
   ELECTRONOTES      208 
           Newsletter of the Musical Engineering Group 

                     1016 Hanshaw Road, Ithaca, New York  14850 

                                                                       Volume 22, Number 208                          January  2012 

 

GROUP ANNOUNCEMENTS 

        Contents of EN#208 

                  Page 1       A White Noise Curiosity 

 

 

A WHITE NOISE CURIOSITY 
 
                                       -by Bernie Hutchins 
 

INTRODUCTION   
 
Most of us have a good notion of what “White Noise” is. Audibly it is a hiss like the leakage 
of air from an automobile tire.   We used to say it was like the “interstation” noise on an FM 
radio receiver – but most modern receivers automatically mute in the absence of a usable 
signal.  In electronic music, we use white noise as source material for some sounds, and 
sometimes as a source for random (control) voltages to be converted into pitch sequences, 
etc.   A sharp enough bandpass filtered white noise can easily “carry a melody” and is 
perhaps the premier example of colored noise – across the audible spectrum.   Here we will 
review a bit, but want to discuss a few issues not covered in the past as well. 

                                                     

(1)  THE PROBLEM WITH A (NOT) FLAT SPECTRUM 
 
Here we will be looking at a discrete sequence of random samples, and the use of the FFT 
to display the corresponding spectrum.  Consecutive samples of a white noise sequence 
are independent – uncorrelated.  The spectrum is flat.   This is in analogy with the spectrum   
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of white light.   Everyone knows that this works.  Should be easy to demonstrate.  Well, 
there’s a problem. 
 
     First however, this is not a similar-sounding problem that comes up from time to time on 
the Internet.   Typically someone states that they generated a white noise signal, typically 
with Matlab, using rand or perhaps randn, calculated the FFT of the sequence, and it was 
not flat!   What is wrong, they shout.  Along will come some suggestions, almost always 
useless, until someone points out that it is the “Expectation” (in its statistical, mathematical 
definition) that the spectrum will be flat, but you don’t expect a flat FFT magnitude in any 
one example.   Similarly, there are many arguments as to whether the measured mean 
should be zero (it shouldn’t).  It is easy to waste time trying to find hints on the web!  My 
problem, as will be reiterated below, is that a well-averaged spectrum is not flat on the end 
or ends.  What do I mean “reiterated”?  
 
     A digression here.  Many of us have an admirable collection of unfinished projects.  
From time to time, we may accidentally bump into one which looks near finished, or at 
least, salvageable for some quick purpose.  In the present instance, I wanted to develop 
some material on “red” noise.  Looking at a result, I saw in the corner of a graph something 
that was unexplained, and which I thought was similar to a result for white noise, which I 
thought I had explained.   But I couldn’t remember the explanation.  Had I just imagined I 
had solved the problem?  I guess so.   One advantage of a publishing enterprise is that you 
can usually find previous material (on the shelves).  It was just a matter of looking it up and 
reading my own explanation.   

 

    The reference here was to a previous App Notes, AN-360 “Flat and Not-So-Flat Spectra” 

dated August 2004.  It is available at: 

http://electronotes.netfirms.com/AN360.pdf  

and is not very long.   Everything there seems to be correct.  Evident there is the problem  

which I remember worrying about.  But it is not mentioned there, and certainly an 

explanation is not there.  It is seen there by looking at Fig. 3 (reproduced as Fig. 1 for this 

paper).  The spectrum is fairly flat, but it dips at both ends, slightly, but noticeably.  

     Now, here is a secret you would of course have figured out for yourself.  When an 

author writes about random stuff (i.e., about random signals and processes, not at 

random!), and wishes to give an example (a “typical” example), not unlikely some sort of 

fine tuning enters at this point.  You really should just take the first example that comes out.   

