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     It has been a long time since we produced a new issue of Electronotes.  True 
enough, there have been a passel of Application Notes issued, belying any claim to 
complete laziness, but no EN’s.   In fact, in the early days, there was a big difference 
between the EN’s and the AN’s: the EN’s being more news while the AN’s, originally 
just two pages, were reference materials with less urgency.  So there was often some 
question as to whether a particular item should be an article in an EN or a separate, 
long AN.    This issue contains two articles that seemed to want to be part of an EN, as 
they were extensions of previous articles.   Another hold-up was that we were supposed 
to do the second part of the finite wordlength presentation, material that was not 
finished, and still needs to be finished, although it all exists with messy handwritten 
figures, used for several years for instructional purposes   
 
     Another thing was that we stopped making paper copies of new issues and new 
AN’s.  That is, there were no actual subscriptions, all the new materials being posted 
online for free, while we simplified the paper business by selling only back issues.  This 
meant that when we finished an order, we were done.  What an improvement.   At the 
same time, making an electronic file is different from preparing an original for hard-
copying.  In many ways, it is much harder.  On the other hand, some things are easier 
since we don’t need to worry so much about empty space, fronts and backs, and so on. 
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     But by far, the biggest thing that has happened in the last few years was the loss of 
three of our heroes: Bob Moog, John Simonton, and Doug Curtis.  Every time I thought 
about a new EN I knew I had to address this loss, and it was something I did not know  
how to do, and I still don’t.   Let’s just say that Bob was the pioneer and leader in the 
commercial synthesizer field, John was the person who made the kit synthesizer a 
reality (thereby getting a lot of EN builders jump started), and Doug, through his CES 
chips, made both commercial and home building much simpler.   And, as much as there 
was to admire about their work, these were very good people; good friends.   
 
     There are so many Bob Moog stories that have been told which are available.  Here 
are two others, probably not previously told, and not terribly important perhaps, but both 
of which fit the pattern.  In 1971, I took a course, Electrical Engineering 4436 which Bob 
taught at Cornell.  (I got an A+ which delighted me no end, one of very few grades I 
actually cared much about.)   As one of the projects, there was an analysis of a spring 
reverb.  Bob had given out the project and a reference during one class, and suggested 
how to approach it.   What he said seemed wrong to me!  But I thought I needed to think 
about it before saying anything.   By the next class I was waiting outside his office for 
him to arrive, and when he saw me, I said something like “About the moment of inertia 
of the coil….”   I don’t know if he had thought about it between the classes, or if his 
physics training kicked in instantaneously.  “You’re absolutely right,” he said, without my 
going further.  He was very much aware of the way engineering and physics could be so 
obvious that true practitioners might only need to grunt. 
 
     The second story involves sitting with him at a meeting somewhere (probably AES) 
when a guy came over with a sketch a friend of his had made of Bob; pencil or charcoal 
I think.  The guy asked if Bob would autograph it!   That was perplexing enough – why 
should Bob sign a picture someone else drew?  The sketch wasn’t all that bad, but, the 
man in the sketch had a prominent mustache - and Bob did not!    This was a problem.  
Bob looked at it for perhaps a full minute, and then did autograph it.  Handing it back he 
said “Be a good kid and ask your friend to take the mustache off.”   
 
     And a John Simonton story.  John’s kits were linear controlled of course, and at one 
point some other kit maker criticized John’s product as being something like: incapable 
of musical expression.  There was some kind of a dust-up as a result, and somehow I 
got involved – not by way of taking sides – but by suggesting that the issue itself was 
somewhat silly and unworthy of our time.   I got a call from John.  His first question was: 
“Are we still friends?”  That was what he wanted to know.  We were still friends, and 
remained so.   
 
     This electronic music business has been a great endeavor, blending art and 
technology, and exposing us to so many wonderful people. 
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Sample-Rate Changing 
               by Polyphase On-Demand 
 
                                                     -by Bernie Hutchins 
 
     A standard joke relate to the notion that those who can – do; while those who can’t – 
teach.   A possible corollary to this is that when it gets down to “really” doing something, 
the “textbook examples” just don’t apply.  Typically, for sampling rate changes, only 
sampling rates at a ratio of small integers are presented as examples, along with a 
presentation of the efficiencies of a “polyphase” realization.    In our recent presentation 
[1] we added slightly to this basic view by pointing out a way to derive polyphase 
structures intuitively rather than formally.   
 
     Here we want to examine a notion we can call “polyphase-on-demand.”   In its most 
general form, it is the basis of the intuitive approach [1] and was mentioned in a 
potential real-time rate-changing example [2].   The most basic form of the idea is useful 
for applications ranging from the generation of figures for this note (see below) to the 
writing of actual Matlab (or other) code to convert a file at one rate into a file at a new 
rate. 
 
 

RATE CHANGING FOR RATIOS OF LARGE INTEGERS 
                 A CASCADE OF RATE CHANGERS 
 
     Before we move on to the polyphase-on-demand, we need to discuss the 
complications that come up when the ratio of integers that describes the rate change 
becomes one of larger and larger integers.  A small-integer rate change of 3/2 (for 
example, going to 30 kHz from 20 kHz) presents no major problems, and perhaps 
polyphase in any form is not efficient for such a case.   It is in cases of larger integer 
ratios such as 11/5 or 6/13 that we become more inclined  to embrace polyphase.  
Eventually, the integers in the ratio may become so large that a polyphase approach, in 
the sense of pre-computed polyphase coefficients, may become impractical.  In such a 
case, the first thing to consider (in a standard approach) is to see if the rate change can 
be done in steps.  The second thing is the polyphase-on-demand to be discussed 
below. 
 
