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THE SOUND OF A BOUNCING BALL 
                                                          -by Bernie Hutchins 

 

INTRODUCTION 

     This is mainly for fun, and it did not work out the way I had hoped.  The idea is that we 

have all heard the sound of a bouncing ball.   By this I mean the sounds as the ball strikes 

the floor.  Two things to note:  (1)  We only hear the sounds of the individual floor strikes 

(each strike a discrete sound) and (2) it is not periodic in the real case.  At first the strikes are 

loud and widely spaced in time, then they come faster and softer, both the result of 

dissipative loss of energy.  And it’s not just balls of course.  A flashlight on its side on my 

desk is setting so that it vibrates in that same general manner, eventually buzzing to silence.  

We see this every day. And we understand it very well in general terms. 
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     The typical ball bouncing event occurs over many seconds, starting with perhaps a 

second or so between bounces, and then the ball bounces less high, and strikes at a faster 

rate.  Eventually it does stop completely.      

            

THE MODEL 

     Here we will take the case of a bouncing ball that is pretty much ideal except each time it 

strikes the floor, it loses a certain fraction of its energy (probably eventually to heat).  The real 

case in the real world is very similar to this, and every child and probably every dog is familiar 

with this fascinating event. 

 

     Figure 1 shows a Matlab simulation, a numerical integration starting with just Newton’s 

second law.  Here we have assumed that everything is ideal except when the ball bounces 

off the floor it has only 80% of the energy with which it struck the floor.  Note the first full 

bounce is to a height of 0.8, the second to 0.64, and so on.  Here unlike many decaying 

signals we have studied in the past, the width of the bounces is not constant (periodic except 

for amplitude changes) but decreases as the amplitude decreases.  In fact, the zeros are at    

0.2495, 0.6965, 1.0960, 1.4530, 1.7720, 2.0570, 2.3115, 2.5385, 2.7410, 2.9215, 3.0825,    

3.2265, 3.3550, 3.4695, 3.5715, 3.6620, 3.7425, 3.8145, 3.8785, 3.9350,…. which is in pretty 
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good agreement with the theory below.  [The simulation interval was 0.0005.]   So this looks 

basically right.   Are these sinusoidal lobes?   Nope. 

  

THE SIMPLE PHYSICS:                                                              

      What happens is that we release the ball at a height of h feet (normalized to 1 in Fig. 1).  

It falls starting with zero velocity, accelerating with rate                until such time as it 

strikes the floor.  Upon release, it had a potential energy (relative to the floor) of     where 

m is its mass.  At the floor, this has all become kinetic energy and a certain fraction, r, of this 

is lost during the collision.  So it leaves the floor with a smaller velocity (and opposite 

direction) than it struck it, and will decelerate to zero velocity at a height less than the initial h.  

At this point, the exact same steps repeat with the new height as a start.    

     We start with the very first equation of college physics:  

                                       s    
 

 
                                                                          (1) 

where      .  Thus t1, the time at which the ball first strikes the floor is: 

                                                
  

 
                                                                         (2) 

It is convenient to represent the energy during the first bounce as      , so the height of 

the first bounce is   .  The time to fall from the top of the first bounce back to the floor is 

(2rh/g)1/2, which is the same time it took to rise to the height rh,  Hence the time of the first 

bounce is 2(2rh/g)1/2.  The time for the nth bounce (the zeroth bounce, n=0, is represented 

only by its second half, the initial drop) is:  

                                                   
    

 
                                                                   (3)          

 Using equation (3), we compute the widths of the lobes.  The first lobe comes out to 1/2, and 

half of this is really on the negative time side, so we replace it with 1/4.  Then we sum the 

  for the locations of the zero crossings which give the series:   0.2500, 0.6972, 1.0972, 

1.4550, 1.7750, 2.0612, 2.3172, 2.5462, 2.7510, 2.9342, 3.0980, 3.2445, 3.3756, 3.4928, 

3.5977, 3.6915, 3.7754, 3.8504, 3.9175, 3.9775. . . . in good agreement with the results of 

the simulation (this second set of numbers right here are of course better). 
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     So the physics looks good.  Note from equation (1) that the lobes are parabolas.  So not 

only are the zeros not equally spaced, but the lobes are not sinusoidal.  To better make this 

point, Fig. 2 shows (the absolute value of) a decaying sinusoidal waveform (actually a cosine 

of course) manipulated to resemble Fig. 1, but note that the zeros are equally spaced.  Just 

to sharpen the point a bit more, Fig 3 shows two lobe shapes:  the parabola and the 

sinusoidal lobes fit to the points (0,0), (1,1), and (2,0).   They are not the same, although the 

difference is likely minor.   If this were a waveshaping, the parabola represents a very small 

amount of 3rd harmonic distortion (with even less higher odd-harmonic distortions). 

