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Looking Again at the RC Low-Pass 
                                                           -by Bernie Hutchins 

 

The Basic RC Low-Pass 

It is impossible to imagine a frequency-sensitive 

circuit (a filter) that is simpler than the RC low-pass 

(Fig. 1).  Possibly most books on linear circuit theory 

use it as an early example.  In electronic music, it is 

the basis of the “Moog 4-Pole Low-Pass” VCF and it 

is the heart of most analog envelope generators.  In 

addition, we can describe it both in terms of its 

physics and its mathematics rather completely.  

     The filter has a transfer function:     T(s) = 1 / ( 1 + sRC )                                             (1)  

So it has a real pole at -1/RC, and its frequency response magnitude is just the expected 

first-order roll-off (red curve of Fig. 2).   You can’t do any better, or even anything different, 

with first-order low-pass.   

     In Fig. 2, the frequency axis is in units of 1/RC.  When this normalized frequency is 1, the 

magnitude of the response is down 1 / √2 = 0.7071.   Jumping ahead a bit (ahead in our 

review) we also show here what we would have if we used two of these first-order sections in  
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series (dark blue), three of them (green) and four of them (light blue).  Note that the cutoff at 

frequency 1 for second order is 1/2 (the blue curve is the square of the red one).  The other 

curves are the third and fourth powers.  We will remind the reader a bit later (in Fig. 4) what 

we need to consider when we actually try to “cascade” these sections (use them in series).  

     The impulse response of the RC is well known as well:  

                 g(t) = e-t/RC u(t)                                                                                                       (2) 

– simply a decaying exponential in time (Fig. 3).   This is just the decay of a charged 

capacitor C through a resistor R (with RC normalized to 1 second).  The “impulse” deposits a 

charge on the capacitor at exactly time zero.   But then the impulse ends, so it is the same as 

though the input was grounded immediately after time 0.  So the capacitor is connected to 

ground through what we were thinking of as an input resistor.  As the capacitor discharges 

back through what was its input, the decay reaches 1/e = 0.3679 at time = 1.   

     Here we do not intend to discuss anything about phase, so this more or less summarizes 

what the text books say about the RC low-pass. 
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Electronic Music Extensions 

We basically know how to accomplish designs with the first-order low-pass - even how to 

make voltage-controlled versions.  Sometimes it does just what we need, is cheap, and 

(when necessary) does not require power.  But it is just not a very good filter (Fig.1 – red 

curve).  In an attempt to get a sharper filter, we generally think in terms of achieving a higher 

order.  This means we need more poles (the circuit will have additional capacitors and 

resistors).  Further, we know that real poles will not get us very far – we need complex poles.   

We know exactly how to do such designs, the art of “active filtering” [1] but doing them and at 

the same time making them voltage-controlled is more of a problem.    

     In Fig. 4 we will complete our review by considering the first-order in its basic cascade 

forms.   Here we show three ways of using four (instead of just one) RC section.    
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The following are to be understood: 

 

(1)  We could be using any number of sections, a total different from the four shown. 

(2)  We have not shown values for the resistors and capacitors, or even suggested values for 

them by symbols.  All could have different values, although the case where all four R’s and 

all four C’s are the same is common.   

(3)  We have not indicated any point as input (almost always the leftmost point) although we 

might insert an impulse anywhere – by depositing a charge instantaneously on any of the 

capacitors .  The output may be the rightmost point, but other points may be outputs as well.  

For example, we might use an output from the first section.  
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Next, the following observations should be made: 

(1)  The difference between the first cascade, A = unbuffered,  and B = buffered is that in A, 

the sections to the right “load” the sections to the left.  The triangular symbols in B are 

voltage buffers.  The output provides the same voltage as the one at the input, but no current 

is drawn by the input of the buffer.  For example, they might be emitter followers or op-amp 

unity-gain followers.  This greatly simplifies analysis.   