     So before looking at the polyphase-on-demand, let’s review the rate change in steps. 
As an example, consider a rate change from a CD rate of 44,100 Hz to a DAT rate of 
48,000 Hz.  This is a ratio of 480/441 which can only be reduced by a common factor of 
3 to a 160/147 ratio.   
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     Here we could achieve the desired rate change by upsampling by a factor of 160 to 
7.056 MHz and then downsampling by 147 to get our desired 48,000 Hz.   This 
intermediate sampling rate is very high to work with, but perhaps more importantly, it 
would involve many, many needless computations [1].    
 
[Note that our considerations should involve the actual bandwidth of the signal.  We 
must assure that all intermediate frequencies are at least twice the bandwidth.  We 
might actually know a signals bandwidth, but in the absence of this information, we 
need to assume it might be as large as half the sampling rate of the signal as given to 
us.  Generally this means that in order to avoid aliasing we need to always do an 
upsampling first, and any intermediate sampling frequencies must always be greater 
than the original.  Otherwise, we need to do a pre-decimation filtering (reduce the 
bandwidth prior to downsampling) and be prepared to accept some loss of information 
as a result of this filtering.] 
 
      There are of course additional prime factors of the numerator and the denominator 
that can be considered separate from any common factors we have removed.  The 
numerator 160 can be factored into 5 x 2 x 2 x 2 x 2 x 2 and the denominator 147 has 
factors 3 x 7 x 7.  There are various ways to group the factors, and it is clear that we 
probably would want to do a rate change in terms of alternating upsamplings and 
downsamplings.   This suggests several ways to group the six prime factors of the    

 
          Fig. 1   Three upsampler and three downsampler stages from 44.1 kHz to 48 kHz. 
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       Fig. 2   Two possible stagings of a 8192/22050 rate changes, the lower 
                           example having a lower intermediate frequency. 
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numerator into three upsamplers.  One choice would be 8, 5, and 4.  For example (see 
also Fig. 1) we could upsample by 8 to go from 44,100 to 352,800, downsample by 7 to    
50,400, upsample by 5 to 252,000, downsample by 3 to 84,000, upsample by  4 to 
336,000, and finally downsample by 7 to our desired final sampling frequency of 48,000.  
This has reasonable values for intermediate sampling rates, and we know how to do 
even better by using three efficient polyphase structures for rate changes of 8/7, 5/3, 
and 4/7.  We keep in mind that the polyphase structure is really a "recipe" for doing only  
what is necessary rather than a filter network.   
 
     As a second example, consider a downsampling from 22,050 Hz to 8192 Hz.  Here 
we assume that the signal was bandlimited (even at the 22,050 rate) to 4096, OR we 
are going to filter it to a bandwidth of 4096 Hz.  In the first example, the rate change was 
not that far from unity (480/441) while here it is more like 1/3 (8192/22050).  The ratio 
8192/22050 gives up only a common factor of 2 to 4096/11025.   The numerator 4096 is 
of course 212, while 11025 factors into 3 x 3 x 5 x 5 x 7 x 7.  Fig. 2 shows two ways (of 
many!) to arrange a cascade of sample rate changers for this case.   
 
      The point in looking at these examples is that when the rate change ratio involves 
large integers, both the direct polyphase, and the cascade of polyphase realizations at 
ratios for smaller integers get tedious.  That is, the “bookkeeping” gets out of hand. 
 
 

THE RATE-CHANGE COMPUTATION CYCLE 
 
     In our intuitive polyphase [1], we introduced the notion of a Rate-Change-
Computation-Cycle (RCCC) as a means of identifying the component filters for the 
polyphase structure.  Fig. 3 shows an example of the RCCC for a 4/3 rate changer.   
Here the input signal is represented by the four samples A, B, C, and D located at times 
0, 1, 2, and 3.  Because we want to increase the sampling rate by 4/3, we need to find 
samples for the output that are spaced at an interval of 3/4.   We start with the sample A 
at time 0 and place there a sample a=A at time 0 for the new sequence.  The next 
sample of the new sequence needs to be at time 3/4 – for example, the sample b as 
shown.  Yet another sample of the output would be needed at time 2 x 3/4 = 1.5, and 
this is the position of sample c.  Likewise we get sample d at time 2.25.  Then we get to 
one more sample at time 3, and this is the position of sample D of the original sequence 
and sample e of the new sequence.   The RCCC is composed of the calculation of 
samples a, b, c, and d (shown as stars), but not of sample e which is the first sample of 
the next cycle.   Note that the dashed vertical lines identify the time positions of the 
RCCC output sequence.  In this example, we suggest that the output samples are to be 
established as a linear interpolation of the input samples on either side of the needed 
positions.  This is a very simple method of interpolation, but we could well employ a 
more sophisticated technique in a particular case.   The point is that the RCCC is short 
in this case. 
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                      Fig. 3  The RCCC for a 4/3 upsampler (originals=o, new=stars) 
 
 
 
     In our intuitive approach, we used this RCCC as a means of determining the 
component polyphase filters.   We saw that the output sample a was derived trivially 
from the input sample A by a one-tap (first polyphase) filter with weight 1.  The sample b 
was obtained with a second polyphase filter which gave a weighted sum of 3/4 of B and 
1/4 of A (assuming our linear interpolation model).  The sample c  was 1/2 of B plus 1/2 
of C for the third polyphase filter.  The fourth polyphase gives d as 3/4 of C plus 1/4 of 
D.   This completes the RCCC as we would then start a new cycle, obtaining e directly 
from D, and so on.  Note that there are 4 output samples for every three input samples, 
as required.   The number of polyphase filters is the numerator of the ratio, and here it is 
4, a manageable number it would seem.  The numerator (3 here) gives the length of the 
original sequence involved. 
 
