
 ELECTRONOTES 207

 Newsletter of the Musical Engineering Group

 1016 Hanshaw Road, Ithaca, New York 14850

 Volume 22, Number 207 December 2011

GROUP ANNOUNCEMENTS

Contents of EN#207

Page 1 Tools for Investigating Kautz Functions

TOOLS FOR INVESTIGATING
 KAUTZ FUNCTIONS
 -by Bernie Hutchins

Likely few reading here are familiar with Kautz Functions. A search through many
signal processing books yields nothing, and indeed the internet yields little material,
although enough material to get going. I was fortunate enough to have them pointed
out by Tom Parks at Cornell; many years in a class he taught, and sometime assisting
him in that class. So I have played with them many times, but never all that seriously
sat down and investigated them – particularly with regard to how we might use them for
music instrument sound synthesis. This is overdue.

 Our first hint about what Kautz functions are comes from the original paper : Kautz,
William H., “Transient Synthesis in the Time Domain”, IRE Transactions Circuit Theory,
Sept. 1954. Clearly this is an analog-based discussion, and it does seem to be a title
that grabs our attention. Percussive sounds, for example, are transients after all.

 Here we will be discussing Kautz Functions in their discrete version. It will turn out
that we will find very familiar ideas: things like modeling with poles, and digital filter
structures. Matlab simulations will be easy to write.

 EN#207 (1)

BACKGROUND/REVIEW - RESONATOR

Suppose we have in mind a pole. For something more interesting, let’s assume it is a
conjugate pair of poles (more or less usual). Like a pair of poles inside the unit circle
at a radius r (less than 1) and angles ±θ:

 zp1 = r cos(θ) + j r sin(θ)j (1a)

and

 zp2 = r cos(θ) – j r sin(θ) (1b)

These poles correspond to a second-order polynomial:

 D(z) = (z-zp1)(z-zp2) = z2 – 2r cos(θ) z + r2 (1c)

For example for a radius r=0.97 and at angles θ=±15° with respect to the real axis,
the poles are:

 zp1 = 0.97 cos(15) + j 0.97 sin(15) = 0.9369 + 0.2511j (2a)

and

 zp2 = 0.97 cos(15) – j 0.97 sin(15) = 0.9369 - 0.2511j (2b)

These poles correspond to a second-order polynomial:

 D(z) = (z-zp1)(z-zp2) = z2 – 1.8739z + 0.9409 (2c)

Nothing new here.

 Likewise it is probably familiar [1] that the two-pole situation corresponds to a
second-order network of the type shown in Fig. 1a. Here an impulse enters the network
and an exponentially decaying sinwave emerges [the gain of sin(θ) in the output path is
just to set the output to unity at the start]. Recall that D(z) from equation (1c) is the
denominator of the network here. We can easily simulate this network (see Program 1
– Resonator). Using the numbers in equation (2c) as a specific example, we obtain an
output as seen in Fig. 1b.

 We use this as a familiar starting point. In later Matlab programs, it is convenient to
use the Matlab filter function to generate test signals.

 EN#207 (2)

 EN#207 (3)

PROGRAM 1 - RESONATOR

function yout=resonator(rad,ang,N,fs)
% generates length N impulse response of a 2nd-order
% digital filter with poles at a given angle and radius.
% it also plays the response as a sound at sampling
% frequency fs. Pole angles here in degrees.
% example, yout=resonator(0.97,15,250,10000)
% example, yout=resonator(0.999,30,10000,10000)

radang=ang*2*pi/360;
zp1= rad*cos(radang) + j*rad*sin(radang)
zp2= rad*cos(radang) - j*rad*sin(radang)
D=poly([zp1 zp2])
y1=0;
y0=0;
imp=1;
for n=1:N
 y2=y1;
 y1=y0;
 y0= 2*rad*cos(radang)*y1 - (rad^2)*y2 + imp;
 yout(n)=sin(radang)*y1;
 imp=0;
end
length(yout)
figure(1)
plot([0:N-1],yout,'*r')
hold on
plot([-100 1000],[0 0],'k')
hold off
axis([-20 260 -0.8 1])
sound(yout,fs)

Notes on this program:
This program calls Matlab’s sound as a last instruction. In order to actually hear the
output as sound, try the second example in the header. The 0.999 radius makes the
sound last long enough to be clearly heard – but you won’t get much detail in the plot.