 

 

 

     So while the shape of the lobes is similar, these are not that closely related due to the 

tighter spacing of zeros in the case of the bouncing ball.  Indeed, we have not really made an 

issue of the “x-axis” in these graphs.  While we understand it to be time in all cases, in Fig. 1, 

the case of a bouncing ball, it is hard not to think of it as distance.  That is, we toss the ball 

slightly horizontally while releasing it, as we would likely do when playing with a dog.  If we 

just drop it, it goes up and down and we have to think that it is time that is as moving.   In the 

case of the decaying sinusoidal waveform, it is hard to think of the “x-axis” as distance.  It 

represents a harmonic oscillator with damping.  Thus it might be a spring with a mass moving 

on a straight line, with friction.  It only moves along a line, and this displacement  is almost 

certainly interpreted as a function of time. 
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     There is the additional difficulty that a harmonic oscillator does not “bounce” when it 

strikes the zero of the vertical axis.  Thus the absolute value interpretation of the harmonic 

oscillator is a difficult physical concept (mechanically at least).  On the other hand, the ball 

clearly does bounce so as to naturally remain positive.    

 

 

 

 

BOUNCING “THROUGHT THE FLOOR”  –  AND SPECTRAL ASPECTS 

      

     Our initial question was what the bouncing ball sounds like.  Here we assume that the 

waveform is presented at a rate that should be audible directly, and not as a series of 

discrete strikes.  While we don’t anticipate anything much harmonically (Fig. 3), and the 

effect of the absolute value is similar (Fig. 1 and Fig 2), if we do listen to the two, they are 

vastly different, for an obvious reason: the frequency seems to be changing, rising as time 

progresses in the case of the bouncing ball.  The decaying sinusoidal waveform is a ”pluck” 

or “ping” or “bongo” while the bouncing ball is a “chirp” or “whoop” type of sound.  As is often 

the case, the exact effects depends on the spectral content that is present within an 

appropriate time window for the human ear.   To get some idea of this, we of course try the 

FFT (Fast Fourier Transform or DFT). 
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     Before looking at the spectral considerations, we will find it useful to consider the bizarre 

concept of the ball “bouncing through the floor.”  Another way to look at it is to suppose that 

we “Un-Absolute-Value” the bouncing ball.  Every other instance of a bouncing lobe is 

allowed to go negative (Fig. 4 – compare to Fig. 2).   Why not – we are making this all up 

after all.    If you have been staring at plots of sinusoidal waveforms for many many years, 

the plot of Fig. 4 does in fact look “over rounded” as would be suggested by Fig. 3.   Our goal 

at this point is to simply consider the ringing waveform of Fig. 4 as a new type of resonator to 

investigate. 

 

 

 

     The four plots in Fig. 5 show the damped sinusoidal (damped harmonic oscillator) in blue 

and the parabolic lobes of the bouncing ball (in red) including bipolar and absolute-value 

versions of both.  The absolute-value plots are shown by the solid lines.  The bipolar plots 

are shown as dotted lines and are overlapped by the solid lines in half the cases in an 

obvious way.   As mentioned, the “through-floor” bouncing ball is a strange inclusion in our 

study, but mathematically perfectly acceptable. 

 

     The generation of the “through floor” case, and incidentally, the generation of all the 

graphs is shown as the program BounceBall.m included below. 
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     In Fig. 6, using the same code for the plotted lines as we had in Fig. 5, we show the 

corresponding spectral information.   Here we took FFT’s of all 10000 time points of the 

waveforms and plot only the first 45 frequency points (magnitude FFTs).   

 

     Here are the things we need to note about Fig. 6.   First, we dispense with any concern for 

the large dc values for the two absolute value cases (solid curves) which are due to the large 

dc bias of course.   Secondly, we note the there are peaks in the absolute value cases 

somewhere around k=12.  For the two bipolar cases (dotted curves) the peaking is at a 

frequency of k more like 6, half that value.   Recall that k=6 would correspond to something 

that “wiggled” about 6 times total in the time record, and k=12 to something that wiggled 

about 12 times total, and we see that Fig. 6 is consistent with Fig. 5, most easily understood 

from the damped sinusoidal case (blue curves), but generally evident.   Thus, the absolute 

value cases have frequency peaks at about twice the frequency of the bipolar.   [This is 

exactly the same observation and for the same reason that a full-wave rectifier in a  60 Hz 

power supply shown a ripple frequency of 120 Hz.]    