(2)  One way of achieving a measure of buffering, without using buffers, would be to maintain 

the RC product of all stages but to substantially increase the impedance of stages as we 

move to the right.   The load impedance of a stage to the right is (R + 1/sC), or less if there 

are more stages.   If we increase R, while decreasing C in proportion, we can increase the 

impedance (reduce the loading) while maintaining the same RC product.   This is of limited 

use.  

(3)  Neither A nor B is very useful.   However, see more below.  By adding the feedback loop 

g around the four stages (Bob Moog’s intuitive notion of how peaking could be achieved) a 

practical and popular circuit configuration was achieved (Fig 4C).  

     This completes the review. 

 

WHY THE ANALYSIS IS TOUGH 

Well, actually, the analysis is not that tough, as long as we work with the buffered 

implementations (B or C).  B was never a problem, with all resistors the same, or with them 

different.  It was just an increasingly wimpy filter.   These are the dark blue, green, and light 

blue curves of Fig. 1.  The Moog configuration was not a problem [2] particularly as Richard 

Bjorkman simplified the calculation [3] or as it would have eventually yielded to numerical 

root-finding [4].   

     I don’t know how many times I have started out to actually solve the unbuffered case (A).  

I always gave up, even after dropping back to the case where all the R’s and all the C’s were 

equal.   It clearly was not impossible – just excessively tedious.  More importantly, there was 

no “pot of gold” lurking at the end of the tedious path.  We already understood the general 

nature of the anemic results.  Further, it was only a matter of 10 minutes breadboarding it to 

see that there was no wonderful filter awaiting us.   
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     Of course, we did know, exactly, the transfer function in the buffered case.  Further, 

although we may not have attempted to invert this Laplace transform (invert the fourth-order 

transfer function to an impulse response), it was not difficult to understand that the result 

could merely be obtained with convolution (convolving Fig. 2 with itself) as necessary.  

Numerical convolution was easy enough. 

 

THE UNBUFFERED CASE 

 

The unbuffered case remains.  We have every reason to understand that, as a filter, this 

unbuffered case would be even wimpier than the already disparaged buffered case.  And it 

promised pages and pages of algebra, and little means of verifying a correct result except by 

repeating the calculation.  That is, getting someone else to do it – if you try to check your own 

calculations, you almost always make the same mistakes.   

     We can however, without much effort at all, use numerical simulation to calculate such 

things as the impulse response, the step response, a constant-current drive response, etc.   

You just don’t get a formula.  Well – today’s computers are plenty fast that you don’t even get 

to blink.   Write some code, initialize the state, and push the enter key.  We can see what’s 

out there. 

     In trying this, our first goal is (obviously) to get results that agree with the ones we know 

(or suspect) to be true.   Then you can play with the numbers.   One side result, which I did 

not see coming, was that this forces you to notice other things going on.  (After all, you had to 

calculate all the states inside the network to do the simulation, so why would you not plot 

them?)   In particular, in the case of Fig. 4A, there are four possible outputs – not just the one 

that is rightmost.  We really weren’t even thinking about this.  Now, in the buffered case, the 

impulse response of the first stage is just the trivial first-order case (Fig. 2).  And the impulse 

response out of the second stage would be this convolved with itself.  And so on.  But what 

happens when the second stage starts stealing charge from (loading down) the first stage, as 

happens in the unbuffered case?   Now that’s something to puzzle over.   I don’t think we 

ever did this.    

     In Fig. 5 we show two cases for our simulation study.  Since we always prefer to test our 

procedures on simple cases, just to make sure they work, in Fig. 5A we see what can be 

considered a single stage, or the first of multiple stages with buffering.  In other words, let’s 

check Fig. 1.  Here an impulsive charge has arrived at time zero and instantaneously  
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charged the capacitor.  When the impulse disappears subsequent to zero, the input is 

effectively grounded, and current flows out of the capacitor to ground, the usual exponential 

decay (Fig. 2).   