 EN#207 (4)

 Here so far this is all background and review, and the establishment of a test
sequence – the decaying sinusoidal sequence. What we have done is given a very
simple description of the sinusoidal. We could describe it as samples of a sequence:

 s(n) = Ae-σnT cos(ωnT +φ) (3)

where A is an amplitude, σ is a decay time constant, ω is a frequency, φ is a phase, and
T is a sampling time (five numbers total). Equivalently, it can be described in terms of
the parameters of the digital network of Fig. 1a, by giving A0, A1, B, y2(0), and y1(0).
Again, five numbers. All this so far is old stuff.

AN EXAMPLE OF KAUTZ FUNCTIONS

 The waveform of Fig. 1b can also be represented in terms of Kautz functions. At this
point, we will just go ahead and show the results, discussing the theory, various
programs, and applications later.

 EN#207 (5)

 EN#207 (6)

 The example shown in the three parts (a, b, and c) of Fig. 2 show our resonator test
signal constructed from Kautz functions. In this case, there are two Kautz functions
(Fig. 2a and Fig. 2b) that form the “basis”, one for each of the two poles we have been
using. Here we have a special case where we knew the poles that were involved in
generating the test signal. Note that the basic functions are of a decaying sinusoidal
form, and that they are complex (red part real, blue part imaginary). It turns out (see
notes on Fig. 2c) that the corresponding weights are also complex, and the
reconstruction (weighted sum of Fig. 2a and Fig. 2b) is real. As mentioned, here the
reconstruction is perfect, because we cheated by knowing the correct poles. Had we
guessed them (incorrectly in general) the reconstruction would be imperfect.

 So this is a familiar case of an inner product space (not unlike a Fourier series or a
DFT) where we have basis functions, and weights (coefficients of an expansion). We
have three things to do. First, how do we generate the basis functions (Kautz
functions), and what are their properties. Second, how do we compute the coefficients,
perhaps by inner product, perhaps by digital filter (as in Goertzel’s algorithm for the
DFT) or likely, both. Thirdly, are they good for anything.

THE KAUTZ FILTER BANK

It is convenient to show the structure of the Kautz filter because it looks very much like
some digital all-pass and single-pole filters with which we are quite familiar. This filter
bank is also easy to simulate for generating the corresponding Matlab programs. The
impulse response of this filter will be the Kautz functions. Further, by time-reversing a
signal to be analyzed, passing it through the filter, and stopping at the right time, we can
obtain the coefficients.

 EN#207 (7)

 Fig. 3a shows the structure of the Kautz filter for length 2 (extended in the obvious
way). It is similar to a “transversal filter” like an FIR filter, except instead of delay we
have all-pass-like units, and instead of fixed taps, we have single pole units. Here the
p’s are the poles as we have been using them. Let’s take a closer look at the two units
in the boxes. Note that the signals here are going to be, in general, complex.

 Fig. 3b corresponds exactly to half of Fig. 3a in an obvious way. Note that the
denominator of the transfer function in the units going downward may appear
complicated but they are just real constants and are realized as output multipliers
(1 - |p|2|)1/2. We further note that the feedback section appears in both blocks and is
thus redundant, and we will shortly remove this. We have called the horizontal blocks
“all-pass-like” because they look like a first-order digital all-pass – except that a pole
(inside the unit circle of course) is matched to a reciprocal zero outside and in the
conjugate position.

 Fig. 3c shows the structure once the redundant feedback is removed. (We note on
the figure that the summers in the middle here, and likewise between additional sections
that may be present in the case of more than two poles, are also redundant but this
probably saves nothing as far as programming is concerned).

 EN#207 (8)

 To be clear, the structure of Fig. 3c is for two poles, and can be extended in an
obvious way for additional poles. We will be using this filter in two ways. By inputting
an impulse, we generate the Kautz functions as the k(n). If we have a sequence to be
analized, this can be input (time reversed) to give the Kautz coefficients. As a final note
here, you can see (or redraw) Fig. 3c with all the poles p=0 and note that the structure is
basically an FIR filter.