 

     The final observation is that the spectrum for the bipolar cases, the red dotted curve 

(bouncing ball) is wider than the blue one (harmonic oscillator), and this we understand in 

terms the bouncing ball having a sweep of frequency (a broader spectrum in general).  It is 

this wider spectrum, which was expected, relative to the standard ringing “plink” of the 

damped harmonic oscillator (resonator) that we hoped would lead to interesting new sounds.  

This remains to be demonstrated.   

 

     There are several issues here which readers are invited to explore.  One is the relative 

difficulty of constructing the waveform of the bouncing ball.  We can do it by simulation and 

by the physics formulas of course.  But it is not clear that there is a “device” that does this, as 

there is in the case of a harmonic resonator.  A more subtle problem perhaps is that issue 

alluded to above concerning the spectral window – what does the ear hear?  Here, after all, 

the “frequency” is changing.  If we “play” a waveform too slowly, in general a low-frequency 

portion (early) may thump while the high-frequency portion (late) will whistle, as the tone dies 

away.   So the trick is to get the whole tone squeezed into a length such that the ear hears it 

as “one thing” (perhaps 30 to 300 ms).   This is not a unique instance of having signal events 

need to be manipulated to achieve an overall aural impression.  This is familiar to all persons 

who have endeavored to produced individual percussive sounds.    

 

     As of this writing, the results are hit-and-miss.  But we said at the beginning we were 

mainly interested in having fun.   
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                           MATLAB PROGRAM USED HERE 
 

% BounceBall.m 

 

% TASK 1    Simulate (Fig. 1) and record Zeros  

v=0; 

g=32; 

t=0; 

s=1; 

dt=0.0005; 

N=9999;  

r=0.8; 

ss=[]; 

k=1; 

for n=0:N 

   v=v+g*dt; 

   s=s-v*dt; 

   ss(n+1)=s; 

   if s<0;v=-v*sqrt(r);s=0;zt(k)=n*dt;k=k+1;end 

end 

zt1to20=zt(1:20) 

figure(1) 

plot([0:N]*dt,ss) 

hold on 

plot([-.5 5.5],[0 0],'k') 

plot([0 0],[-.2 1.2],'k') 

axis([-.2 5.2 -0.1 1.1]) 

hold off 

figure(1)  % Fig. 1 of EN#212 

 

% TASK 1a    Simulate (Fig. 2) and Record Zeros Reverse 

v=0; 

g=32; 

t=0; 

s=1; 

dt=0.0005; 

N=9999;  

r=0.8; 

ssf=[]; 

k=1; 

d=1; 

for n=0:N 

   v=v+g*dt; 

   s=s-v*dt; 

   s=s; 

   ssf(n+1)=s*d; 

   if s<0;v=-v*sqrt(r);s=0;zt(k)=n*dt;k=k+1;d=-d;end 

end 

zt1to20=zt(1:20) 

figure(2) 

plot([0:N]*dt,ssf) 

hold on 

plot([-.5 5.5],[0 0],'k') 

plot([0 0],[-1.2 1.2],'k') 

axis([-.2 5.2 -0.85 1.1]) 

hold off 

figure(2)  % Fig. 4 of EN#212 
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% TASK 1b  Compute Theoretical Time of Zeros 

n=0:20; 

t=2*sqrt(2*(0.8.^n)*1/32) 

tt=[]; 

tt(1)=0.25; 

for k=2:20 

   tt(k)=tt(k-1)+t(k); 

end 

tt 

 

 

% TASK 2  Comparison Sine - Fixed Freq (Fig. 3) 

 

t=0:.001:10; 

%xx=.8.^(2.4*t).*cos(2*pi*1.2*t); 

%xx=.8.^(2.4*t).*cos(2*pi*0.6*t); 

xx=.8944.^(2.4*t).*cos(2*pi*0.6*t); 

 

 

absxx=abs(xx); 

figure(3) 

plot(t/2,absxx) 

axis([0 10 -0.2 1.2]) 

hold on 

plot([-.5 5.5],[0 0],'k') 

plot([0 0],[-.2 1.2],'k') 

axis([-.2 5.2 -0.1 1.1]) 

hold off 

figure(3)    % Fig. 2 of EN#212 

 