     Fig. 4 shows another RCCC example, this time for a ratio of 11/14, so it is different in 
that the integers are larger, and in that the sampling rate is decreased.  This shows that 
we would need a total of 11 component polyphase filters over a range of 14 original 
samples.  At this point, the polyphase approach is getting tedious. 
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                                   Fig. 4   RCCC for an 11/14 rate converter 
                                                (input sequence mildly low-passed) 
                                            
 
 
     In our next example, we have a rate change that is a decrease from 22050 to 8192 
as discussed earlier.    This is a ratio of 4096/11025, so there would be a total of 4096 
component polyphase filters over an input length of 11025!   Fig. 5 shows a small 
portion of the RCCC for this case.   Note that the spacing of output samples is 
11025/4096 which is roughly 2.7, but it does take 4095 output samples before we get 
back to the case of using an actual input directly (not shown!).    
 
     In the example of Fig. 5, we have already cheated a bit.   This is because we have 
produced our test sequence not as just a random sequence, but as a low-passed 
random sequence.  It is clear that in going to a lower rate, we have to worry about 
whether or not the signal is sufficiently bandlimited to be supported at the lower rate.  
Clearly, the random signal is not – we assume a white spectrum.  Accordingly, the 
signal was low-pass filtered for a cutoff frequency of (1/2)(8092/22050)=0.1835 times 
the sampling rate.  This was done with a length 51 filter designed by Matlab’s firls 
function with the frequency response as seen in Fig. 6. 
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                 Fig. 5  A small portion of the RCCC for a 11025 to 4096 rate converter. 
 
 
 

 

         Fig. 6  Filter used for random sequence of Fig. 5 
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                    Fig 7   Rate change without predecimation filtering 
 
 
     Fig 7 shows what happens if we don’t use the predecimation filtering that was used 
in Fig. 5.   Both Fig. 5 and Fig. 7 show output samples (stars) on lines between two 
input points (stems), but there are also points that are not involved in any linear 
interpolation (for example, the points at 2004 and 2012).   In Fig. 5 we see that the 
curve is relatively smooth and and unused points are not too important.  In Fig. 7, we 
see that the unused points may well represent higher frequency information that is 
never used.   That is, we have aliasing.   
 
     The situation here is a bit strange in that we are accustomed to doing rate changing 
in cases where a single filter acts as both an interpolation filter and a predecimation 
filter (where necessary) [3].  Here we have an interpolation filter – the linear interpolator 
being essentially low-pass.  Why does this filter, not all by itself, provide the 
predecimation?   The answer is because the linear interpolator is acting at the higher 
rate, so its cutoff is well above what is required.  We need the proper cutoff of 0.1835. 
So, why do we not just use the predecimation filter as an interpolator?  Well, in some 
sense we are, but the problem is that the target locations for the interpolated samples 
were not output times of the predecimation filter.  Hence we use the linear interpolator 
to help out with the low-pass filtering, and to exactly place the output samples. 
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POLYPHASE ON DEMAND 
 
     Above we saw that rate changes at ratios of small integers using a polyphase 
approach were practical.  As the ratio becomes one of larger and larger integers, the 
number of polyphase filters (and the RCCC) gets impractically large, and we arrived at 
the notion that instead of precomputing the filters, we might best just compute them “on 
the fly” for each interpolated sample.   Much as we might think of an irrational ratio as 
an extension of ratios of very large integers (and vice versa), the irrational case can be 
handled by “polyphase on demand” (POD).  This is straightforward.   We just give up 
the notion that we are using the POD approach because the RCCC is very long, and 
accept that we are using it because the RCCC becomes infinite.   One thing that is 
different in the infinite case is that there is no prospect of interleaving the various 
polyphase filters into an overall interpolation filter, although, perhaps, this would amount 
to a continuous-time filter. 
 
     The POD technique is probably obvious from the discussion above, so here, we will 
just be giving some example Matlab programs.  The first program is the one that 
generates figures such as those in this note above.   The second actually converts a 
trial file. 
 
 
 
 
PROGRAM 1   A FIGURE-GENERATING PROGRAM 
 
 
function rcccfig(N,M) 

% rate change by N/M 

%     N = New Rate 

%     M = Original Rate 

  

x=rand(1,M+1+60)*2+0.5; 

% random test signal  

% - made 60 longer to accommodate length 51 filtering   

%      when filtering is needed 

 

if M>N     % do we need pre-decimation filter ? 

   h=firls(51,[0 N/(2*M) N/(2*M) .5]*2,[1 1 0 0]) 

   % h=[zeros(1,25) 1 zeros(1,25)]  %bypass above filter for study if desired 

   x=filter(h,1,x); 

end 

 

%  Now take length M after transient 

x=x(55:M+55);  
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figure(1) 

% Original samples separated by 1 

plot([0:M],x) 

hold on 

  

% New samples to be calcualte at intervals M/N  

% vertical lines 

for k=0:M/N:M 

  plot([k k],[-2 4],':g') 

end 

stem([0:M],x) 

 

k=1; 

y(1)=x(1); 

for s=M/N:M/N:M 

   k=k+1;  

   lw=floor(s);  

   up=ceil(s);  

   offset=s-lw;  

   y(k)=x(lw+1)*(1-offset)+x(up+1)*offset; % linear interp. 

end 

kk=k; 

plot([0:k-1]*(M/N),y,'*r') 

axis([-.5 M+.5 -0.5 3]) 

hold off 

 

 

figure(2) 

plot([0:M],x) 

hold on 

for k=0:M/N:M 

  plot([k k],[-2 4],':g') 

end 

stem([0:M],x) 

plot([0:kk-1]*(M/N),y,'*r') 

axis([-.5 M+.5 -0.5 3]) 

hold off 

if M>20 

    axis([-.5 20.5 -0.5 3]) 

end 

 

 

if M>N 

figure(3) 

plot([0:.001:.499],abs(freqz(h,1,500))) 

end 
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PROGRAM 2   RATE-CHANGER OF AUDIO SIGNAL 
 

    This program converts from a 22050 Hz rate to a 8192 Hz rate using polyphase on 
demand.   The test file (x) for this program is generated by the program, but the same 
code can be used for an actual audio file.  The output file is y.  The two sould virtually 
the same in both pitch and quality. 
 