WRITING PROGRAM CODE

We need to write Matlab code to do our experiments. It is clear that the Kautz filter is
central to all we are going to do, so it makes sense for to write this as a “function: which
we can call kfilter. This code is at first confusing to approach. We need to write it for a
variable length signal and for a variable number of poles. And there are multiple
outputs (the k’s). It is convenient to look at a single section as in Fig. 4. What we do,
for each time iteration (n), is to update each section (m) (Fig. 4 typical), left to right.
This calculates the values for all the k’s for the current time value n.

 We update a section, as we probably should for all digital filter simulations, by first
executing the delays. That is, we move the data from the input of ALL delays to the
outputs. This overwrites the outputs, and we must then calculate new values for the
delay inputs, using nothing that we have not updated already. This means we must

 EN#207 (9)

work left to right! . In Fig. 4, this means we move v to w (red line) as our first step, and
concentrate on updating v as our second step. The node v is the output of the summer
on the left. This sums the node w as multiplied by p with the latest input xx, and this
becomes v (orange lines). Note: for the very first section, this xx comes from the input
sequence x. For the rest of the sections, xx is fed to the following stage as a result of
updating the current section. The third step (green) is simply to scale v to form the
output k(n,m). This we are storing as a matrix for convenience. The last step (blue) is
to calculate and feedforward the value of xx. This is the sum of w, and v as multiplied
by –p*, giving to xx of the next stage. That’s how the filter works.

PROGRAM 2 – kfilter.m

function k=kfilter(p,N,x)

np=length(p)
v=zeros(1,np);
w=zeros(1,np);

for n=1:N
 xx(1)=x(n);
 for m=1:np
 w(m) = v(m);
 v(m) = w(m)*p(m)+xx(m);
 k(n,m) = sqrt (1-abs(p(m)')^2)*v(m);
 xx(m+1)=w(m) - p(m)'*v(m);
 end
end

 EN#207 (10)

 The function kfilter above is the core used for our investigations. Even if you are not
good in Matlab you can likely understand the code just fine, referring to Fig. 4. It does
the calculations specific to the Kautz functions. This is good. Most Matlab programs
(most programs?), in terms of lines of code, are sparse in lines that actually calculate.
Most of the code lines in a final program relate to manipulating and displaying results,
and making things look good on a screen. Programmers who can never seem to finish
a program are usually going back for one more user-friendly improvement.

 Here in kfilter we have not done anything with the calculated results. You would
need to plot the results by entering instructions individually. Or, you could embed kfilter
in an application-specific program. Here we have decided to provide a program we will
call ktest to “exercise”, plot, and demonstrate the Kautz function properties. The
program ktest produced the graphs of Fig. 2.

THE TEST PROGRAM

Below we list the code for ktest and its functions in terms of six “tasks” it performs.
Recall that there were two applications of kfilter (see Fig. 5).

 The inputs to the function ktest are the poles chosen, p, and the signal to be
analyzed, x. Here (Task 1) we first set the length of the Kautz functions to be generated
to be the length of x, and call this N. The function kfilter then is run with the input
chosen as an impulse: a one at n=1 and zeros thereafter to a total length N. That is, we
are using Fig. 5a. This gives us the Kautz functions as the columns of a matrix k. The
matrix has a number of columns equal to the number of poles (length of p) and the rows
at the successive time values of the Kautz functions.

 EN#207 (11)

PROGRAM CODE FOR KTEST

function [k,c,w]=ktest(p,x)
% [c,w]=ktest(p,x)
% p = poles
% x = signal to be represented
%
% k = Kautz functions
% w = Kautz weights (by inner product)
% c = Kautz filtering - last row = weights
%

% Task 1 - Generate Kautz functions from poles
N=length(x)
k=kfilter(p,N,[1,zeros(1,N-1)])
% check orthonormal
orthnorm=k'*k

% Task 2 - Plot the Kautz functions
for m=1:length(p)
 figure(m)
 plot([0:N-1],real(k(:,m)),'r')
 hold on
 plot([0:N-1],imag(k(:,m)),'b')
 hold off
end

% task 3 - Kautz weights by inner product
for m=1:length(p)
 w(m)=x*k(:,m);
end

 EN#207 (12)

