sized scales. And, we cannot justify
too much precision with regard to choosing available tones, or claiming that tones are
significantly and practically different. Charles Taylor summed it up very very well [11].
Indeed, in forming a major scale we had no trouble (above) to choose 5 tones from among 12
onthebasisofl ow i nteger ratios, andhao heAsdodtotal tonesp n a |
7, a relatively small number, as compared to all 12 or perhaps 19 or 31 etc., we have only to
put on our engineerd6s hat and say AFI NITE RES
comment in the quote abosd. funderl ying assump

So if we agree that we have 12 tones reasonably well selected, starting from the overall
goal of approximating certain low integer ratios, what else is necessary to select subgroups of
these for various scales of perhaps 7 notes, 5 notes, etc.? One thing would be to look at
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possible combinations. Finding the number of combinations of N things (N possible tones)
taken r (r tones in scale) at a time is the classic formula:

8 A
A A
which is 792 for N=12 and r=7 (or for r=5 for that matter). Thatodos a | ot of s

mathematically, even before we consider what we need and an afford. | do not know how to
reduce this number properly here. One thing is that we would certainly not consider starting

on a differentnotetobea di f f erent scal e. And we dondt g
octave. Perhaps more importantly, we expect a relatively uniform distribution. Scales in
common use (major, mesorantdhpentbaionscfhiismodl es

constructed of only full steps and half steps (very occasionally 1.5 steps) with no clustering of
half steps beyond two. A scale consisting of tones taken serially from 1 to 7 of all 12 is not
used in practice. So the number is perhaps 20 different scales (?), most of which are very
seldom used. And the reductions suggested just above? Well it is almost certainly a matter
of esthetics much most likely than of neuroscience. It is a matter of tradition, and as
suggested above, of resources.

REFERENCES:

[1] von Hoermer, S. , A Un i \Ectroreotes, Vol S, Na 85, Feb. 15, 1974, pp 2-4,
posted at link below:

http://electronotes.netfirms.com/UniversalMusic.PDF

[ 2] von Hoer ner , 8sycholagy afiMusecr \la2, NoMU@ctolme?1874)
pp 18-28.

[3] von Hoerner, S., AThe Definition of Major
Di vi si ons PgycholOgy bfdausac, \ol. 4, No. 1, (April 1976), pp 12-23

[ 4] von Hoerner, S., dTNeOadgerver,s/ol.N% Kd. I Feh.11974 Abou't

http://www.nrao.edu/archives/NRAO/observerV15N1.pdf

(This seems to be a newsletter of the Green Banks Observatory. A very good easy to read
description by von Hoerner. You may be distracted by all the other interesting stuff there from
vegetable gardening to absolute pitch in small children.)

EN#213 (23)


http://electronotes.netfirms.com/UniversalMusic.PDF
http://www.nrao.edu/archives/NRAO/observerV15N1.pdf

[ 5] Hut chins, B.MusiiMwmdi Ealgi $ea(t%Dspp Hed3nbd)o o k
posted at:

http://electronotes.netfirms.com/Scales-MEH.PDF

[ 6] Hut c hi n-SquareBand MinfiMax2Errdr Estimation of the Musical Scale
Qu e s t Electrgnaotes, Vol. 17, No. 179, June 1992

[7] S. Kruglinski, AMusical ScalDesovavlidJaniayy t he
2008, a short description available at:

http://discovermagazine.com/2008/jan/musical-scales-mimic-sound-of-
language#.UL6zY9na8dA

[8] GI ei ck, JhatiDlraulnks (TWhen a Code | sTheNmfdrmationCod e
Pantheon (2011).

[ 9] Ross, D., & J. Choi, D. P BANS,evel.,104iiNdL28,i ¢ a |
June 2007

http://www.pnas.org/content/104/23/9852.full

[10] Gi I, K. Z. and D. PurMuess cinA BhicsaONEgioc a | R a
€8144. doi:10.1371/ journal.pone.0008144 (2009)

http://www.purveslab.net/publications/qill purves 2009.pdf

[11] Taylor, C., Exploring Music i The Science and Technology of Tones and Tunes, Inst. of
Physics (1992). Taylor wrote:

Some of the differences are very small indeed and, while | understand the theoretical
reasons for the choice of some of them, | find it difficult to believe that anyone but the
most highly trained musicians could really distinguish between some of them. | suspect too
that all tuners would not be capable of setting particular instruments in a particular scale
without the aid of electronics. How it was done in the time of Helmholtz | find it difficult to
imagine.