You are not supposed to look at a result, perhaps grimace, and then try again because you 

feel there is something too special (untypical) about what fate handed you.  But, don’t count 

on that. 
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     There is perhaps some merit in applying a small amount of selection.  Perhaps you have 

run a program a dozen times to get everything working.  Now you want an example.  It is 

quite possible that some examples might be so untypical as to be misleading.  So, a little 

selection is probably okay.  With AN-360 I do remember the curious result of Fig. 3 – the 

dip on both ends.  I also remember trying to get a better example (if only it had just gone 

away in some instances), and playing with the programs.  I also remember thinking I would 

need to explain this, and that the explanation would be interesting.  Reading AN-360, it 

seems I never even mentioned it.  In consequence, there was no explanation!    Fig. 1 

below shows Fig. 3 from AN-360.  The dips are there at k=0 and at k=50.    

 

 

 

 

 

 

 

 

(2)  THE EVIDENCE 

The reaction to a plot such as that in Fig. 1 should be first of all: “That’s Funny!”   Secondly, 

we need to determine if it is just a fluke.  It’s not.  So what can we learn about it as a 

phenomenon?  There is something to learn here.  What is the evidence? 

     Fig, 2 shows an updated version of Fig. 1.  The difference here is that we are averaging 

1,000,000 length 100 spectra.  From this we see the same result that was in Fig. 1, better 

defined because we now have 1000 times more iterations.  We also note that the dips are 

just 1 sample of the FFT wide.  The signals were generated using Matlab’s rand function 

as shown in the figure. The notation W(k) refers to the usual FFT usage, where k runs from 

0 to N-1 (0-99 in this case).  [ Due to Matlab’s indexing, in the actual program code the dips 

are for W(1) and W(51).]  The only other thing to note is that the dips are just about exactly 

to 90% of the plateau.  Does this mean anything?                                             
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     Moving on to another example, Fig. 3 shows the case where we use a length of N=77 

rather than N=100.  Perhaps the first thing to notice is that this case has no dip at half the 

sampling frequency.  The dip at DC is again 90%, as for N=100.  The plateau height is less, 

4.4935.  This result, and a few more, convinces us that the formula for the plateau height is: 

          PN = 0.512 √N                                                                                                            (1) 

     So, the examples shown in Fig. 2 and Fig. 3, and additional examples we have tried, 

convince us that: 

    (1)  For all N, there is a dip at DC, k=0, that is about 0.900 down from the plateau.     

    

    (2)  For even N, there is also a dip of 0.900 at half the sampling frequency,  

           k=N/2.  This point does not exist for odd N. 

 

     (3)  The plateau height is given by equation (1). 

 

                                                          

(3)  VECTOR SUM 

 

The FFT (i.e., the DFT) is a sequence of numbers each of which is a weighted sum of 

vectors.  Indeed, it is usually written as: 

 

                 N-1 

     X(k) =    ∑    x(n)e-j(2π/N)nk                                                                                                                                                 (2)                                     

                 n=0  

 

If we write this out specifically for k=0 and for k=1, and call our time sequence, the white 

noise, w(n), we have: 

 

     W(0) = w(0) + w(1) + w(2) + ….. w(N-1)                                                                       (3a) 

 

     W(1) = w(0)  + w(1) e-j2π/N + w(2)e-j4π/N +…. w(N-1)e-j2π(N-1)/N                                       (3b) 

  

Thus W(0) is the sum of all the random values in the particular instance of the signal w(n) 

and W(1) is also a sum, but the random values are multiplied by a rotating unit vector in the 

complex plane.  Note we are computing the average value we would get by comparing the 

absolute values of these sums for a large set of sequences w(n).  It is useful here to have 

an example – a physical notion of how a sum is formed.  
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    Fig. 4 shows an example for a particular length 20 w(n) shown in the stem plot inset at 

the lower left.   For W(0), the values of w(n) are sequentially summed (red stars) and 

constitute the usual “drunkard’s walk” we expect with integration (accumulation actually).   