 

t1=(0:22049)/22050; 

delt=1/22050; 

 

x=sin(2*pi*500*t1);    % test file here 

% This signal is effectively bandlimited since its frequency is 

%   500 Hz with a 22050 Hz sampling rate. 

% A filter such as used in Program 1 can be used where necessary. 

 

% plot a small segment and listen to the entire signal 

figure(1) 

plot(t1(200:400),x(200:400),'.') 

sound(x,22050) 

pause 

 

 

%determine times for new samples 

t2=(0:8191)/8192; 

y=zeros(1,8192); 

 

 

for n=2:8192 

  time=t2(n);  

    nlow=floor(time*(22050));  

    offset=time-nlow/22050;  

    L=x(nlow)*(delt-offset)+x(nlow+1)*(offset);  

    y(n)=L*22050;  

end 

 

 

figure(2) 

 

% plot small segment and listen to new result 

plot(t2(100:200),y(100:200),'.') 

sound(y,8192) 
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BEYOND LINEAR INTERPOLATION 
 
 
     The presentation of POD above was done using linear interpolation, which was 
simple to envision and implement.  Nothing prevents us from using a higher order 
polynomial (linear interpolation being a first-order polynomial) or other methods of 
interpolation.  For example, we know how to fit a cubic polynomial to four consecutive 
points (as in Fig. 8).   A third-order cubic polynomial should be of the form [2]: 
   
         y(t) = at3 + bt2 +ct +d                                                                                             (1) 
 
and we suppose we have four given points at t=0, t=1, t=2, and t=3.  The actual choice 
of times is arbitrary as far as the final result is concerned.  In this case: 
 
       
 

 

         Fig. 8  A cubic polynomial can be fit to four points, as in this example. The  
              usual practice is then to choose value of the polynomial between the second  
              and third points (between 1 and 2 here).  Note that the result for this middle  
              region resembles linear interpolation. 
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       y(0)  =                               d                                                                                   (2a) 
 
       y(1)  =        a   + b   + c   +d                                                                                   (2b) 
      
       y(2)  =      8a + 4b + 2c  + d                                                                                   (2c) 
 
       y(3)  =    27a + 9b + 3c  + d                                                                                   (2d) 
 
 
Solving these, we get: 
 
       a =    (-1/6 )y(0) +  (1/2) y(1)   + (-1/2) y(2)   +  (1/6) y(3)                                      (3a) 
 
       b =            y(0) +  (-5/2) y(1)  +         2 y(2)   + (-1/2) y(3)                                      (3b) 
 
       c = (-11/6) y(0) +        3 y(1)  +   (-3/2) y(2) +   (1/3) y(3)                                       (3c) 
 
       d =            y(0)                                                                                                       (3d) 

 
                 Fig. 9   Example of Cubic Polyphase on Demand 
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This gives us [substitute back to equation (1)] the polynomial corresponding to the four 
points, and we can then solve this for any points we need.    
 
     Fig. 9 shows a cubic interpolation for a rate change of 14/5.  The vertical dotted lines 
represent the times at which we need to calculate samples, while the stems are the 
given samples.  Note that there are two or (more generally) three vertical lines between 
each pair of given samples.  Between 5 and 6, there are only two points.  The average 
is of course 14/5 =2.8.  For each of these times, we look at the samples on either side, 
plus an extra sample on either side, calculate the coefficients a, b, c, and d, and then 
calculate the polynomial value with the parameter t being the position + 1.  Thus, each 
of the values represented by stars corresponds on an instance of Fig. 8.  Note that we 
only use the center third of the cubic polynomial fit.  Once we calculate the interpolated 
values for the middle region, we move into the next region, discarding a given point 
further back and now adding another point moving forward, thus having a different 
polynomial.   
 
     The example shows has given samples chosen at random, and then slightly 
bandlimited with a length-two moving average, so the spectral content is still relatively 
high.  Thus we notice that the cubic interpolation is in general quite different from the 
linear interpolation cases (straight lines between the given points). 
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     Recovery From Bunched Sampling 
 
 
                                                     - by Bernie Hutchins 
 
 
 

1.   INTRODUCTION 

 
Previously [1-3] we have looked at a particular case of non-uniform sampling, often 
called “bunched sampling” (also interleaved sampling [4,5] and sometimes “second-
order sampling” [6]).  This class of non-uniform sampling examples was comprised of 
cases where sampling “opportunities” were all equally spaced but where samples were 
not taken at all such opportunities.  Instead, the samples that were taken were in well-
defined selected patterns, and these patterns repeated exactly.  For example, such a 
sampling situation would be the case where we take two sampling opportunities and 
then skip two opportunities, and so on.  This we have described previously as a 
“sampling cell” which would be s=[1 1 0 0] for this example.   Thus the “bunch” repeats 
every four samples. 
 
     It is natural to think of a sampling cell such as s=[1 1 0 0] as being composed of the 
superposition of sa=[1 0 0 0] and sb=[0 1 0 0], and this superposition idea is central to 
our analysis methods.   Yet another view of the process is one in which these two 
components are not immediately superimposed.  That is, we can look at the component 
samplings as “poly-phases” of the signal.  Since we expect to recover the full sequence 
of samples (or, more comprehensively the full continuous-time signal perhaps) from the 
bunched samples by a filtering (alternative view of filtering:  interpolation) scheme, we 
need to ask an important question.  Are we looking to filter the combined components 
with one filter, or are we looking to filter the separate components, perhaps with 
different filters, and then combine the results (Fig. 1).   Let’s take a closer look at the 
problem. 
 