The first point to get clear is that music comes first and scales later. Scales can be
compared with the grammar of a language; it is perfectly possible to speak a language for
the whole of one's life without ever understanding its grammar. And, in the same way,
musicians, especially those in the folk tradition, can write, play and sing musical
compositions without being consciously aware of the scale structure involved.
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APPENDIX A: COMMENTS ON ROSS ET AL [9]

The two main claims of Ross et al [9] are that (1) there is no existing understanding of why
a 12 tone chromatic scale is in general use and (2) that the spacing of formants in human
speech provides such an explanation. From the overall discussion above, it should be clear
that good satisfactory arguments for the origins of a 12-tone musical scale are long-standing
and relatively abundant. In this appendix we show why vocal formant placement as an
explanation for musical scales is unlikely.

(a) CAUSE AND EFFECT

It is not inconceivable that vocal formants could occur at scale tones. It is perhaps even
likely. Both have a common basis in psychoacoustics, etc., and the same hearing mechanism
could well have a preference for small frequency ratios in both cases. This would mean both
are the effects of a common cause, not one the cause of the other, in either order.
Considering that singing almost certainly represents the origins of human music, the de facto
emergence of scales might have been a very early occurrence. Today we do generally sing
or are otherwise accompanied by harmonies (chords) that are scale tones. Formants that are
scale tones might be serving like actual chords in a rudimentary way. This is speculation
only.

(b) FORMANTS ARE TOO POORLY DEFINED TO DETERMINE SCALE TONES

Much is known about speech formants. The work of Petersen and Barney is classic [see
Peterson, G. and H. Barney, @AContr oUASNMe/bl.hods
24, No. 2, pp 175-184 (Mar. 1952)]. Fi g. A1l bel ow shows a version
which is overplotted here with blue curves representing the frequency ratios of scale tones
over three full octaves. (Note that these are straight lines, constants ratios of f, to f, radially
outward, appearing as curves because of the log scale on the y-axis.) The curve that is most
lower right is a 1:1 ratio. The next curve above it is a 9/8 ratio, and so on for three octaves
(8:1) of a major scale. Under the curves we have 10 vowels represented by the range of
formant ratios of f; to f,. We have removed the indicators of the actual vowels to avoid clutter
T they are not essential here. These balloon regions were obtained by Peterson and Barney
by measuring formants for a range of speakers for the particular vowels. Note that there is
considerable variability in both the f; and f, directions, with some overlap. Typically a
chosen vowel overlaps 5 to 10 of the scale tone curves. The variations in frequency are fully
expected. The essential point here is the fact that the balloons underlie a wide range of
ratios.
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It is worth noting that the scale ratio curves do have a trend that is elongated in the same
direction (generally considered) as the formant balloons. This is almost certainly due to the
fact that here we have acoustic filters (a vocal tract) that varies in length from individual to
individuab, but | ess so in fipi pe andwiled.oThaReteisan/Barnrey c a | |
work clearly associates formant ratio with particular vowels, although as is evident from Fig.
Al, the plane is largely populated and boundaries between different vowels are not absolute.
Vowels in English (perhaps,in par ti cul ar) have been descri beq

There is no suggestion that | can find in [9] that suggests a relationship between a
particular formant and a particular scale tone. Indeed, there likely should not be, except as
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we note the similarity of the number of vowels in this case (10) to the number of scale tones
(12) and that both are associated with particular ratios, or range of ratios, of two frequencies.
So instead of an association of vowels with scale tones, perhaps a larger regard needs to be
given to the apparent commonality of the phenomena of scales and the phenomenon of
vowels with some overriding aspect of perception (like resolution).

(c) ISIT ANUMERICAL ARTIFACT?

In working with students for so many years, and even spending mandated portions of some
design courses on 0engiissees suchmyreporownitimg),mhaveat i on s
encouraged the retention of elements of a #Ath
report). We of course all tend to neaten up our work and forget the pitfalls we encountered
along the way, forgetting that the reader following us, or better still, thinking ahead, is likely to
fall into the same. | am bringing this up here to bring forward the point that the distribution of
small integer ratios presented in Fig. 4 was done as a curiosity, on the spot, and not with
anticipation of how it might relate to a careful study of [9]. Indeed, it was only as | went back
later for a careful study of [9] that a noticed the striking similarity of my Fig. 4 to the graphs in
[9], for example the one at the link:

http://www.pnas.org/content/104/23/9852/F3.large.jpg

Letdés call this online figure Fig. A2, althou
note the concentration of results at the lowest integer ratios (the just tones), and the regions
surrounding them on either side where competi
4, we just chose all integers within ranges (and did not stack up resulting repeats). Looking at
theA Met hodso of [9], we find the following:

fFor both the word and monologue data, the nearest harmonic peak to the underlying formant
maximum given by Praat was used as an index of the formants: the formant value assigned by
rlinear (sic) predictive coding was divided by the fundamental frequency, and the result was
rounded to the nearest integer. The ratios of the indices of the first two formants were then
calculated as B/A where B = the formant 2 harmonic index and A = formant 1 harmonic index
[the data were plotted as log,(B/A), as is conventional]. Ratios were counted as chromatic if
they corresponded to just intonation values for the chromatic scale (see Discussion) i