In this case, there are no complex multipliers, so the walk is along the real axis only.  We 

can see the positive and negative contributions opposing each other, so while the individual 

elements of w(n) have magnitudes between 0 and 1, the sum doesn’t get that far away, and 

ends with the 20th samples at 1.9887.  The heavy red line (placed slightly below the axis for 

visibility) is the overall result. This is all very familiar. 

   The case of W(1) is different.  Because of the complex multipliers we have a random walk 

in the two-dimensional complex plane.  Quite attractive!  Each of the vectors summed here 

has a length given by the same w(n) but all are at different angles.  In fact, the angles 

increment 18 degrees (360/20) with each step.  So, in the figure, relative to W(0), we see 

the same starting point (at 0,0) and the same first step, since the first angle is zero. Then 

the second and third step bend away at 18° angles.  The fourth step is small, and negative, 

so appears as a jog, followed by a larger step 5, and so on.  We end up at step 20 as 

shown, and as summarized by the heavy green line.   
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     In this case, the green line is slightly longer than the red one.  One example proves 

nothing here.  What we claim is that on average, green lines will be longer than red lines.  

This is easy enough to program, and we do find that – in 1,000,000 trials (run but not 

printed on the screen of printed here – for sure) red lines were about 0.9002 relative to the 

green lines.  No surprise – it is the same calculation the FFT does.  What we hope to 

eventually get is some notion, based on this simple physical picture, of why this happens.   

 

(4)  WHAT DOES THE MEAN MEAN  

In our experiments, we used the Matlab rand function.  The rand function returns one or 

many random numbers that have a uniform distribution between 0 and 1.   This means that 

numbers like 0.2, 0.3115, 0.9, etc all have the same probability.  But they are all positive.  

Very often we want a distribution that is between negative and positive limits.  Hence, while 

the instruction: 

     w = rand(1,350) 

would give you 350 random numbers between 0 and 1, we would often use instead: 

     w = 2*(rand(1,350) – 0.5)  

to give you 350 random numbers uniformly distributed between -1 and +1.  Thus it may 

appear that the rand function itself has a mean of 0.5 and we are removing this.  So, 

perhaps we might think that the X(0) of the FFT should be, not only smaller than the other 

frequencies (which we observe), not only just down to the 90% we observe, but all the way 

to zero.  Not so.  Any finite length w will have a DC bias.  For example, we could have a 

perfectly good length 4 sequence w that has values -0.2, 0.7, 0.8, and -0.5.  This has a net 

DC value of 0.8.  

     But is there perhaps something wrong with the rand function?  These aren’t really 

random numbers but rather pseudo-random numbers – generated by an algorithm.  What if 

that is faulty?    

     The first test we can make is to use a different random number function, randn.  This 

function produces a normal distribution with mean 0, and variance 1.   Making this 

substitution we observed the same dips in the spectrum that we got with rand.  This is 

more evidence.  This is perhaps a good time to mention that we also tried a substitute for 

the Matlab fft function – the computation of the DFT with a matrix – to the same result we 

got with fft.   
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     Another test is to remove the dips by adding to the random signal.  This we do by 

changing the DC bias, and by adding in an alternating sequence (half the sampling 

frequency) in the case of an even length sequence.  By experiment we find the following to 

work (Fig. 5). 

 

This result is particular to the length 100 sequence.  We note several interesting things.  

First, it works.  Secondly, there is a fairly large DC shift needed, nearly 3%.  Thirdly, the 

same constants used for the DC reappears when we want to get rid of the dip at half the 

sampling frequency.  This perhaps makes the point that the situation at ½ the sampling 

frequency is obviously related to the DC case.  Indeed, since we are just multiplying by an 

alternating sequence of +1 and -1, this is in turn a perfectly good random sequence, just as 

it might have been generated directly by rand.  It would be another red random walk as in 

Fig. 4. 