% TASK 3   Comparison Sine Variable Freq.   Fig. 4 

 

r=0.8; 

x=[]; 

for n=1:9999 

   f=1/r^(n/250); 

   xv(n)=(0.9995.^n).*sin(2*pi*f*n/10000); 

   absxv=abs(xv); 

end 

figure(4) 

plot(absxv) 

figure(4)    % not displayed in EN#212 

 

% TASK 4  Sine vs. Parabola Lobes Fig. 5 

 

x=0:.01:2; 

y=-x.^2 + 2*x; 

s=sin(2*pi*x/4); 

figure(5) 

plot(x,y) 

hold on 

plot(x,s,'r') 

plot([-1 3],[0 0],'k') 

plot([0 0],[-.2 1.2],'k') 

axis([-.2 2.2 -0.1 1.1]) 

hold off 

figure(5)  % Fig. 3 of EN#212 
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% TASK 5: Plot FFTs 

 

  

SS=abs(fft(ss)); 

SSF=abs(fft(ssf)); 

XX=abs(fft(xx)); 

ABSXX=abs(fft(absxx)); 

 

figure(6) 

plot([0:9999]/2000,ss(1:10000),'r') 

hold on 

plot([0:9999]/2000,ssf(1:10000),':r') 

plot([0:9999]/2000,xx(1:10000),':b') 

plot([0:9999]/2000,absxx(1:10000),'b') 

plot([-.5 5.5],[0 0],'k') 

plot([0 0],[-1.2 1.2],'k') 

axis([-.2 5.2 -1.1 1.1]) 

hold off 

figure(6)  % Fig. 5 of EN#212 

 

 

 

figure(7) 

plot([0:99],SS(1:100),'r') 

hold on 

plot([0:99],SSF(1:100),':r') 

plot([0:99],XX(1:100),':b') 

plot([0:99],ABSXX(1:100),'b') 

plot([-3 45],[0 0],'k') 

plot([0 0],[-100 2000],'k') 

axis([-3 45 -100 2000]) 

hold off 

figure(7)   % Fig. 6 of EN#212 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                            EN#212 (11) 

                       



DACs and Psuedo-Random Noise Sequences 

                                                               -by Bernie Hutchins 

 

     From time to time I look at the SYNTH-DIY website.  My failed attempts to follow it every 

day are well-represented by an old Yahoo account (not berniehutchins@yahoo.com) that 

continues to receive all their postings, but which I seldom get a chance to even attempt to 

clean up.  Instead I use their search for anything relating to Electronotes. There is usually 

nothing new.  So I was surprised a couple of days ago to find a series of postings that were 

not only new, but brand new – same day.  Any comments regarding Electronotes are of 

course of interest to me.  Unfortunately I have never been able to post a reply on their site.  I 

guess that’s fine, as it is easier and much more productive to do it here in my own newsletter.  

And this was really interesting.  Not the least is seeing what I did and what I wrote 35 years 

ago.  This was with regard to the pseudo-random noise sources of EN#76 [1] (April 1977).  

Readers to the SYNTH-DIY website were asking about the DAC options there.   Let’s look at 

this in detail. 

 

WHAT IS A DAC? 

     A DAC is a “Digital-to-Analog” converter (DAC or sometimes D/A).  In the most general 

sense, we are converting something this is inherently numerical only, a number or series of 

numbers, to an electrical signal – a voltage usually.  So in this sense, we might have a 

spider-net of digital logic doing “some math”, and we simply connect a wire from somewhere 

(anywhere) inside, to provide a signal voltage to the external world.  Except for the fact that 

we chose a particular point internal to the digital logic with some care (not wildly) this is in 

fact precisely what we did in the very early days of thinking about “digital synthesis”. 

     In these early days, if we used op-amps and transistors, we were doing analog synthesis; 

and if we were using logic IC’s, (originally RLT, then TTL, and eventually CMOS), we thought 

we were doing digital synthesis.  A matter of definition perhaps, but we weren’t doing digital 

synthesis in the sense we use the term today – not even close.   