% Task 4 - Sum the series
xr=zeros(1,N);
for m=1:length(p)
 xr=xr+w(m)*k(:,m)';
end
xr
xr=real(xr)
e=abs(x-xr)

% Task 5 - Plot reconstruction
figure(m+1)
plot([0:N-1],x,'ob')
hold on
plot([0:N-1],xr,'*r')
hold off
mx=max([max(x) max(xr)]);
mn=min([min(x) min(xr)]);
axis([-2 N+1 1.3*mn 1.3*mx])
figure(m+1)

% Task 6 - Kautz coeffs by filtering
% should be same as weights w
c=kfilter(p,N,(fliplr(x))');

 The final part of Task 1 is to do a matrix inner product to check and see if the Kautz
functions are orthogonal. We have not mentioned this, but they are indeed orthonormal,
so the result of the orthonormal test should be a square identity matrix of size equal to
the number of poles. It may not be that exactly. If so it is probably the case that the
Kautz functions were not long enough to get small enough. That is, they correspond to
decaying exponentials, but if the exponential tails are not small enough, the identity
matrix may be approximate. The signal x can always be calculated to a longer length (if
possible), padded with zeros, or simply, a value N can be made an input parameter as
with kfilter. We now have the Kautz functions in a matrix k, and we are ready to plot
them, and this will be Task 2.

 EN#207 (13)

 In Task 2, the variable m is the index of the pole (and the corresponding Kautz
function). Note that the desired function is “extracted” from the matrix by the use of the
colon to indicate a column: e.g., k(:,m) is the mth column. The functions are plotted
individually as successive figures, the real (red) and imaginary parts (blue). If the
function is purely real (as for a real pole) the horizontal axis is overplotted in blue. Here
not attempt was made to automatically set an axis. Code could be added to do this,
although it is also possible to do these by hand for optimum appearance (often we may
want to add text as well). Fig. 2a and Fig. 2b were generated by ktest and tidied up.

 In Task 3, we calculate the Kautz coefficients by the direct computation of the inner
products of x with the individual basis functions, in the usual manner. We notice here
that the program has already set the length of the Kautz functions to the length of x, as
is required for this inner product. We call these coefficients w (for weights) here. The
exact same numbers will be calculated in Task 7.

 We are now at Task 4. This can be thought of as a “reconstruction” process, or
better, just as a series sum. If the basis functions are long enough, and if the poles are
chosen correctly, we can expect to get x back. Fig. 2c is such a case. But, and this is
an essential point, we don’t usually know the poles. Here x is an input to ktest. It was
generated or obtained ahead of time. For Fig. 2c, we selected the poles and ran the
resonator program. This gave us x. Then when we ran ktest, we chose the same
poles we used in the resonator. That’s cheating in the general case. On the other
hand, we needed to be sure that that at least worked perfectly. The case where we
have to guess poles is of major interest to us. The last three lines of Task 4 allow us to
be sure we get a real result (assuming x was real) and to display the error.

 Task 5 is a plot (as discrete samples)of the reconstruction (or attempted
reconstruction). Note that this picks up the figure numbering at m+1. The original
sequence is shown as blue circles and the reconstruction samples as red stars. This
portion does attempt to set an axis, as shown. Fig. 2c is an example.

 Task 6 is redundant with Task 3 as far as results are concerned. Here we use the
Fig. 5b use of kfilter. The filter in this case computes the inner product. The input
sequence x is time reversed, and following N iterations, the outputs are the coefficients.
This is the same way that Gertzel’s algorithm calculates DFT’s. Note the fliplr is “flip
left/right” and the use of the apostrophe here is conjugate transpose (only transpose
since x is assumed real). [In general, we need to be careful about the apostrophe and
the asterisk in Matlab. The “star” means multiply in Matlab, but we usually use it for a
conjugate (as a raised star or asterisk) in our text. This often comes out printed as a
asterisk in Matlab code, but it still means multiply. Now, the apostrophe in Matlab is a
conjugate transpose – commonly needed in matrix algebra. It changes a row vector to
a column (and vice versa) AND conjugates. For real vectors, it just transposes. For
scalers, it just conjugates. In this example, it just transposes to get dimensions correct.