     What we show is that whatever is going on here, its nature is of the same effect as an 

actual signal with conventional spectral content.  We needed to check that this was the 

case.  Before we go on, was it just some silly problem?   No – it’s something else.   
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(5)  ESTABLISHING THE MEAN 

Fig. 2 and Fig 3 show grand (final) results, the average of a million FFTs, while Fig. 4 

shows the minute details of just two points of one FFT.  Clearly we need to take a look at 

how the averages evolve as more and more signals are averaged.   

 

     Fig. 6 shows the average magnitudes as they evolve over 1000 random signals.  Here 

we see the evolution for the first FFT point W(0), along with the evolving average of  the DC 

term (average of individual means).  This is the curve that is black, W(0), overplotted 

exactly with the DC average (dashed yellow).  They are the same curve.  The remaining 

four curves are for W(1), W(2), W(3), and W(4).  The W(0) curve will eventually converge 

toward something like 4.61 and the others, toward something like 5.11 (see later).   

    Above we mentioned that authors may be selective when choosing an example to post 

when the actual appearance is subject to random features, which may be “misleading”.  

This is a good example of a case where it was necessary to run the program perhaps a 

dozen times before we got a “suitable” demonstration.  Not that all of the examples would 

not have eventually converged correctly, but rather we wanted one that converged nicely 

within the 1000 signals so as not to clutter the page.   The point is correctly made. 
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(6)  THE DISTRIBUTION 

 

We have found the following.  We can interpret the DFT of a random signal as a summation 

of random steps, and the magnitude of the DFT is the distance (always positive) from the 

end of the last step back to the origin.  In the case of W(0), and of W(N/2) in the case of 

even N, the steps are a familiar random walk (more colorfully, a “Drunkard’s Walk”) along a 

real line.   For all other W(k), the random walk is in the complex plane.   We are interested 

in the distribution of the lengths of the endpoints.  Fig. 7 shows our example. 

 

     This lovely picture is the answer.  The difference we observe is because the two cases 

have different statistical distributions.  This is extremely interesting. 

    First of all we can discuss the red curve.  This is the result of the real random walk.  

Although the individual steps are from a uniform distribution (more distributions follow), we 

would expect the endpoints of the random walk to have a Gaussian (“normal” or “bell-  
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 shaped”) distribution, with zero mean, as a result of the “central limits theorem”.  This is the 

case – except we are NOT plotting final positions but rather the absolute values of these 

final positions.  All the results are positive, so effectively, the Gaussian is folded over.  It is 

the mean of the absolute values – not the absolute value of the mean.  No wait!  It is the 

mean of the absolute values of the means of the individual sequences.  Hard to describe, 

but what is going on is likely quite transparent.  The “folded normal” is well-studied.  So 

much for the red curve. 

     The blue curve is a surprise.  We have provisionally labeled this as being a “Raleigh 

distribution” based on appearance alone.  This is also a well-studied distribution.  It is quite 

different from the folded Gaussian.  For one thing, it is zero at zero.  Recall that this is a 

random walk in the complex plane (the green walk in Fig. 4).   It is only a complex plane 

here because we started with the DFT – we can just consider it a two-dimensional plane if 

we prefer.  The corresponding “Drunkard’s Walk” is generally presented as an interesting 

story of a drunkard leaving a bar and trying to find his way home, walking along city blocks 

and selecting new directions (including a reversal of direction) at each intersection.  It is a 

proven result that the drunkard will always (probability 1) get home eventually (or to any 

other point, including a return to the bar, the point 0,0).  The probability of getting there in a 

given finite number of steps may be quite low, of course.  

     The DFT case is different in some ways.  We are not restricting the walk to city blocks (a 

discrete grid).  And the lengths of the steps are chosen at random from a uniform 

distribution, projected along a predetermined set of DFT angles (2πnk/N).  This is not the 

same as choosing, independently, two random draws, one for real, and one for imaginary, 

which would lead to a Rayleigh distribution.  This we can investigate by looking at a non-

DFT case where the angles, as well as the lengths of the steps, are also chosen at random, 

and we will do this (see later).  For the moment, let’s continue with the issue of low 

probability in the region of the origin.   