     Suppose we start with a sequence x(n) known to correspond to a signal x(t) which is 
suitably bandlimited to some frequency fB.  This is the basis for most sampling 
discussions.  For example, we know that with standard low-pass sampling, that if the 
samples x(n) are spaced a distance of T apart, that if T is less than 1/2fB than an ideal 
low-pass filter (or sinc interpolation) leads to complete recovery.   The basic ideas can 
be extended to bandpass sampling and to non-uniform sampling.   In our example, we 
have suggested a length 4 sampling cell.  This means that x(n) can be divided into four 
polyphase components.  (Here we will keep the zeros in our notion of polyphase.)   
Accordingly, the four polyphases are: 
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     xa(n) = …..x(-4), 0, 0, 0, x(0), 0, 0, 0, x(4), 0, 0, 0,  x(8), …..                                (1a) 
 
     xb(n) = ….    0, x(-3), 0, 0, 0, x(1), 0, 0, 0, x(5), 0, 0, 0,  x(9), …..                         (1b) 
                                 
     xc(n) =    0                                                                                                              (1c) 
         
     xd(n) =    0                                                                                                              (1d) 
 
Here, the last two polyphases, xc(n) and xd(n), are all zero because of the sampling cell 
chosen.  In general, they would be defined in the same way xa(n) and xb(n) are.   Note 
that the result of sampling with s=[1 1 0 0] , which we can call xs(n), is: 
 
       xs(n) = xa(n) + xb(n)                                                                     (2a)  
 
which is a superposition: 
 
     xs(n) = ….x(-4), x(-3), 0, 0, x(0), x(1), 0, 0, x(4), x(5), 0, 0, x(8), x(9), . . . .             (2b) 
      
It can be emphasized that this particular superposition is not at all difficult to undo in the 
time-domain.  (It may well be much more difficult to invert in the frequency domain.)  In 
any cases, we are looking at the possibility of recovering x(n) from xs(n).  If you wish, at 
this point, we can assume that the bandwidth of x(t) does not exceed 1/4. 
 
     Fig. 1 shows a view of the bunched sampling situation along with two possible views 
to recovering x(n) or x(t): 

 

 

 
 
 
         
       Fig. 1     Here a well-defined signal x(t) is sampled to give x(n) and two of four  
        possible polyphases are separated out as xa(n) and xb(n).  We want to inquire  
        bout possible filters Ha, Hb, and Hs which allow us to recover x(n) or x(t) 
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In the figure, we indicate three possible filters (or time-domain interpolators) Ha, Hb, and 
Hs. The combined use of Ha and Hb as interpolation filters on the sequences xa and xb 
respectively, to return x(t), [and of course, thereby all the samples x(n)], is not totally 
unfamiliar.  In much the same way we interpolate a sequence of equally spaced 
samples with a sinc function (ideal low-pass filter), we can separately interpolate the 
xa(n) and xb(n) samples with interpolation functions ha and hb that are neither sincs, nor 
identical, for Ha and Hb – although they look something like sincs, and Ha and Hb have 
symmetric impulse responses.   Following these separate interpolations, we add the 
results.   This is a standard procedure [4-7] and will be discussed further below. 
 
     The alternative procedure in Fig. 1, combining xa(n) and xb(n) to get xs(n), or just 
using the sampling cell s=[1 1 0 0], and following it with a single filter Fs is quite a 
different matter.  Yet we do know something about recovering x(n) from xs(n) in the 
frequency domain.  This is what we did in some previous presentations [2,3].  In these 
cases, we had the combined spectrum Xs corresponding to xs(n).   Our investigations 
and demonstrations related these exactly by the DFT.   Working from the spectrum, we 
broke it into segments with ideal filters.  In general, these segments were then shifted in 
frequency, and combined with other segments using appropriate weights, according to a 
pseudo-inverse matrix [3].  It all worked.  It should be clear however that this is not a 
filtering operation (because of the frequency shifts).   That is, the “filter” Fs does not 
exist (it is not time-invariant)  – except in the case where all samples are kept, in which 
case Fs is just our ideal low-pass filter (sinc interpolator). 
 
 
 

2.  THE INTERPOLATION FUNCTIONS 

 
     Because the notion of interpolation functions for non-uniform sampling are an 
extension of sinc interpolation, we will find it useful to review the uniform case.  We shall 
use examples that can then be recalculated for the non-uniform case. 
 

2a.   UNIFORM SAMPLING AND SINC INTERPOLATION FUNCTIONS 
 
     Suppose we have a time sequence x(n) that is bandlimited to fs/4, one quarter of the 
sampling frequency.  We can recover the corresponding signal x(t) in several  ways.   
First, we recognize that the signal bandlimited to fs/4 is necessarily bandlimited to fs/2, 
so it can be recovered by the ordinary sinc interpolation formula.  In general [7] the 
formula is: 
 
                         ∞ 

    x(t) = (2fcT)     x(n)  {  sin[2fc(t-nT)]  / 2fc(t-nT)}                                                     (3) 
                        n=-∞ 
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Where T is the spacing of the samples (T=1/fs) and fc is the cutoff frequency of the ideal 
low-pass filter corresponding to the sinc. 
 
     In the special case where fc=fs/2 this becomes: 
 
                  ∞ 

    x(t) =        x(n)  {  sin[(/T)(t-nT)]  / (/T)(t-nT) }                                                        (4) 
               n=-∞ 
 
And in a second case where fc=fs/4, it would be:         
 
                       ∞ 

    x(t) = (1/2)     x(n)  {  sin[(/2T)(t-nT)]  / [(/2T)(t-nT)]  }                                            (5) 
                     n=-∞ 
 
A third method would be to discard every other sample (in one of two ways) and 
interpolate by a sinc corresponding to a cutoff fs/4 (twice as wide).  Both must give the 
same x(t). 