 EN#207 (14)

INVESTIGATIONS

Investigation 1: Ordering of Poles/Extra Poles/Unneeded Poles:

 This investigation is a review of, and extension of the original case as in Fig. 2. This
was the case where we generated x based on two poles chosen, and then used these
exact same two poles for the Kautz expansion. Everything worked perfectly. So we will
extend this a bit with certain “what if?” notions.

What if we reversed the order of the two complex conjugate poles? Well, it looks pretty
much the same, except the imaginary parts of the Kautz functions are reversed in sign,
and the imaginary parts of the coefficients are reversed in sign. Very reasonable.

What if we went to four poles by repeating the two poles that work perfectly. Well, we
get two more Kautz functions, which are interesting to look at (different from the original
two) but their coefficients are zero – they are not needed. Sounds reasonable too. The
sections on the left grab all the business first. They don’t, for example, share!

So the next move is to add another set of poles to the perfect poles. For example,
follow the two original poles with a pair, 0.5 + 0.5j, and 0.5 - 0.5j. These two poles, too,
are rejected in that their coefficients are zero. We can understand this as follows. With
the two perfect poles, x is reconstructed and is a linear combination to two Kautz
functions. In consequence, any additional Kautz functions that follow are orthogonal to
the first two, and thus also to any linear combination of these (like x).

But what then happens if we choose the pair 0.5 + 0.5j, and 0.5 - 0.5j in the first two
sections and then follow with the two perfect poles in positions three and four? In this
case, we get an answer with four non-zero coefficients. A new solution. The first pair of
poles, which were not a perfect solution, left part of x to be represented, which was
picked up by the perfect poles.

As a final test in this series, we again try the case of using the perfect poles twice, but
this time, the poles are not in order: pole, conjugate, pole, conjugate - but rather: pole,
pole, conjugate, conjugate. Does the system choose, perhaps, the first pole, skip the
second pole, choose the conjugate, and skip the second conjugate? Nope. It uses all
four. And the Kautz functions are (of course?) different from the original case.

 Incidentally, we probably have not said so explicitly, but all of these cases above are
perfect reconstructions.

 The lesson here is that the order of poles does matter.

 EN#207 (15)

Investigation 2: Exponential Envelopes

Here we drop back from complex exponentials (decaying sinusoidal waveforms) to real
exponentials. Real exponentials are important in music sound synthesis as envelopes.
In the simplest possible case, we have one real exponential, a real pole at some radius
p. It is convenient to write real exponential decays directly in terms of this radius:

 x = pn = e-σn (4a)

where:
 σ = -ln(p) (4b)

If for example we choose p=0.97, we can calculate x from equation (4a), and then use
ktest with the same pole, as seen in Fig. 6a.

 EN#207 (16)

 We see that the exponential decay is exactly what we expected and it is
reconstructed perfectly. Perhaps if it was not already obvious, what is meant by the
“weight” or “coefficient” is that Fig. 6a is multiplied by the weight 4.1134 to get Fig. 6b.

 By adding a second pole to ktest, this one at 0.9 (in addition to the one at 0.97) we
obtain the second Kautz function shown in Fig. 6c. This does not resemble a typical
exponential decay as the first one (Fig. 6a) did. When we run ktest with x being the
single decay sequence, p=0.97, the weight requested for the second function (Fig. 6c) is
zero, as we expect, and the reconstructed sum remains the same as Fig. 6b.

 EN#207 (17)

 We are interested in envelopes for musical sounds that seem to have a dual rate of
exponential decay: an initial fast decay followed by a slower rate of decay. For
example, the case of coupled piano strings resulting in a “singing” slow decay [2]. We
can form a typical two rate decay as:

 x = 0.2 (0.97)n + (0.9)n (5)

Here we have reduced the amplitude of the slower decaying sequence to 0.2 relative to
the faster decaying one. The first sample is 1.2, and the original and reconstruction as
shown in Fig. 6d show the dual decay rates. Unlike the case of Fig. 6b, we now do
require the second pole (the one at 0.9) for Fig. 6d. The weights are given in Fig. 6d.

 Later we will look at the way in which a dual rate exponential envelope can be
decomposed into two “Kautz envelopes” with the two envelopes separately controlling
individually selected components of an additive synthesis.