  

                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    In comparison, in Fig. 5B we have the case of two stages. Stage 2 on the right is loading 

stage 1 on the left (no buffering here).  So in addition to the current flowing out the former 

input, a second loading current, I2, flows to the right.  Again, the capacitor on the left receives 

an impulsive charge.  The capacitor in the second (right) stage was uncharged.  Thus, 

immediately following time zero, C2 looks just like a ground, and the current I2 that flows is 

initially VC/R, the same as the left-going current.   This means that the impulse response will 

show an initial decay that is at twice the rate of case A.  
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     Of course, the capacitor on the right is now getting charged, and as its voltage goes up 

while the voltage on the left capacitor is dropping, the current I2 decreases, becomes zero, 

and then reverses, both capacitors now discharging to the left, both capacitors now headed 

to ground.   So the voltage in the second stage has a bump, up then down.  Perhaps more 

interesting, the voltage on the first capacitor seems to be discharging at a changing rate.   

     We can see that this should happen.  It would be interesting to see if we remember how to 

solve this analytically.   Fig 6 below shows this happening by simulation (see below).     

 

 

 

 

 

 

 

 

 

 

SOLVING THE TWO-STAGE NETWORK 

 

TALKING IT THROUGH – AND CHEATING (AN EXPERIMENT!) 

So – where did Fig. 6 come from?  We will look at three methods that show how the exact 

curves in Fig. 6 can be calculated.  However, initially we describe two ways of convincing 

ourselves that we really have the correct answer.  First, Fig. 6 does look like the general                                                            

notion we have discussed as to how the network should behave physically.  Secondly – we 
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do an experiment - it is not at all difficult to breadboard the circuit.  We used two 10 

microfarad capacitors and two 1 megohm resistors.  A dual channel scope was connected 

(using buffers) to VC1 and VC2 and very briefly VC1 is connected to positive supply (the 

charging impulse).   We observe VC1 discharging with approximately a 5 second time 

constant initially, and VC2 starts to charge.  As we approach 10 seconds, the curves do cross 

over, and VC2 follows behind VC1 toward ground.   Of course this had to work – but I can’t 

imagine NOT doing the experiment.  Because something always seems to go strange in the 

analysis, we did the experiment because we want no lingering doubt as to what really 

happens.  At this point, we have discussed what should happen physically, and we have 

observed the general result to have happened.  Now for the math. 

 

SIMULATION 

     Fig. 6 was actually produced by simulation (Fig 7A), numerical solutions of differential 

equations.  Fig. 6 also shows the corresponding first-order case (the dotted blue curve), 

which offers an important comparison.  Note right here that the voltage V1 begins decaying 

faster than the single stage case, and then evolves to a rate slower than the single stage.   

So the result is different from a single stage despite the fact that we seem to be obtaining an 

output from the first state.  The second stage, in effect, “pushes back”. 
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   In Fig. 7A, we are not “solving” any equations but rather simulating the way charge flows in 

the network.  Program 1 shows the Matlab code we used.  We have chosen time intervals 

equal to 0.001 (relative to an RC time constant of 1).  During this time interval, denoted dt, 

we have currents (I) flowing, and corresponding amounts of charges (dq=Idt) transferred 

through resistors, ending up modifying (ever so slightly each iteration) the charge on 

attached capacitors, and thereby the voltages to which the capacitors are charged.  This 

method works, and can be extended in a straightforward manner to other networks.  As 

mentioned, this method produced Fig. 6.   

 

SOLVING THE DIFFERENTIAL EQUATIONS 

     Fig. 7B is based on the same physical principles (I = dQ/dt = CdV/dt) and here we are 

writing the differential equations with the intention of solving them.  This is the classic case of 

a system of linear constant coefficient differential equations.  We write these equations in 

matrix form because we intend to use the usual eigenvector solution method.   