     When we measure distances radially, going no further than a very small distance from 

the origin is a very small circular area.   On the other hand, this same small distance out 

further defines an annular region of significant area.  Fig. 8 shows this idea.  Here we have 

taken trial points from uniform distributions (uniform from -1.5 to +1.5) in the two 

perpendicular directions, and kept only points that fell into the center circular region (0.04 in 

radius) or in the annular region from 0.98 to 1.02.  The difference in areas is 50:1.  In this 

case, there were 57 times more hits inside the ring as compared to the circle.  Accordingly 

we understand how there is (relatively) vanishingly small probability of hitting examples that 

fall very close to the center.   (Eventually, the ring would expand beyond the underlying 

cluster, and would not be populated.) 
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     We have found that the difference between the W(0) and W(1) averaged magnitudes 

(which we continually find to be very close to 90%) needs to be ascribed to the different 

distributions.  This we will address shortly.  We also need to justify treating the real and 

imaginary parts in the DFT case as independent.   For the moment, we want to show that 

this ratio is independent of the distribution of the original random signals. 
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     Fig. 9 shows the case where we use a normal distribution rather than a uniform one.   

We get essentially the same result.  Because of the normal distributions, we truncated the 

plot on the right side a bit.  The ratio of means is the same 90%.  In Fig. 10, we have used 

a binary sequence, the sign of the uniform binary case times 1/2 .  Because of this effective 

quantization of results to integers, 3 of 4 of the bins of the histogram are empty (the 

remaining ones 4 times larger.  But the ratio of means is again 90%.  Accordingly we find 

the result robust against changes of random distribution.   

 

 

(7)   RANDOM VS. DFT ANGLES 

One more graph is needed here, Fig. 11, which will look almost exactly like Fig. 7.  The 

difference here is that in Fig. 11, the angles were chosen at random.  Specifically, for Fig. 

7, the angles were set in Matlab to the DFT angles as:                     

                    n=0:99 

 

                    exp(-j*n*2*pi/N)      

            

which is the same for each of the random signals.  In contrast, for Fig. 11, they are set as: 

 

                    exp(-j*rand(1,N)*2*pi) 

separately for each random trial.  Fig. 12 compares the set of 100 equally spaced angles 

corresponding to the DFT with one instance of 100 randomly chosen angles.  The purpose 

of this is to justify Fig. 7 as having a Rayleigh distribution since the distribution of the angles 

is much the same.  In Fig. 7, we have all the 100 possible angles, 3.6° apart, in sequence.   

In Fig. 11, there are 100 angles, randomly chosen.   

     Note well that Fig. 11 is not a plot of DFT magnitudes.  Rather it is the magnitude of 

random walks in the complex plane.  According to theory, we have a Rayleigh distribution if 

we have random samples that have real and imaginary parts that are what is called “IID” 

(Independent and Identically Distributed).  If angles are predetermined (as with the DFT), it 

would seem that the real and imaginary parts are not independent.  With a particular known 

given angle φ, the complex sample’s components depend only on the magnitude.  Change 

the magnitude, change both real and imaginary.  This is true regardless of where the angle 

came from (Fig. 13).   
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     As we mentioned above, one guideline as to whether a complex random number has a 

Rayleigh distribution for the magnitude seems to be that the real and imaginary parts are 

IID, independent and identically distributed.  We could do this by drawing a random number 

for the real part, and another draw for the imaginary part.  Two random numbers.  We also 

see no problem in drawing a random number for the magnitude, and a second random 

number for the angle.  Again, two random numbers.  This is what we did in obtaining Fig. 

11.  Since it seems very nearly identical to Fig. 7, we might want to claim that even though 

the angles in Fig. 7 are known (not random), the distributions are the same (Fig. 12), or at 

least, the information about the angle does not matter to the distribution of magnitudes (Fig. 