 
Fig. 2    Sinc interpolation.  The solid line is the sum of the three weighted sinc 
functions.    Note that the sum goes through the given samples and through the 
unspecified (assumed  zero) samples at the integer points. 
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     Fig. 2 is a reminder of how sinc interpolation works, illustrated here in the usual “text-        
book” form of just a few samples and a bandwidth of 1/2 the sampling rate.  Note that 
the sum goes exactly through the original sample points, and is zero at all the non-
specified integer points.  Here we are convolving the sample points with the sinc, and 
thus we are multiplying the spectrum of the original samples with the Fourier transform 
of the sinc – ideal low-pass filtering.  Examples such as in Fig. 2 can be thought of as 
telling us the bandlimited time function that corresponds to the samples.  Further, we 
know we can play a lot of sinc interpolation games with different bandwidths and 
sampling rates [7].   
 

 
                        Fig. 3a    Standard sinc interpolation of a sinewave burst. 
 
 
     In Fig. 3a through Fig. 3d, we show various samplings and interpolations of a 
“sinewave burst.”   We have chosen the frequency of the burst to be 1/8.2, a frequency 
less that 1/4 so in some sense, it is “bandlimited.”  However, it is not exactly bandlimited 
because it is timelimited (a finite length burst of about 6 cycles rather than an infinite 
number of cycles), so recovery is not perfect.  The errors are very small near the middle 
of the burst, and are most prominent at the ends.   The choice of a frequency of 1/8.2 
rather that of 1/8, and the phase, was chosen specifically as a case which showed 
significant errors on both ends, so that the reader would not infer results better than 
those which are typical. 
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            Fig. 3b   Here we keep every other sample, cutoff=1/4 
 

 
Fig. 3c  We can of course also keep all the samples and recover with a cutoff of 1/4. 
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Fig 3d  Here we show on one graph the interpolations from Fig. 3a, Fig. 3b, and Fig. 3c, 
with the original samples shown as stars.  We note various end errors.  The important 
thing however is that all three interpolations are virtually the same and near perfect in 
the center region. 
 
 
 
     Because the bandwidth of the sinewave burst is less than 1/4 for practical purposes, 
the situation of Fig. 3b where we have discarded half the given samples is still one 
where recovery is excellent, here using s sinc corresponding to a cutoff of 1/4.  While 
Fig. 3b is logical enough, nothing prevents us from keeping all the original samples and 
still interpolating with the cutoff of 1/4, as is seen in Fog. 3c.   All these things are 
normal examples of recovery from uniform sampling of bandlimited signals.  By way of 
sammary, Fig. 3d shows the superposition of all three methods shown in Figures 3a, 3b, 
and 3c, and we note that all three are virtually identical in the center portion of the burst. 
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2b.   THE INTERPOLATION FUNCTIONS 
                    FOR  NON-UNIFORM SAMPLING 
 
     With non-uniform sampling, the interpolation functions are no longer sincs.  Further, 
there will be different interpolation functions corresponding to each non-zero element of 
the sampling cell.  We proceed here first by just using the published results of Bracewell 
[4] which lead to the following interpolation functions, also plotted in Fig. 4. 
 
      ha(t) = sinc(2t) – β t sinc2(t)                                                                                     (6a) 
 
      hb(t) = ha(-t)                                                                                                             (6b) 
 

       β = /tan(α)       where α is the fractional offset (α = 1/4  for s=[1 1 0 0] )           (6c) 
 

where sinc(x) is given as sin(x)/(x).  Note that when α=1/2 (equal spacing, every other 
sample), the interpolation functions become sinc(2t) as we expect. 
 
 

 
Fig. 4  Interpolation functions for the non-uniform case, along with the sinc function 
(cutoff 1/4) for reference. 
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In Fig. 4 we show the plots of ha(t) and hb(t) along with sinc(2t) for reference.  Note that 
if the sampling cell were s=[1 0 1 0] we would use sinc(2t) as the interpolation function 
on all the samples (assuming the bandwidth is less than 1/4).  Note that sinc(2t) is the 
first term in ha(t).  When s=[1 1 0 0] we use ha(t) with the samples for s=[1 0 0 0] and 
hb(t) for the samples corresponding to s=[0 1 0 0]. 
 
                                                                                                                                        

 
                         Fig. 5    A simple interpolation of four non-uniform samples. 
 
 
     Fig. 5 shows a case where we have only four non-zero samples total, at times 0, 1, 
4, and 5 (open circles).   We want to discuss the details of the interpolation, but note 
here that the result (solid line) goes through the four specified samples, and through 
zero at the unspecified samples (assumed zero) - times 8 and 9 seen here, and so on.  
The result does not go through zero at the other integers such as times 2, 3, 6, and 7, 
etc.   The samples at times 0 and 4 are interpolated by functions ha(t), dashed lines 
while the samples at times 1 and 5 are interpolated by hb(t), the dotted lines.  The solid 
line is the sum of these four non-zero components.  Compare this result with Fig. 2. 
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                      Fig.6   Interpolation of a non-uniform sampling of the sinewave burst. 
 
 
     Fig. 6 shows the exact same interpolation procedure that was used in Fig. 5, except 
here it is applied to all the samples of the sinewave burst, and not just to the four non-
zero samples of Fig. 5.    Alas shown for reference is the sinc interpolation of all the 
samples as the dotted line, which is the same as Fig. 3a.  Note that as with the 
esamples of Fig. 3, the interpolated result is near perfect in the center of the burst, and 
we only see errors on the ends.   
 