IMPERFECT RECONSTRUCTION

We have good reasons to examine the Kautz functions while “cheating” by knowing the
correct poles. This meant that we were able to attribute changes we observed to the
different input conditions to the programs, without considering “errors”. Here we will do
a construction with one set of poles, and reconstruction with altered poles. We no
longer anticipate a perfect reconstruction.

 EN#207 (18)

Our test signal will be generated from two pairs of complex poles. We could do this as
in the Resonator program, but it is convenient to use the Matlab poly and filter
functions such as:

 x=filter(1,poly([.6+.6*j,.6-.6*j]),[1 zeros(1,49)])+ filter(1,poly([.8+.2*j,.8-.2*j]),[1 zeros(1,49)])

The perfect reconstruction is thus obtained with ktest as,

 [k,c,w]=ktest([0.6+.6*j,0.6-0.6*j,0.8+0.2*j,0.8-0.2*j],x)

with the result shown in Fig. 7a.

 So finally, we will try a reconstruction by changing the second set of pole slightly
(changes in red). Fig. 7b shows the case of ktest with:

 [k,c,w]=ktest([0.6+.6*j,0.6-0.6*j,0.8+0.15*j,0.8-0.15*j],x)

 EN#207 (19)

As we might expect, the reconstruction in Fig. 7b is not perfect, although it is not terribly
wrong. That is, we changed the imaginary part of the second pair of poles from 0.2 to
0.15. It is clearly easy to make it worse, if not unrecognizable, by moving the poles
further from their original positions To make it better, we can of course choose better
poles, closer to the true ones that actually generated x. Alternatively we can consider
including additional poles. While we generated the signal as a four-pole example, we
can try poles in a larger number. Perhaps more poles working on the problem will help
– in the same sense that adding more frequencies to a Fourier series help. We can
start with a case (changed From Fig. 7a as shown in red):

 [k,c,w]=ktest([0.6+.6*j,0.6-0.6*j,0.7+0.2*j,0.7-0.2*j],x)

with the result as shown in Fig. 7c.

 This is in one sense merely a second example of what happens when we choose the
wrong poles. Here we are using it as a baseline case to which we intend to add more
pole pairs. One simple thing we can do here is to add the new poles more than once –
in fact three more times for a total of four. This is shown by:

 EN#207 (20)

[k,c,w]=ktest([0.6+.7*j,0.6-0.6*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j],x)

Here the three additional pole pairs (red), while identical to the those used (once) for
Fig. 7c, do greatly improve the reconstruction, as seen in Fig. 7d.

 This is a significant result as it suggests that while “wrong” poles may not in
themselves lead to a satisfactory representation, if they are used multiple times, or
perhaps with other wrong poles, we might see continued improvement. The next logical
step is to consider using only one wrong pole pair multiple times. This we conveniently
do by using the case of Fig. 7d and replacing the first pole pair (which was a pair of the
original four-pole resonator) with the wrong pair we used four times. That is, we use the
wrong pair at total of five times now (changes again in red):

[k,c,w]=ktest([0.7+.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j],x)

The result shown in Fig. 7e, while clearly (as expected) not as good as that of Fig. 7d
where we retained one pair of “correct” poles, is also clearly better than Fig. 7c.
Accordingly there is merit to using additional poles. Does this mean that we can just
choose a multiplicity of a more-or-less arbitrary pole pair, with any input signal, and
achieve useful results?

 EN207 (21)

 To test the idea of representing an arbitrary time sequence with a large set of poles,
here we try to represent a rectangular function with the same set of poles we used for
Fig. 7e. That is:

 [k,c,w]=ktest ([0.7+.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,0.7+0.2*j,0.7-0.2*j,
 0.7+0.2*j, 0.7-0.2*j,0.7+0.2*j,0.7-0.2*j], [1 1 1 1 1 1 1 1 zeros(1,42)])

The result seen in Fig. 8a shows 10 poles (the pair 0.7+0.2j and 0.7-0.2j) used five
times, and it shows an attempt to represent the rectangle shown, quite reminiscent in
fact of a Fourier series truncation. Our feelings that somehow we are dealing with a
basis set of spanning functions is intensified. We can take another look by again using
10 poles, but this time, spreading them around. Our choice for this “array” is to place
the poles at the same radius (0.74) as the 10 above for Fig. 8a, but this time place them
at ±10°, ±20°, ±30°, ±40°, and ±50° with respect to the real axis. The result shown in
Fig. 8b is somewhat similar to Fig. 8a. In fact, it is somewhat better when we look
closely. The “ripple” is much the same, but the transition rate from high to low is
significantly faster. The case where the 10 poles were five pairs all the same, the angle
was about 16°. Accordingly we understand the faster transition rate as being due to the
higher frequencies of many of the poles in the arc-like array.