     We can briefly review the analysis.  Summing currents at the V1 node tells us that the 

current into C1 is the negative of the sum of I1 and I2.  The current into C2 is just I2.  

Thus         dV1/dt = (-1/C) (I1 + I2)                                                                                           (3) 

where      I1= V1/R                                                                                                                   (4) 

and          I2=(V1-V2)/R                                                                                                            (5) 

and also   dV2/dt = (1/C) I2                                                                                                                                                         (6) 

Which results in: 

 

                    

                                                  (7) 

 

 

so the system is governed by the matrix A: 
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Using Matlab, the eig function, we find the eigenvectors of A as the columns of a matrix E, 

with corresponding eigenvalues L.   

 

                                       (9)       

 

                                                                                                                                                                                                                                                                       

                                                                                      (10) 

The complete solution for the voltages V1 and V2, involving two constants C1 and C2 to be 

determined by initial conditions is: 

          V1 = C1E(1,1) e-2.618t + C2E(1,2)e-0.382t                                                                                           (11a) 

          V2=  C1E(2,1) e-2.618t + C2E(2,2)e-0.382t                                                                                            (11b) 

Plugging in the actual  eigenvectors from equation (9)  we have: 

 

          V1 = C1  0.8507 e-2.618t + C2 0.5257e-0.382t                                                                                      (12a) 

          V2=  - C1 0.5257 e-2.618t + C2 0.8507e-0.382t                                                                                    (12b) 

 

Evaluating these at t=0 (the initial conditions) gives: 

V1(0) = C1  0.8507   + C2 0.5257 = 1                                                                          (13a) 

V2(0) =  - C1 0.5257 + C2 0.8507 = 0                                                                          (13b) 

 

                                                  

                                                                  EN#210 (11) 



 

which can be solved for: 

           C1 = 0.8507                                                                                                              (14a) 

           C2=  0.5257                                                                                                              (14b) 

so that our final result is: 

 

          V1 = 0.7236 e-2.618t  +  0.2764e-0.382t                                                                                                               (15a) 

          V2=  - 0.4472 e-2.618t  +  0.4472 e-0.382t                                                                                                          (15b) 

 

These equations when plotted are the same as in Fig. 6, V1 being the first section (black) and 

V2 being the second section (red).   

 

POLES – LAPLACE TRANSFORM: 

We have expressed a desire not to actually solve out the network for a transfer function and 

then try to invert it.  This is not all that bad for just two stages and it can be used to illustrate 

that the Laplace approach is equivalent to the eigenvector approach.  Fig. 8 is equivalent to 

Fig. 7 with the input 

shown as an actual input.  

Here we will be 

concerned with the output 

of the second stage.  It is 

simple to see that the 

three components in the 

oval in Fig. 8 have a 

combined impedance as 

shown there, and with  

the R in the input leg, V1 

is just determined by a 

voltage divider.  Vout is 

then just a first-order low-

passed version of V1.   
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Thus the transfer function Vout(s)/Vin(s) is just: 

     T(s) =  Vout(s)/Vin(s) = (1/R2C2)  / (s2 + 3s/RC + 1/R2C2)                                                  (16) 

We can set RC=1 and get 

    T(s) =  Vout(s)/Vin(s) =  1  / (s2 + 3s  + 1 )                                                                          (17) 

so the poles are at: 

     p1,p2 = ( -3 ± √5 )/2 = -0.382, -2.618                                                                                (18) 

and these number are familiar to us, the eigenvalues found above (as we probably knew).  