      The solid line does in fact pass through all the given samples.  This statement 
needs to be more precise perhaps.  Clearly, it goes through all the non-zero samples, 
which come in pairs.  It does not go through the zeros in general.  We are not saying 
that these sample positions are zero, just that they are not defined, and are not involved 
in the interpolation.  Now, outside of the burst, on both ends, where are samples that 
really are zero (such as positions 56 and 57, 60 and 61) and the interpolation does go 
through these zeros.   
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3.  FINDING THE INTERPOLATION FILTERS 
 
     Above we demonstrated the interpolation using the interpolation functions (impulse 
responses) using formulas copied from Bracewell and Linden [4,5].  These two 
presentations give different derivations and different (but of course, equivalent) 
formulas.  Here we want to give yet a third derivation.   One overriding principle that 
many of you have heard from the current author is: “Never underestimate the value of 
knowing or suspecting the right answer.”   Here we have the right answer courtesy of 
Bracewell and Linden.  We want to derive the impulse response of some filters.   We 
already have these impulse responses given to us, but the published derivations are 
“brief”.   Let’s start with the desired filters and use our well-understood filter design 
procedures.  Fine.  What is the right filter? 
 
     By a sort of “reverse engineering” we can use the Bracewell/Linden formulas and 
calculate the frequency response.  That should give us a good idea what the right filter 
is!  Using the formula(s) we can takes samples of the impulse response (Fig. 3) at 
intervals of 1/4 to give a FIR filter.  We do this over an interval of -200 to +200.  This 
gives us the magnitude response (Fig. 5) and the phase response (Fig. 6) as shown.  

We note that these are clearly half-band filters, and the phase response for ha is -/4 

while that of hb is /4.  Note that the phase response between 0.25 and 0.5 jumps 

rapidly back and forth by .   This is dues to the rapid zero-crossings of the response, 
but for practical purposes, since the response is very tiny, there is no real meaning to 
phase response for this region. 
 

 
Fig. 7a    The magnitude response of Bracewell’s ha(t) and hb(t) are essentiallt half-
band low-pass filters (cutoff is 1/4, or half of 1/2).                                                          
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                     Fig. 7b   The phase response of Bracewell’s ha(t) and hb(t). 
 
 
     So now we know how to specify the correct filter.  Our purpose here is not to find the 
impulse response, which we already have, but rather to see exactly what mathematical 
form comes out.   Is it perhaps Bracewell’s formula or perhaps Lindens, or perhaps 
something else?   It’s something else.  
 
     So now we know how to specify the correct filter.  Our purpose here is not to find the 
impulse response, which we already have, but rather to see exactly what mathematical 
form comes out.   Is it perhaps Bracewell’s formula, or perhaps Lindens, or perhaps 
something else?   It’s something else! 
 
   We wish to obtain the continuous-time impulse response of a continuous-time filter 
which has the frequency response: 
 
     Ha(Ω) = A(Ω)ej(θ(Ω) = A ejθ                                                                                                                                       (7) 
 
Where A is a constant value from Ω=0 to |Ω|=Ωc, and zero outside this range (thus it is 
an ideal low-pass).  The phase θ is also constant, but since we want ha(t) to be real, the 
phase is an odd function of frequency. 
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     The impulse response ha(t) is thus obtained as the Continuous-Time Fourier 
Transform of Ha(Ω): 
 
                                 ∞ 

     ha(t) =     (1/2)     Ha(Ω) ejΩt dΩ 

                             - ∞ 
 
                                 0                                        Ωc 

             =     (1/2)    Ae-jθ ejΩt dΩ    +   (1/2)     Aejθ ejΩt dΩ 

                             - Ωc                                      0 
 
             

             =    (A/t) [ sin(θ + Ωct) – sin(θ) ]                                                                        (8) 
    
where the integrals and simplification leading to the bottom line are straightforward.       
 
     The result does not look very much like equation (6a) but the proof is in the 
computing, and we can use Matlab (program below) to compute both formulas, and 
indeed, they give the same result.  There is a need to change to the time variable t as 
shown, but the results are identical [equation (8) need’s L’Hospitel’s rule at t=0 so that 
ha(0)=1].                  
 
t=-12:.01:12; 

%  Bracewell – Equation (6a) 

alpha=1/4 

beta=pi/(tan(alpha*pi)) 

tt=t/4; 

hbrace=sinc(2*tt) - beta*tt.*(sinc(tt).^2); 

figure(1) 

plot(t,hbrace,'r') 

grid 

 

% Equation (8) 

theta=pi/4 

Wc=pi/2 

A=2*sqrt(2) 

hnew=(A./(pi*t)).*(sin(theta+Wc*t) - sin(theta)); 

figure(2) 

plot(t,hnew,'g') 

grid 
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                   Fig. 8   Equations (6a) and (8) yield the same function for ha(t) 
 
 
So we see that our results converge.  Equation (8) strikes us as a being a simpler 
formula.  While we have mentioned Linden’s result [5], we have not given his formula.  It 
is: 
 

          ha(t) = { cos(2t – α) – cos(α)} / [2t sin(α)]                                                   (9) 
 
which is numerically the same as equation (8) and is easily converted to equation (8) by 
standard trig.   So everyone agrees. 
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4.  INTERPRETATION OF FILTERING – DFT VERIFICATION 
 
     We have so far not done all that much.  We borrowed Bracewell’s result and found 
the filter it implies, and shown that the impulse response of that filter is the same as the 
interpolation functions.    The remaining question is, should we have been able to guess 
the correct filter without peeking at the answer first?   We can answer this question by 
doing an experimental verification using Matlab.  Here we first need to remember that 
we knew a lot about the spectra of the two polyphase components [2, 3] which were 
involved in our frequency domain approaches. 
 
     We will work here with a “traditional” triangular spectrum.   While we know how to 
generate a time domain signal that has a triangular spectrum (a sinc2) it is much quicker 
to just type in values for the DFT we want.   Because the DFT is a discrete set of points 
in frequency, we naturally think of a “stem” plot, but here we want to represent the 
DTFT, so we use a continuous plot.  Further, we use the triangle as an example 
because it is easier to see what is going on.  Nothing here relies on the spectrum being 
triangular.  In fact, once we work out our program code, we can easily substitute 
random (but bandlimited) frequency samples instead of the triangle, and have the 
program show that things still work (although it is hard to see).   The actual program 
here uses a length 4096 DFT. 
 