 EN#207 (22)

 EN#207 (23)

 EN#207 (24)

 The reader has noted that the Kautz functions are not a fixed set of functions (as
DFT time-domain sequences are, for example) but depend on the choice of poles. Yet
we do seem to achieve a useful orthonormal expansion, and we might be served by
seeing a fuller set of the waveforms if some coherent viewpoint can be established.
The case where all the poles are in the same point offers such an opportunity, and this
is shown in Fig. 9 where we show the first four Kautz functions, the eighth, and the 20th.
We can follow the series, in fact showing increasing ripple with order. In this case, the
20 poles are in 10 conjugate pairs at 0.6±0.2j. According to the 1954 Kautz paper, this
case of only one pole pair, used multiple times, is the Laguerre case, the Kautz
functions being the Laguerre polynomials with an added exponential decay factor. It’s
always nice to know that things are tied together. In fact, in his 1954 paper Kautz did
choose some familiar pole sets (such as Butterworth and Chebyshev) to work with.

A SOUND EXAMPLE

At this point it is interesting to try to find out what things sound like. We can easily listen
to the Kautz functions, such as the K20 case of Fig. 9, and as many readers suspect,
you don’t hear much since there are still relatively few cycles. Instead, we will follow up
on the suggestion made earlier (discussion around Fig. 6) to use the Kautz functions as
envelopes.

 EN#207 (25)

 In this experiment, diagrammed in Fig. 10a, we propose to listen to percussive
sounds generated from ordinary exponential decay envelopes, and Kautz envelopes. A
more-or-less standard “additive synthesis” scheme is shown here. We have two
sources (S1 and S2) that are sinusoidal waveforms. One of these S1 is thought of as the
attack transient source, while the second S2 is more the tone itself. The amplitudes of
these two are set by envelopes that are either exponentials, or Kautz functions,
according to the switch shown. The basic idea is that we want a percussive sound such
as a wooden marimba – a resonant block of wood struck by a hard mallet. That is, a
“plink” sound. Such a sound is basically an exponentially decaying sinewave (with an
interesting overtone structure). At the very beginning, there is the transient of the strike.
Perhaps it is some rapidly decaling modes of the wood bar (like side to side rather than
longitudinal) or perhaps a mode of the mallet itself. In any case, it make a big difference
as to whether the sound is natural or not. We thus think of the envelope for S1 as being
at the very beginning and relatively short (and S1 as being a higher frequency). The
envelope of S2 should be much longer, and certainly at least asymptotically exponential.

 The most natural approach is to use two decaying exponentials (e1 and e2) as shown
in Fig. 10b (switch of 10a UP). Here there is the rapidly decaying (blue) curve and the
more slowly decaying green curve (which soon merges with the sum in red). We might
choose S2 as a sine wave and S1 as a third harmonic, or something more at random.
This is a successful approach. The alternative is to use the Kautz envelopes
k1 and k2 (switch in Fig. 10a DOWN). The k2 envelope is quite different from the e2

 EN#207 (26)

envelope (see Fig. 10c). It does start negative (this is probably not important). It then
goes through zero and turns the S2 signal on, in fact cross-fading with S1 as controlled
by k1. The envelope k1 is just a decaying exponential. Thus there is a naturally
produced delay. What do we hear?

 The experiment here is conducted with Matlab using the sound function. The
program code is given below as ktone. Figures 10b and 10c were produced by ktone,
and the output cases are seen in Fig. 10d and Fig. 10e. The sound commands allow
us to listen to the individual decays as well as the sums.