The emphasis in red was added.
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So what is the range of the formants, and the range of the fundamental. The male voice
in the most general terms has a fundamental of say 100 Hz to 150 Hz. As seen in Fig. Al the
first formant runs from 200 Hz to 1400 Hz, and the second from 500 Hz to 4000 Hz. Typically
we expect relatively few harmonics (integer multiples of the fundamental) in any formant
(perhaps 3 to 5 harmonics). The formant itself is the frequency response of a filter, and
formant filters are typically not sharply peaked bandpass features. If we determine the
formants from vocalization, we need to fAdecon
vocal cords) from the filter. This is not easy. In general, we would instead look for spectral
peaks to show the frequency response. This relies on seeing the response for the
frequencies present (only the individual harmonics). There is not the slightest reason to
believe that the peak of a formantds response
Accordingl vy, iofuntdheed of otrhmearnet ciasn fiore consi der abl
This also accounts for the isolation of small integer ratios against an unpopulated background.

So here it appears that the methodology quantizes the formant frequencies to integer
multiples of a fundamental (the harmonics). [In a Dec. 10, 2012 email from Purves, he stated
that the integer rounding was a problem and that his group had de-emphasized the use of
formant positions.] By necessity this rounding forces formant ratios into integer ratios, and
generally smaller integers. From that point

APPENDIX B: TOOLS AND DEVICES

Evolution has so often produced mechanisms and relationships so precise and apparently
clever that we easily forget that there was no design or intention involved. We may be led
down a false path looking for causal relationships when all we really have is contingency and
subsequent adaptation. Take for comparison a wrench! Does anyone not suppose that the
wrench (the adjustable open-end T Fig. B1) coevolved with nuts and bolts. The wrench
involves of course a lever, a screw mechanism, parallel surfaces, and a 30° offset of the
planes relative tothe handle. A si mi |l ar earl i er device was t h
harder to use, but was mostly in the era of square nuts. With the advent of hexagonal nuts
and the open end with the 30° offset, it became possible to tighten the nut with as little as 30°
of twist of the wrench, by alternately reversing it.

Well, there are lots of variations on this, and many similar clever man-made devices, but
we do often notice that there exist very real limits as to when things are getting better, and
when they are not, or even if they could change substantially at all. For example, Fig. B1
does show booth square (4 sides) and hex nuts (6 sides), both of which are familiar and
usually interchangeable (as | recently observed in putting a muffler back on my chain saw.
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Fig. B1 also suggests five unconventional nut shapes, 3, 5, 7, and 12-sided, as well as an
irregul ar shape. We | i k e |-nut/3@r-offsel was a go@d ideahvehyg e .
not, even better, a 12-sided nut and a 15° offset. Well, you protest, that is almost certainly
going to slip and shear off the ridges. Six sides is enough. In many cases, four sides was
enough. Not only do we not need more, but performance is worse with more. And our needs
are flexible. The nut which fell (forever lost) from my saw was hex but all | had (or needed)
wasasquareone. Someti mes things are just Aout there

l s it perhaps the case that scales of 5 or 7
by with fewer tones very well, but very many more are just too many (rounding off the rims).
And some intermediate numbers] ust d oatdll(likew ve-&ded nut). We have the
tool, the ear/brain processing sound, largely from our deep evolutionary ancestors. The
(perhaps) uniquely human notions of speech (one form of language) and music were informed
by this in-place machinery that worked naturally (by accident?) with certain formant divisions
or frequency divisions (scales) but not others. Interesting, but perhaps too often over-thought.
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REVISITINGBEATING

-by Bernie Hutchins

INTRODUCTION:
The audi o phenomenon of fibeatingo is familie
start to play in a band) that two musi cal i ns

make an annoying sound. By the time we get to high-school trigopnometry and physics, we
associate the sum of two sinusoidal waveforms with an amplitude variation. In trig it is the
equation:

[ O (s ci Qe— Al 6— 1)

and in physics it is just the alternation between constructive and destructive interference.
Anything you learned in high-school must be too simple to bother with ever again!