13).  Any strong opinions here? 

 

                                              

(8)  COMPLETING THE CALCULATIONS 

     Proceeding with the assumption that we are dealing with a phenomenon which has an 

origin in a difference of probability distribution, we can calculate this ratio of 90% that keeps 

appearing.   This is not as easy as one might suppose, because various sources have 

different definitions of the parameters involved.   In consequence, we want to use the most 

basic mathematical forms of the distributions, and fit the curves to the experimental data 

(i.e., to Fig. 7).  Once the curve is fit, we can check some numbers and hopefully know how 

to plug these into formulas for the means.  Fig. 14a shows the fit for the folded normal 

distribution, and Fig. 14b the corresponding case for the Rayleigh distribution (fit to Fig. 7).                                                     
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    Here the Gaussian (folded normal) should have the general form (Wickipedia): 

                 yG = A1 exp(-x2/2σG
2)                                                                                        (4a) 

and this we fit (by hand – by eye) to A1 = 3440000 and σG = 5.79.  The parameter A1 is only 

important to the curve-fitting height.  It is very large only because of the very large number 

of signals in the histogram.  All that matters is σG .  Notice the we have been careful here 

NOT to assume the σ’s are the same, hence the subscript G here.   

     For the Rayleigh, the form is: 

               yR = A2 x exp(-x2/2σR
2)                                                                                        (4b) 

and this we fit with  A2 = 1500000 and σR = 4.0866.  We noted that the curve in Fig. 14a 

had a number 67 where Fig. 14b has a number 33.4.  In fact, we needed a factor of 2 to 

appear.    

     The formulas for the means are: 

               μG =(2/π)1/2 σG                                                                                                                                                      (5a) 

and 

               μR=(π/2)1/2 σR                                                                                                                                                         (5b) 

Yes, the π/2 factors are inverted between the two.  Thus the ratio between the means is: 

               R = μG/μR = (2/π)(σG/
 σR)1/2                                                                                                                              (6) 

and we note (from our curve fitting), that 

               σG
2
/
 σR 

2 = 2                                                                                                           (7) 

so 

              R = (2)3/2/π = 0.9003163                                                                                        (8) 

which is in excellent agreement with what we have found from our plots 

     The number R, 2 square root of 2 divided by π, actually appeared early in our study. 

This was because in thinking about averages here, and the fact that any magnitude is 

shared by sine and cosine components, the average value of a sine (2/π) appeared, as did 

√2 as the result of combining at an average angle of 45° (also relating the RMS and peak 

values of a sinewave).  It’s elementary stuff in AC waveforms.  Can we make it fit? So the 

appearance of what seemed to be the correct value of R, in terms fundamental constants  
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was exciting.  The apparent 90% was not just a number, that might have been exactly 0.9, 

based on our experiments, but something within experimental accuracy, that was much 

more fundamental.  Next all that would be required was the right handwaving! 

     Great, but the problem was that the handwaving was backward.  X(1) should have been 

smaller than X(0).  So onward - and eventually the means of distribution.   The warning was 

there, and perhaps still is:  the numbers coming out right is essential, but not a proof.  

Hence an uneasiness about the findings.  The current author appreciates math, but prefers 

that it be accompanied by an intuitive understanding as well.  To paraphrase someone I 

once read, but don’t remember exactly (Tukey, von Neumann, Hamming ?), a 

mathematical proof is best when presented such that all see that the result as inevitable.  

Comments are invited. 

                                                               

(9)  SOME CONCLUSIONS 

 

It seems we have gained some insight into why the spectrum drops to 90% at one or both 

ends.  The points on the end or ends obey a different distribution.  This is progress, but in a 

sense, it does not do a great deal more than move the problem to a new question – why do 

they obey different distributions?   Since the end points are the “odd men out” perhaps we 

could understand them as special (limiting) cases of the Rayleigh distribution?  And, we are 

talking about the DFT here, which we are forcing to be our spectrum analysis tool.   