Having the poles, we can expand T(s) in partial fractions: 

     T(s) =  a / (s-p1) + b / (s-p2)                                                                                              (19) 

Cross multiplying and equating powers of s in the numerator to equation (16), or whatever 

method you prefer to do partial fractions, we arrive at:  

     T(s) = (1/√5)  / [ s + ( -3 + √5 )/2 ]   -  (1/√5)  / [ s + ( -3 - √5 )/2 ]                                     (20) 

The constants of the terms of the partial fraction expansion are 0.4472 and -0.4472, and are 

thus seen to be the coefficients of the eigenfunction solution.  All that remains is to invert the 

two terms of the partial fraction expansion, noting the Laplace transform pair: 

              1 / (s+α)  ↔  e-αt                                                                                                                                                     (21) 

and we obtain the same answer as V2 of equation (15b): 

              Vout =  0.4472 e-0.382t  -  0.4472 e-2.618t   

     We can find the corresponding equation for V1.  Curiously we have found first the 

equation for Vout  (V2 previously) because it was only a first-order low-pass of V1.  Thus we 

just back up the process, and T(s) for V1 becomes the transfer function for Vout now multiplied 

by the reciprocal of the first-order low-pass.:   

              T(s) =  V1(s)/Vin(s) =  (1 + s) / (s2 + 3s  + 1 )                                                           (22) 

This has partial fraction coefficients [corresponding to equation (19)] as b = 0.2764 and a =  

1-b = 0.7236, so 
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               V1 =  0.2764 e-0.382t  -  0.7236 e-2.618t                                                                      (23) 

which is equation (15a) back again. 

 

A PREFERENCE FOR SIMULATION 

Three things should be noted about our math: the eigenfunction analysis and the Laplace 

analysis.   First, they were a lot of work.  Second, we only did the second-order case.  

Thirdly, we did learn some general things, like the solution having poles shifted from the 

1/RC positions.   But the equations did not tell us much else directly – we needed the plots.  

Getting more plots would mean solving more equations and then plotting the results.   Very 

tedious at best. 

     Accordingly, we might say that it general, we prefer to do simulation, getting the correct 

curves without the equations.   We write some easy code, and then plug in numbers and 

press ENTER.  

 

                                                                   EN210 (14) 



     Fig. 9 shows the graph (using Program 2 to be listed later) that corresponds to four 

stages, as in Fig. 4A.  For this program we can set any component values (the values of 

each R and C), the initial voltages, and so on.  For Fig. 9, we have just added two additional 

stages to the result of Fig. 6.  The additional stages change the details of the result, but 

things are qualitatively very much the same.  We do see the later stages down the line 

charging and discharging much as the second stage did in Fig. 6. 

 

 

 

     By changing two numbers, making V1 = 0 and V4=1, we change the impulse to the fourth 

stage.  This results in Fig. 10.  Our first guess might be (mine was) that this would just 

reorder the curves, but there otherwise seemed to be symmetry.  It was different – this is why 

we DO experiments.  The difference is because the last stage does discharge backward into 

the earlier stages, but there is no other path to ground, as there was with stage 1.  In 

consequence, the discharge is much slower (compare red curve of Fig. 9 to light blue curve 

of Fig. 10).  Note that as the program is written, the input stage is grounded.    
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NATURAL NETWORKS 

In our work with music synthesis, we have frequently found more success by (intentionally or 

by chance) mimicking natural sound producers.  Two examples come to mind.  We found 

exponential decaying envelopes to be preferred over linear decays.  Also, we found a 

preference for low-pass spectra, with lower cutoffs as time progressed.  Both these seemed 

to be tied to the fact that natural, physical, acoustic devices worked this way.  Other schemes 

might well be fun to try, but when it comes down to designing synthesizers that produced 

sounds that musicians could use to produce music to sell to the public – well practical 

considerations usually ruled – even with regard to what we considered successful ourselves. 

     With regard to how energy is input to a network and how it dissipates away, we have 

gotten a lot of mileage out of RC decays.  Yet at times we know the exponential decay does 

not seem quite right.  Accordingly in some cases, we have made provisions for an early 

truncation.  After all, a true asymptotic approach to zero may be quite fanciful.  This was 

done either by adding a small negative component to an exponentially decaying envelope, or 

by offsetting a VCA (usually a two-quadrant multiplier).  Thus a tone can end, not too 

suddenly, but not seeming to hang on too long. 
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     On the other hand, we may want a tone to hang on longer and “sing” such as occurs 

naturally in coupled piano strings [5].  Yet we really can’t do this by adding a positive offset to 

an exponential envelope.  It would never stop, while we really would like to just go to a slower 

rate of decay as time progresses.  Here is where we might want a dual rate of decay as we 

have seen above, and with a recent examination of Kautz functions [6].    