So here are four questions to see if you are really comfortable with beating.

(1) We can parrot back the result that the beating of two sinewaves occurs at a rate
equal to the difference frequency. Or is it half the difference frequency i equation (1)? Or

is it twice half the difference frequency i two peakings of amplitude for each cycle of —— ?
Factors of two need to be pinned down.
(2) From equation (1) we see four possible frequencies: A, B, (A+B)/2, and

(A-B) /I 2. And i s (na addition) tham gives surp dnd diffaréncedraquencies?
But then again, equation (1) shows both a sum and a multiply. What is really there?

(3) So far we are talking about a very small difference between A and B. What
happens if A and B are not close to each other, but close to a small integer ratio; like A=2 and
B=3? Does beating still occur?

(4) What happens in the near-unison case (i.e., A is close to B) if the waveforms we are
adding are not sinusoidal (perhaps triangle, square, pulse, sawtooth)? In this case, do we
look at things in the frequency domain or the time domain?

Where should we begin? Well, we begin by adding two sine waves of very close
frequency together, by equation (1), and by plotting a graph.

EN#213 (30)



TWO CLOSE SINE WAVES

Equation (1) is a familiar trig identity. We most often would see a similar form such as:
(b ¢l b pIC DED O ZOED O 2)

This equation (and three similar forms of the product side) expressest he fAbal anced
modul ator 0 or 0do showirg that|imdeed, eultiglging twe snusoidlal

waveforms together produces sum and difference frequencies. Of course, an equation works

both ways, and this is the point of equation (1). The sum of two sine waves is a sinewave of

the average frequency multiplied by a sine wave (cosine actually, here) of half the difference
frequency. Thinking of the spectra involved, a multiplication results in sum and difference
frequencies [equation (2)], or we can say that a spectrum consisting of the sum of two

sinusoidal waveforms can be thought of as appropriate balanced modulation [equation (1)].

The form as in equation (2) is |Iikely the mos
used in music synthesizers (and in frequency shifters).

Concentrating on equation (1), if we assume that the frequencies corresponding to A and
B are very close together, thenthe i "Q&— term, the average frequency is very close to

being sin(A) or sin(B). I f you | i ke, the 2
of summing two like things. The second term which multiplies (or modulates) this average

sinewave (that is very much like either of the originals), is ® ¢ —— which has a low number

(A-B) which is then even lower, divided by 2. Since cosine is an even function, it does not

matter whether A-B is positive or negative, so the order does not matter as we must have in a
product . Thus we envision a finormal 06 type o
frequency. Pretty much the idea of what we see in Fig. 1a, Fig. 1b and Fig. 1c.

For Fig. 1a, we have chosen two sine waves, one of 300 Hz (red) and the other of 302 Hz
(blue), and we display 10,000 samples of both (a full second) so the actual plot is quite purple,
and hides behind the black sum for much oftheplot. You candét see any of t
easilyseet he two ampl i tude il oamplitude erivdlopd oftheeswsu | t . T
begins high, goes down to zero, back up and down, and then finally up again (and of course
repeats on both sides forever). There are two complete amplitude lobes here for the one
second, so the amplitude peaks and goes to zero at a rate of 2 Hz, the difference frequency.
Yet it is quite true that the modulating waveform is not the difference, but rather half the
difference or 1 Hz, the light blue cosineienvel opeo that is overplott
saying the sum contains the difference frequency (it does NOT). The amplitude beats occur
at a rate given by the difference frequency. Tricky.
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How do we know that the sum does not contain the difference frequency? Because
eqguation (1)! Sheleftside, asuthoiech aftértall defines what a spectrum is,
does not contain the difference frequency of 1 Hz. Nor does the equation contain the
repetition rate of 2 Hz. Nor does it contain the average frequency of 301 Hz. Clearly if we
do a frequency analysis such as a Fourier transform, we get a sum of components that are
already there, And equation (1) already
302 Hz.

Since we candét s eatwdzbom-indigutesarel alscoshowrk i Ejg. 1b1
show the small region around time 0.16 where we see the two sinewaves, which were
effectively fAin phaseo at ti me 0 Fg.dcghavstheu
region around time 0.25, where the two sinewave components actually cancel.