     For example, we might start with a square wave and divide it down with flip-flops, 

producing a series of lower octaves.  This was not digital.  Even the use of those magnificent 

top-octave generators and flip-flop strings was not digital.  In fact, some later analog 

synthesizers actually used a logic gate (preferably an Exclusive-OR) as a cheap make-do 

“ring modulator” (instead of a true analog multiplier – quite expensive,) but this was not 

digital.   
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     But, if we do take the square waves in octaves AND if we consider the notion of adding 

them up for a staircase-wave (approximating a sawtooth), AND if we note the need to weight 

these with binary weighting, AND if we claim (correctly) that the flip-flops are counting (an 

upward staircase), THEN we are doing digital synthesis.  Very limited however.   But the op-

amp summer (with different resistors), converting digital words as output – not just one bit, is 

properly considered to be a traditional DAC.   Hal Chamberlin (EN#39 [2]) presented a device 

that counted, and even jumped through a sine-wave lookup table, and fed the result to a 

DAC.   This was digital.   True digital synthesizers (perhaps as live signal samplers rather 

than true synthesizers) followed soon enough. 

 

DACs and Noise Generation 

     So what about the noise generator.  Why a DAC anyway.  Why not one bit.  Indeed, the 

Pseudo-Random Binary Sequence (PRBS) generator (see Fig. 5 from EN#76 reproduced 

here) is inherently one bit (and perhaps millions of samples before repeating).   If we wanted 

a noise generator to just produce raw sound for snare-drum synthesis for example, this two 

level sequence is enough.  If on the other hand, we wanted to use the noise source to control 

pitches (driving a VCO with tones lasting perhaps a second) than two levels (two pitches 

only) aren’t going to do it.  And with multiple levels, we might have a preference for output 

levels that are evenly spaced, for use with exponential VCOs of course. 

     In the EN#76 article, I used two different DACs (Fig 8 of EN#76 reproduced here).  One 

had equal weighting, and the other had a more conventional binary weighting.   Both gave 

equally spaced levels, one had 256 levels and the other only 8 levels.   Let’s begin by 

considering, for one thing, that if we were only interested in getting multiple levels and/or 

spectral shaping, then analog filters would have been all we needed (as with the analog 

noise sources).   Two of the things we get with the DACs are the hold, and equally spaced 

levels.   A third thing we get is the correlation (or lack thereof) between successive output 

levels. 

     It is necessary here to recognize that the use of a conventional (or unconventional) DAC 

here to process and output the PRBS is not a conventional use of a DAC.   A conventional 

use takes a full-size digital word (as many bits as the converter size), holds it (latch), and 

converts it to a single analog voltage.   It is essentially parallel.   On the other hand, the 

sequence being converted here is a time series.   So some mindset change is useful at this 

point.   We are just using existing devices.   They do certain jobs for us regardless of their 

usual employment. 
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PRBS Generators 

     My experience with PRBS sequences and digital noise was actually the result of work I 

helped with (mostly Yuri Neuvo did it) in connection with a Cornell project [3].   With the 

PRBS approach (used principally so that we could generated bursts and repeat them exactly) 

we had TTL running essentially as fast as possible, with very long PRBS sequences.   The 

sequence was fed into a counter, and 1024 consecutive one bit samples were added up.  

That is, the counter was zeroed, then incremented from zero, one step at a time, each time 

the sequence was a 1.  This is exactly like counting heads in a long series of coin flips.  Each 

noise output sample was the result of 1024 clockings!   Thus a 10 MHz clocking on the PRBS 

was only about a 10 kHz output rate.   On average, the count approached something like 

512.  The distribution of levels was of course “normal” or “Gaussian” (central limits theorem).  

The DAC in Fig. 8b likewise has a Gaussian distribution, although it is a running average.   If 

we only took every 8th output, we would have a kid-brother of the lab generator.   [That 

“beast” generator could also produce a log-normal distribution, and could produce bursting 

(similar to the EN#76 probability switches)].    

     With regard to the Fig. 8b DAC, note that nothing prevents us from having more than 8 

levels – we just need more resistors.  If we use up all the “taps” on the PRBS generator, 

nothing prevents us from running the sequence well beyond the end using more shift 

registers after the feedback taps.  But now we need to get to the issue of correlation. 

 

Correlation Between Samples 

     Suppose we do use equal weighting, perhaps with the 8 resistors I used of perhaps with 

256 levels with 248  more shift registers and 248 more resistors (I’m not suggesting this 

except in theory).   If we use successive shift register taps (the first options in EN#76) then 

each successive output will differ from the previous output by at most one level (or no change 

at all).  Only the new input that walks into the DAC and the one that walked out matter.  

These two are either the same, or they differ.  The levels are thus very highly correlated.  In 

fact, if I made the DAC infinitely long, we have our old friend the “red noise” or “random walk” 

[4].  [The statistics of this running average probably should be examined.]  Musically, if we 

were using this as a pitch sequencer, it just plays up or down one note at a time.  Not very 

interesting.  (We could sample every 8th output to get rid of the correlation, effectively as we 

had with 1024 sums of the lab generator.)  