 
 Fig. 9  An original triangular spectrum with a cutoff at 1/4 for a sampling frequency of 1.                                                                     
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     Fig. 9 shows the starting spectrum, which we take to be purely real as shown.   Note 
that the DFT of course represents frequencies from 0 to fs=1, so the portion shown from 
0.5 to 1 can also be thought of as the negative frequency side.   Programming in the 
triangular spectrum, it is a simple matter to invert this to the time domain using the 
inverse DFT, and then we can samples the time domain sequence as we wish, and use 
the DFT to get the resulting spectra.   Figures (10a) and (10b) show the spectra that 
result from the polyphase [1 0 0 0] and [0 1 0 0] respectively. 
     

 
Fig. 10a  By taking only every fourth samples, n=…-8, -4, 0, 4, 8, 12 …. two things 
happen to the original triangular spectrum of Fig. 9:  we get copies at frequency 
multiples of 1/4, and the copies are smaller by 1/4.  In the case of the triangular shape, 
note that the four copies add to a constant value of 1/4, purely real, for all frequencies. 
 
     These two figures probably look quite different, so we need to makes some remarks 
about them.  Fig. 10a, corresponding to samples that are integer multiples of 4, is purely 
real and a constant value of 1/4.   This actually results from the superposition of four 
triangles (shown as dotted lines) in the figure.   The spectral replicas are the result of 
the sampling (re-sampling) by a factor of 4, and the loss of amplitude is the result of the 
discarded samples (essentially a Parceval result).    The result is of course “aliased” 
since a spectrum of width 1/4 is sampled at a rate of 1/4 (not of 1/2 as would be 
required by the sampling theorem).   
 
                                                              EN#205 (32) 



 
Fig. 10b   As in the case of Fig.10a, when we take every fourth sample, this time for 
n=…-7, -3, 1, 5, 9….. we get four copies offset by frequencies of 1/4, and of magnitude 
1/4.  But now there us an imaginary part.  The real part shows the original copy (from 0 
to 1/4, and from 3/4 to 1) and the copy (inverted) centered at 0.5 (from 0.25 to 0.75).  
The imaginary part shows the copies centered at 0.25 and 0.75.   
 
     The polyphase that is offset by one sample, shown in Fig. 10b, is the same as Fig. 
10a except for a different phase.  It too consists of four copies, offset by 1/4 in 
frequency and attenuated to 1/4.  The difference is that the copies rotate by -j so that 
the copy at 0 is real, but the one at frequency 1/4 is imaginary and negative, the one at 
1/2 is negative, and the one at 3/4 is imaginary and positive.  The magnitude of the 
spectrum is of course still 1/4 for all frequencies.    An attempt at a two-dimensional 
representation appears in [2].  The spectrum of the superimposed polyphases is the 
sum of Fig. 10a and Fig. 10b of course, but we are not combining them here.  Instead, 
each will be filtered by the appropriate filters. 
 

     Here is where we have a clue where the phase of /4 might come from.  We saw 

that the offset between polyphases resulted in a 90 degree (/2) phase shift (the 

multiplication by –j).  By using the two interpolation filters, one is rotated by –/4 while 

the other is rotated by +/4.    Done properly, we can guess that this might line them up 
again.  While we might hope this will happen, we can continue our computation to see if 
it did happen. 
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     Fig. 11a   The filtering of the spectrum of Fig. 10a, by the Ha filter, consists of 
removing the portion from 0.25 to 0.75, leaving a rectangular section.  This piece is then 
multiplied by 2√2 and rotated in the positive imaginary direction for positive frequencies 
(0 to 0.25), and in the negative imaginary direction for negative frequencies (0.75 to 1). 
 

 
Fig 11b   This figure shows the filtering of the spectrum of Fig. 10b by the Hb filter.  The 
procedure is basically the same as that of Fig. 11a, but is more difficult to visualize.  Fig. 
12 shows some details of the rotations here. 
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     Figures 11a and 11b show the results of the two filterings.  Note that both filters were 
half band, so all the spectral content between 0.25 and 0.75 is removed in both cases.  
When we add these two together, we obtain Fig. 9 back.  We note immediately that the 
imaginary parts cancel. Neither is it hard to see that the real parts add to the original 
triangle.  So it works. 
 
     One final perspective is afforded by Fig. 12, which attempts to depict a three-
dimensional view of the spectral region between frequencies 0 and 0.5.   Fig. 12a 
shows the contribution of the xa(n) component.  This is composed of overlapping 

triangles, forming a purely real rectangle, which is then rotated 45 by Ha producing both 
real and imaginary rectangles (Fig. 11a from 0 to 0.25, not including the 2√2  gain here).  
This is simple.    Fig. 12b shows he corresponding case for the xb(n) component, which 
is more difficult to envision, because there are both real and imaginary components, 

and both are triangles.   The 45 rotation by the filtering of Hb is in the opposite direction 
as that of Ha.   (Here it is strongly recommended that the reader cut out some cardboard 
models to play with to better envision the rotations.)    The important thing about Fig. 
12b is that the sum of the two rotated components has a negative imaginary part that is 
rectangular, and a real part that is triangular, positive at frequency 0, and negative at 
frequency 1/4 (Fig. 11b).   Following filtering and summation (Fig. 1), the imaginary 
rectangles of Xa and Xb cancel, while the real rectangle due to Xa lifts the bipolar real 
triangle of Xb to a purely real triangle, the original spectrum. 
 

 
                    Fig. 12a  The spectral contribution of xa(n), showing filtering 
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                 Fig. 12b  The spectral contribution of xb(n), showing filtering 
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