     Fig. 11 shows that the dual rate seen in the exponential decay from an impulse also 

carries over to the exponential decay on the falling edge of a gate.  We have four RC stages 

total here – probably two is enough in practice.  The first stage is the red curve.  Note that 

when the gate disappears at time 2.5, the red curve first decays rapidly toward the blue 

curve, crosses it, and is then slowed up as charge comes back from the second capacitor. 

     The RC networks we have been discussing are natural enough, provide a variety of 

potential envelope waveforms (available with buffers) and can be fed impulses (short pulses 

from monostables) and/or gates, likely through diodes.  The key point is that we don’t have to 

take steps for a natural response – the curves are natural already.  Potentially, this fact might 

be of interest in generating natural musical tones. 

     In its simplest trial, we might just take any RC envelope generator we have, and couple a 

second capacitor to it through a shunting RC section, as suggested in Fig. 12.  We have in 

mind here a capacitor equal to the one in the original envelope generator (indicated as the 

left capacitor), with a resistor Rs composed of a series of a pot and a limiting (minimum) 

resistor.  The resistance Rs should probably be capable of being adjusted so as to be large 

enough that the shunting capacitor is essentially isolated.    
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     Fig. 13 shows a result of a simulation (similar to Program 2) that allows for a “gate” input.  

The point is to see how the shunting works on a rising edge as well as a decaying one.  In 

this case, we have chosen the shunting R and C to be the same as the original R and C. In 

Fig. 13, the red curve is the output of the envelope generator with the shunt connected, as 

compared to the green curve without the shunt, a normal “AR envelope generator”.  The 

dotted green curve is simply a scaled version of the green one, scaled smaller so that it 

exactly matches the peak of the red curve.   The blue curve is the voltage on the shunting 

capacitor. 

     We can easily see what is happening.  The shunt slows down both the attack and the 

decay, as we would expect.  That is, it pulls off current during the charge, and supplies 

current during the decay.   Yet we see that at the beginning of the decay (at time = 6) both 

the green and the red curves have a very similar decay rate.  Very soon however the red 

curve slows, and we see an extended possibility of a “singing” response. 
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PROGRAM 1 

% PROGRAM RC2.m  TWO STAGES – This produced Fig. 6 

 

C1=1 

C2=1  

R1=1 

R2=1  

  

V1=[]; 

V2=[]; 

V11=[];  % For single stage 

  

V1(1)=1   % Impulse to C1 

V2(1)=0   % C2 starts at 0 

 

V11(1)=1  % Impulse for single stage comparison 

 

dQa=0 

%dQa=.0001  % non-zero = constant current 

 

dt=0.001      %Time interval 

trials=5000   T trials for five seconds 

 

for k=1:trials 

%  Here currents i = dq/dt, so...    

   dQ1= -V1(k)*dt/R1 - (V1(k)-V2(k))*dt/R2;  % Change of charge C1 

   dQ2= (V1(k)-V2(k))*dt/R2;                 % Change of charge C2 

   V1(k+1) = V1(k) + dQ1/C1;                 % Change of Voltage C1    

   V2(k+1) = V2(k) + dQ2/C2;                 % Change of Voltage C2 

    

   dQ11 =-V11(k)*dt/R1;         % single-stage comparison                

   V11(k+1)=V11(k)+ dQ11/C1; 