     What would happen with continuous white noise?  There is still a limiting case at DC, 

but it is now only a single point on a continuous line, and there is no notion of sampling 

frequency in this case.   Is DC perhaps special in the discrete case as just another multiple 

of the sampling rate (zero times the sampling rate)?    

     Too many questions still remain here.   The value of what we have presented here is 

perhaps just to let people who encounter the dips know that others have seen them and 

made follow-up studies.  That is, people experimenting with Matlab’s rand function must 

first get past the mistaken notion that any individual instance of a random signal should be 

flat (let alone each and every one), and instead to do an appropriate measure of averaging.  

Thus realizing the need for averaging, it would likely then be a disappointment if yet 

another unexpected phantom shows up at the door.  Hence we need the discussion here to 

be “out there”.    

 

                                               EN#208 (19) 



(10)  SOME PROGRAMS 

     Here are a few Matlab programs that were used in this study and for making figures 

here. 

 

PROGRAM 1:  bigtest.m 

This program (or similar) made the distribution figures: 

% bigtest  

% Detailed Histograms  

NS=100                  % length 100 random sequences 

% 

n=0:(NS-1);             % set up DFT exponentials for k=1 

e=exp(-j*n*2*pi/NS);    % exponential for k=1 DFT 

  
s0=0;     % sum corresponding to DFT 0 

s1=0;     % sum corresponding to DFT 1 

S0=0;     % sum corresponding to abs DFT 0 

S1=0;     % sum corresponding to abs DFT 1 

 

H0=zeros(1,101);   % zero histogram sum for multiple histograms 

H1=zeros(1,101);   %   same for H1    

 

% run with TWO nested “for loops” to avoid an oversized array   

%   for the histogram.  Multiple (many) Matlab “hist” outputs are 

%   summed and stored in H0 and H2, and just plotted at the end 

Nk=1000; 

Nm=10000;         % total trials is Nk*Nm 

for k=1:Nk 

    for m=1:Nm 

     

      w=2*(rand(1,NS)-.5);                % uniform distribution      

        % w=(1/2)*sign((rand(1,NS)-0.5)); % random +1/2 or -1/2 

        % w=randn(1,NS);                  % rand normal 

        % w=sign(randn(1,NS));            % +1 or -1 

                       

        % e=exp(-j*rand(1,NS)*2*pi);  % override DFT if want                                      

                                          %random angles 
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      X0=sum(w);          % X(k=0) of individual w 

      X1=sum(w.*e);       % X(k=1) of individual w 

   

      s0=s0+X0;           % sum for mean of endpoint 

      s1=s1+X1;           % sum for mean of endpoint 

      S0=S0+abs(X0);      % sum for mean of abs values 

      S1=S1+abs(X1);      % sum for mean of abs values 

 

      SS0(m)=abs(X0);     % store this X(0)for histogram  

                            %of this 10000 (loop m) 

      SS1(m)=abs(X1);     % store this X(1)for histogram  

                            %of this 10000 (loop m) 

    end      % end m loop 

 

% compute histograms of this 10000 and add to previous k loops     

% 

H0=H0+hist(SS0,0.125+[0:.25:25]); 

H1=H1+hist(SS1,0.125+[0:.25:25]); 

% 

end    % end k loop 

 

%  DISPLAY……… 

NT=Nk*Nm; 

MeanX0=s0/NT 

MeanX1=s1/NT 

MeanAbsX0=S0/NT 

MeanAbsX1=S1/NT 

RatX0X1=MeanAbsX0/MeanAbsX1 

 

figure(1) 

plot(0.125+[0:.25:25],H0,'r*')  

hold on 

plot([MeanAbsX0 MeanAbsX0],[-10 1000000],'r:') 

plot(0.125+[0:.25:25],H1,'b*') 

plot([MeanAbsX1 MeanAbsX1],[-10 1000000],'b:') 

plot([0 0],[-1000,1000000],'k') 

plot([-2 30],[0 0],'k') 

hold off 

axis([-2 30 -NT/400 NT/20]) 

figure(1) 
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PROGRAM 2:  randomvector.m 

This program made Fig. 4, the random walk display – not with all the details.   