 The result is that there is a significant difference between the exponential envelopes
and the Kautz envelopes. It is not overwhelming, but it can be easily heard if one
experiments with the program a bit (the results in Fig. 1d and Fig. 10e correspond to the
example command line in the header comments of ktone. In fact, by comparing Fig.
10d to Fig. 10e we see a clear difference. Fig. 10d still looks exponential, and barely
like the dual rate decay we were hoping for. In Fig. 10e, we see a dual rate, and more
of a detachment between the attack transient and the main portion (in fact, there is a
region of rise. What we hear is in some ways more interesting. Perhaps I can describe
it as a “ker-plink” (Fig. 10e) instead of just a “plink”. Either sounds better than just a
single source and one exponential envelope.

 EN#207 (27)

 EN#207 (28)

Program ktone

function ktone(p1,p2,f1,f2,N,fs)
% p1, p2 are real poles ---> K1, k2 Kautz functions
% f1, f2 frequencies to be enveloped by k1, k2
% N = number of samples
% fs = playback samplign rate
% example ktone(.93,.995,1800,600,500,10000)

k=kfilter([p1,p2],N,[1 zeros(1,(N-1))]);
k1=k(:,1);
k2=k(:,2);
figure(1)
plot([0:(N-1)],k1,'b')
hold on
plot([0:(N-1)],k2,'g')
plot([0:(N-1)],(k1+k2),'r')
hold off

y1=sin(2*pi*f1*[0:(N-1)]/fs).*k1';
y2=sin(2*pi*f2*[0:(N-1)]/fs).*k2';
e1=p1.^(0:(N-1));
e2=p2.^(0:(N-1));
y3=e1.*sin(2*pi*f1*[0:(N-1)]/fs)+e2.*sin(2*pi*f2*[0:(N-1)]/fs);
y3=y3/5;

figure(2)
plot([0:(N-1)],e1,'b')
hold on
plot([0:(N-1)],e2,'g')
plot([0:(N-1)],(e1+e2),'r')
hold off

figure(3)
plot([0:(N-1)],y3)
figure(4)
plot([0:(N-1)],y1+y2)

sound(y1,fs)
pause
sound(y2,fs)
pause
sound(y3,fs)
pause
sound((y1+y2),fs)
 EN#207 (29)

ANALOG POSSIBILITIES

 Everything we have done so far has been digital rather than analog, except for the
mention that Kautz’s 1954 paper was of course analog. It would appear that the analog
is very similar. Fig. 11a shows an analog circuit where we have basically a first-order
all-pass (upper left) feeding a low-pass on the right. This produces the k2 Kautz
function, and trivially, we use the op-amp follower to tap off the k1 function. This
envelope generator needs to be initiated with an impulse (sharp rectangle at least), not
with a traditional gate. But of course, it is the “trigger” rather than the “gate” that is of
interest in the generation of percussive sounds.

 EN#207 (30)

 Figure 11b shows the (Matlab) calculated analog impulse responses for k1 and k2.
No particular scaling is imposed – both start at magnitude 1. It is clear however that we
can get the desired crossfade here. No analog synthesis test have been conducted on
this, although it looks like a very doable design and experiment. The basic circuit of Fig.
11a was breadboarded with 10 second time constants to experimentally verify the basic
waveshapes of Fig. 11b.

SUMMARY

Here we have looked at Kautz functions that are not as well knows as perhaps they
should be. Accordingly we have introduced the functions and certain tools, including an
easy-to-understand digital filter that generates them. Based on very preliminary work, It
is likely that our main interest will be in the use of the Kautz functions as control
functions rather than sounds themselves. It is further shown (Fig. 11) that an analog
implementation leads to a very simple dual envelope generator where the two
envelopes have a natural “cross-over” relationship summing to a natural exponential
decay (while keeping source components separate until after enveloping). This would
seem to be an interesting new project in analog synthesis.

REFERENCES

[1] B. Hutchins, “Design Considerations for Digital Sine-Wave Oscillators”, Electronotes
Application Note 299, Sept/Oct. 1987

[2] G. Weinreich, “Coupled Motion of Piano Strings”, Scientific American, January 1979;
and in “Coupled Piano Strings”, J. Acoustical Soc. Amer., Vol. 62, No. 6, pp 1474-1484
(1977)

 * * * * * * * * * *

Electronotes, Vol. 22, Number 207, December 2011

 EN#207 (31)