     What happens with the binary weighting?  We do get more levels of course.  But jumps 

can be much larger, although there still is correlation.  As is mentioned in EN#76, (for Fig. 8a) 

the distribution is not Gaussian, but uniform.    
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      What distribution and what correlation do we want?  Likely if we are talking about raw 

material random sound, it is the spectrum rather than the distribution and correlation 

(although related to spectrum) that matters.  If we are talking about using a random 

sequence (held for the duration of individual notes), we are talking about musical melody – 

essentially.    

     First of all, for melody a Gaussian rather than a uniform distribution seems more familiar.  

Watch a piano player and see how much time he/she spends near the middle of the 

keyboard.   Famously Voss and Clarke [5,6] found that with regard to correlation we wanted 

not white noise (too many large jumps) nor red noise (called also Brown noise) which was 

too correlated (just like playing scales), but something in between.  Their suggestion was a 

pink noise, 3db roll-off, or 1/f noise with regard to power.    

 

                                                            EN#212 (16) 

                        



Spacing the Taps:  

 

     The PRBS generator In EN#76 (April of 1977) clearly predated Voss and Clarke (1978) by 

just a bit, so breaking up correlation (or even that it might be desirable to do so) was here 

approached not through filtering but through the spacing of taps.  That is, instead of tapping 

consecutive stages of the PRBS-generating shift register, we put in some spaces (limited 

here to using 8 of the possible 24).  This means that any one sample on the shift register can 

become “invisible” as it finds there is no output resistor at its current location.  Thus it is 

conceivable that all or most all of taps could be experiencing 1’s, and one clock later, these 

would step into non-tapped stages, and be replaced by 0’s.   This was why that option is 

suggested.    

     Related to this history and terminology of that era is the fact that I called the correlation 

“expectation” which is a different term if not a different notion.  Also, the somewhat 

antiquated term “transversal filter” is used here (Finite Impulse Response, FIR, would be 

used today).  The term transversal filter is exactly correct here however, and was common 

for sequential sums from delayed versions of the same signal.   

 

Filtering 

     Here we have noted that the DAC was receiving serial rather than parallel input data and 

as such, something more like filtering was going on.   Today this is easy to analyze and 

interesting to consider.  Thus we can consider a FIR filter with tap weight the same as the 

DAC weights.  The length 8 DAC with equal weighting thus has an impulse response which 

we will take to be h1(n) = 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8.  This we know well as having a 

frequency response of a periodic sync.  Fig. A shows this as the red curve.  With the binary 

weighting we can take the weights as h2(n) = 128/256, 64/256, 32/256, 16/256, 8/256, 4/256, 

2/256, 1/256.  The corresponding frequency response is shown as the green curve in Fig. A.  

In fact, this looks like the impulse response of a IIR filter with a pole at z=1/2 (but truncated).  

Such an IIR filter would have exactly these eight values, and then continue forever.  With the 

pole at 1/2, we would have, at z=1, a distance of 1/2 to the pole, and at z=-1 a distance of 3/2 

to the pole, so the response would drop to 1/3 at z=-1 (half the sampling frequency), pretty 

much as we see.   Note also that the response does not quite reach 1 at dc, due to the 

truncation of the impulse response.   So much for consecutive samples. 
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     In Fig. B, we have skipped some tap points.  Nothing special about what we chose – just 
an example to show that things can be quite different.  These are the same weights as Fig. 
A, except for inserted zeros.  In Matlab notation: 

     h1=[1   0 0  1 0 0 0  1 0  1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1]/8; 

 

     h2=[128 0 0 64 0 0 0 32 0 16 0 0 0 0 8 0 4 0 0 0 0 2 0 0 0 1]/256; 

 

The implications of Fig. B are that the spectral shaping would be quite different if we were 
listening to the noise directly, and the correlation properties would be less severe if we were 
using melody-producing sequences. 

    One additional point should perhaps be remade.  Whether or not a distribution is uniform 
or normal (or whatever else) has NOTHING to do with whether or not the spectrum is “white”.  
The spectrum depends on the time autocorrelation, not the amplitude distribution.   Because 
here the outputs were (effectively) filtered, only the original PRBS was actually white.   In 
reality, because all “digital” signals are ultimately held (for a proper output) there is always 
some roll-off (-4 db at half the sampling frequency). 
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