At this point, we can go back and answer questions (1) and (2) without difficulty. Possibly
we were not sure of these answers, or had forgotten them. Classic case. In fact, this case

can be considered the Ac4ntrol o for questi
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Detall of Fig. 1a shows
the two components
starting to
phaseo with
having decreased from
an amplitude of near 2 at
time O of Fig. 1a to near
1 at this time (centered at
0.16 of Fig. 1a).

indr
t he

At this point (about time
0.25 of Fig. 1a) the two
components are out of
phase and cancel,
giving the amplitude
minimum of Fig. la.



BEATING CLOSE TO SMALL INTEGER RATIOS:

Thecl assic case here is the beating close to
we will look at the case of complex waveforms, but for the moment, we will stick with
sinewaves and will use large ratios. We should perhaps mention that many of the figures
here (the ones with the fAao suffi x) contain
Further, at times these are even difficult to calculate and ploti such t hings as fs:i
al i afdiirkgegdo a A MJcanmf@ol us iawetthink thege are for the most part avoided.

Fig. 2a shows the results of the sum of two waveforms at an octave. The important thing
about this figure in comparison to Fig. 1a is that it does not show large amplitude variations 1
there are no apparent amplitude beats. While it looks from the plot like there are lobes and
level changes, what is actually happening is best appreciated by looking at the zoom-in of Fig.
2b. Any zoom-in along the waveform of Fig. 2a will look essentially the same as Fig. 2b.

T h & allGhere is T anything else is an artifact of the plotting. Fig. 2a is just a complex
waveform consisting of a fundamental and one harmonic (equal amplitude). No beating is
occurring. Here we have started with the ratio set to a perfect 2:1 (octave).

T T T
2 Red=200 Hz Blue=400 Hz Black=Sum PERFECT OCTAVE Fig.2a -
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We are now in the position to look at the imperfect octave. Fig 3a shows the case where
the upper frequency is moved from 400 Hz to 402 Hz. Once again, this screen/plot is a mess,
but what we do see here is that some amplitude variations are occurring, but there is no full
cancellation to zero, as there was in Fig. 1a, but rather an overall up/down waver. There are
again two complete i e v e lnetes \We again get a better feel for what is happening by
looking at the zoom-ins, Fig. 3b and Fig. 3c, which we compare to Fig. 2b. While Fig. 2b
showed what was going on locally, it is the same for the entirety of Fig. 2a. Fig. 3b and Fig.
3c are snapshots of Fig. 3a. Itis hard to see a real change across the limited time width of
Fig. 3b and Fig. 3c, but it is there.

One major difference here is seen be going back to equation (1). The frequency
correspondingto(A-B) / 2 whi ch was 1 Hz iQminowildy Hz. IFm.,3dt he
and Fig. 3e e show the situation at about time 0.38 of Fig. 3a, where the overall waver goes
positive the most and negative the least. The black curve in both cases is the exact same. In
Fig. 3d it is the usual sum, while in Fig. 3e it is the product (hence the light blue and green,
solid, curves). The light blue is the same general cosine curve as Fig. 1a, just a much higher
frequency.

Here we have a fibeato but not one that is fu
Asecconder 0 or Asubjective beatso. They are e
twice each second) but it is not by any means as objectionable as the full amplitude
variations.

Similar Asubjective beatsod occur at other sn
example (we could of course consider many more) we look at a 3:2 ratio which is a musical
fifth. Fig. 4a shows the case where there is a perfect 3:2 tuning, 300 Hz and 200 Hz. Asin
Fig. 2a, we see some artificial structure due to the limited resolution of the screen/plot. But
clearly there is no apparent amplitude variation. Fig. 4b shows a zoom-in which explains a
lot of the artific i a | pl otting fAstr ucFgwbistypical 6f any zogm-in thah .
we could have taken from Fig. 4a. Itis just a periodic waveform. This is a case of great
interest because it has a periodicity of 100 Hz, but no spectral energy at 100 Hz. That is, the
famous case of a fAmissing fundamental 0. N o

So we will conclude our look at the mistuned integer ratios by letting the 300 Hz frequency
go up to 302 Hz. This result is shown in Fig. 5a, with Fig. 5b and Fig. 5c¢ providing the
familiar zoom-ins. As in the case of the mistuned octave, we see in Fig. 5a the usual mess of
screen/plot irregularities, but the main point is that there are amplitude variations, but here
they are less extensive thanint he mi stuned octave, and certai:
compared to Fig. 1a. Fig. 5b and Fig. 5¢ do show that there is a gradual change of wave
shape as we move through Fig. 5a, much as we saw with Fig. 3a.
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Slow changes

across Fig. 3a are
better seen

by comparing the
Asnapshot so
Fig. 3b at left and

Fig. 3c just below.
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