     

end 

 

figure(1) 

t=0:trials; 

t=t*dt; 

plot(t,V1,'k') 

hold on 

plot(t,V2,'r') 

plot(t,V11,'b:')  

plot([-10 10000],[0 0],'k') 
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plot([0 0],[-1 2],'k') 

plot([1 1],[-1 2],'g') 

plot([0 trials*dt],[0.3679 0.3679],'g') 

hold off 

axis([-0.05*trials*dt 1.05*trials*dt -.05 1.1]) 

xlabel('TIME') 

figure(1) 

 

 

 

  

PROGRAM 2   
 

% RC4.m  for Fig. 9 and Fig. 10 and other experiments 

 

C1=1 

C2=1  

C3=1  

C4=1 

 

R1=1 

R2=1  

R3=1  

R4=1 

 

V1=[]; 

V2=[]; 

V3=[]; 

V4=[]; 

 

V1(1)=0 

V2(1)=0 

V3(1)=0 

V4(1)=1 

 

dQa=0 

%dQa=.001  % non-zero = constant current 

 

dt=0.001 

trials=10000 
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for k=1:trials 

    

   dQ1= -V1(k)*dt/R1 - (V1(k) - V2(k))*dt/R2; 

    

   dQ2= (V1(k)-V2(k))*dt/R2 - (V2(k)-V3(k))*dt/R3; 

 

   dQ3= (V2(k)-V3(k))*dt/R3 - (V3(k)-V4(k))*dt/R4; 

 

   dQ4 =(V3(k)-V4(k))*dt/R4; 

 

    

   V1(k+1) = V1(k) + dQ1/C1; 

   V2(k+1) = V2(k) + dQ2/C2; 

   V3(k+1) = V3(k) + dQ3/C3; 

   V4(k+1) = V4(k) + dQ4/C4; 

 

end 

 

figure(1) 

t=0:trials; 

t=t*dt; 

plot(t,V1,'r') 

hold on 

plot(t,V2,'b') 

plot(t,V3,'g') 

plot(t,V4,'c') 

plot([-10 10000],[0 0],'k') 

plot([0 0],[-1 2],'k') 

 

plot([1 1],[-1 2],'g') 

plot([0 trials*dt],[0.3679 0.3679],'g') 

 

hold off 

axis([-0.05*trials*dt 1.05*trials*dt  -.05 1.1]) 

 

  

xlabel('TIME') 

figure(1) 
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PROGRAM 3    
    

% RCEig   this is just the Eigenanalysis using Matlab 
 
[E,Lam]=eig([-2 1;1 -1]) 
L1=Lam(1,1) 
L2=Lam(2,2) 
 
C2=0.5252 
C1=0.8834 
 
t=0:.001:5; 
v1=C1*E(1,1)*exp(L1*t) + C2*E(1,2)*exp(L2*t); 
v2=-C1*E(1,2)*exp(L1*t) + C2*E(2,2)*exp(L2*t); 
figure(1) 
plot(t,v1,'k')  
hold on 
plot(t,v2,'r') 
plot([-10 10000],[0 0],'k') 
plot([0 0],[-1 2],'k') 
 
plot([1 1],[-1 2],'g') 
plot([0 trials*dt],[0.3679 0.3679],'g') 
 
hold off 
axis([-0.05*trials*dt 1.05*trials*dt -.05 1.1]) 
 
hold off 
 
figure(1) 
 
 
 

Summary 

The offering here is possibly first one of reminding ourselves how we can use a variety of 

network analysis tools for electrical circuits, and indeed, for models that involve electrical 

networks. We are also reminded that purely mathematical approaches are always 

interesting, but tedious when there are a lot of cases to look at. Hence, simulation. 

For our music synthesis work, we have suggested the use of coupled unbuffered RC 

networks for shaping envelopes and generating new ones. The use of a simple single RC 

network "shunting" the main capacitor in a standard RC envelope generator is suggested. We 

have called this resistor Rs. In our thinking, the '”s” has variously been thought of as shunt, 

sustain, sharpen, and sing. 
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