Because we don’t know where the walk will end, some hand-setting of the axes is probably 

necessary. 

 

 

% randomvector 

k0=zeros(1,20); 

k1=zeros(1,20); 

 

w=2*(rand(1,20)-0.5); 

k0(1)=w(1); 

k1(1)=w(1); 

for n=1:19 

   k0(n+1)=k0(n)+w(n+1); 

   k1(n+1)=k1(n)+w(n+1)*exp(-j*2*pi*n/20); 

end 

figure(1) 

plot([-100 100],[0 0],'c') 

hold on 

plot([0 0],[-100 100],'c') 

 

plot(k0+0.000001*ones(1,20)*j,'r*')  

plot(k0(20),0,'ok') 

plot(k0(1),0,'ob') 

 

plot(k1,':g') 

plot(k1,'*g') 

plot(k1(20),'ok') 

plot(k1(1),0,'ob') 

 

hold off 

axis([-4 4 -4 4]) 

figure(1) 
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PROGRAM 3:  whiteevolve.m 

This program made Fig. 6 

 

% whiteevolve 

clf 

NS=100     % length of signals  

NT=1000    % Number of iterations   

 

SS0=zeros(1,NT+1); 

SS1=zeros(1,NT+1); 

SS2=zeros(1,NT+1); 

SS3=zeros(1,NT+1); 

SS4=zeros(1,NT+1); 

MM=zeros(1,NT+1); 

 

for kk=2:NT+2 

   w=2*(rand(1,NS)-.5);   

   W=abs(fft(w));  

   M=abs(sum(w)); 

   SS0(kk)=(SS0(kk-1)*(kk-1)+W(1))/kk; 

   MM(kk)=(MM(kk-1)*(kk-1)+M)/kk; % mean 

   SS1(kk)=(SS1(kk-1)*(kk-1)+W(2))/kk; 

   SS2(kk)=(SS2(kk-1)*(kk-1)+W(3))/kk;  

   SS3(kk)=(SS3(kk-1)*(kk-1)+W(4))/kk; 

   SS4(kk)=(SS4(kk-1)*(kk-1)+W(5))/kk;  

end 

 

figure(1) 

hold on 

plot([1:NT],SS0(3:NT+2),'k') 

plot([1:NT],MM(3:NT+2),'y:') 

plot([1:NT],SS1(3:NT+2),'r') 

plot([1:NT],SS2(3:NT+2),'g') 

plot([1:NT],SS3(3:NT+2),'b') 

plot([1:NT],SS4(3:NT+2),'c') 

hold off 

axis([-10 NT+10 -.5 8]) 

figure(1) 
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PROGRAM 4:  angledisplay.m 

This program made the Fig. 12, a display of regularly spaced (DFT) angles and random 

angles. 

 

% angledisplay 

clf 

sa=(360/100)*2*pi/360; 

a=0; 

for k=1:100 

   a=a+sa; 

   vdft(k)=exp(-j*a); 

   vran(k)=exp(-j*rand*2*pi); 

end 

figure(1) 

hold on 

plot([0 0],[-5 5],'k') 

plot([-5 5],[0 0],'k') 

plot(real(vdft),imag(vdft),'or') 

  

plot(real(vran),imag(vran),'*b') 

 

hold off 

axis([-1.2 1.2 -1.2 1.2]) 

axis('square') 

figure(1) 

 

   Additional programs for other figures are likely easy to recreate.  The code however is 

available upon request.    

 

                              *    *    *    *    *    *   *   *   *   *    * 
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