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READER'S QUESTION

One of the many pleasures of teachlng occurs when a former student remembers you
and gets back in touch to ask a question. In this case, it was a student | had more than
20 years ago. Such questions often tend fo be somewhat apologetic (I should have been
paying more attention to what you told usl). But in all candor, it must be admitted that
~instructors, too, learn more as time passes; and 20 year old explanations probably
weren't all that good to begm with. | hope | understand it better now. Anyway, | WIH try.

.Q:

) thought I had a pretty good understanding of sampling theory, but recently | was
trymg to explain (to people who do not have a good technical background) how a
sinewave could be recovered from just three samples (more than two) within a cycle.

i guess now | am not sureI
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A:

Actually | think it is a good sign that you find this difficult to understand. It's not simple
to answer until the exact question is posed and qualified. In the simplest terms, as most
students of DSP learn, we have the “sampling theorem” that says that if you take samples
at a rate greater than twice the highest frequency in the signal, you can recover the signal

from its samiples. In this sense, your case of a sinewave sampled three times per cycle
seems to qualify just fine. But now we have to ask you more questions. For example, do
you have at least three samples for each and every cycle, or are there just three samples
total? Did someone tell you it was a sinewave that you are trying to recover? All these

things make a difference.

In order to get to the correct question, which is probably actually somethmg more like
“How does a CD player work?” we need to go down some other roads first. Let's begin
by supposing that we have three and only three samples total, and someone told us that
these belong to a sinusoidal waveform (additional information beyond the three samples).
Can we get the sinusoidal waveform back? Yes we can. Suppose we are given the

- three sampies:

x(0)=0 :
x(1)y=12 (1)
x(2) = V372 |

In this case, we probably only need to look at these samples for a few seconds before
we notice that they are the samples of a sinewave of unit amplitude, taken at 0°, at 30°,
and at 60°. This was easy, and the corresponding sinewave is plotted along with the

three given samples, in Fig. 1a. Note that this sinewave, like all sinusoidal waveforms, is |

-assumed to extend to infinity in both directions (we plot just three full cycles in Fig. 14,
and only show the three samples we were given). In Fig. 1b, we show 37 samples

corresponding to three cycles plus one extra sample. Note that there are 12 samples per

cycle here, and they are dense enough that we do not find it too difficult to suppose that
these samples, taken by themselves, do in fact represent a sine wave. We show the
actual sinewave with light dotting so the reader can better ignore it and concentrate on
the samples themselves. The frequency here is 1/12 of the sampling frequency.

As a first modification of our problem, assume that now we are required to use three
samples, and that they must be three samples that correspond to exactly one cycle. This
means that we chose a frequency that is exactly 1/3 of the sampling frequency The
choice would be as in Fig. 2a with

x(0) =0 \ | |
x(1) = V372 2)
x(2) = V312 _, |
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Fig. 2a Here we have three samples g b Wrth only three samp[es per
cycle, it is less obvious that we can

that represent exactly one cycle. /cle, )
' : recover the sinewave.

- We see that the three samples do correspond fo a sine wave (agaln we show more
samples in Fig. 2b). While we note that, accordlng to the sampling theorem, we have
enough samples to recover the sinewave, 'visually we are less convinced of recovery
here, relative to Fig. 1b. Often it is this problem as suggestedin Fig. 2b (How can we
possibly get a sinewave back from that mess’?) that we are asked to explain.
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[Now before we get carried away,
sampling theory says that there are actually
more (an infinite number) of other sine
waves that will fit these points. Fig. 3
shows another sinewave that has a
frequency exactly four times larger than the
first one. Of course, this is an aliasing

situation - there are fewer than two samples

per cycle (fewer than one actually). We
remind ourselves of aliasing just in case we
are being given a trick questlon about
uniqueness. ]

Less we get carried away even further, -
recall that we found the sinusoidal waveform
- that went through the given points by
inspection (by guessing). Since we can't
expect to always guess, how do we solve
~ this problem? For example, the points

y(0) =" 0.1736
y(1) =0.9063
y(2) =-0.6428

o5

Fig. 3 Here a frequency of 4/3 also fits
the giveni points — an example (of an
infinite number of cases) of aliasing.

@

are samples of a sinusoidal waveform, and it is real tough to guess the parameters We
would expect the s:nusordal to be represented by an expression:

y(t) = A sin(2nft + ¢)

(4)

where we need to find the amplltude A, the frequency f, and the phase ¢. We might

suppose that we can do this since we have three parameters to determine, and we have

~ three sample values given. This is correct. But can we just set up and solve the

equatlons plugging =0, 1, and 2 into equation (4) with the values of equation (3)? Try it.

. The equatrons are non- Imear and you can't solve them dlrectly [On very rare occasions,

- you can solve them. The samples of equations (1) and (2) are such a case. The sample
- x(0)=0 is important, and use the trig ldentlty for srn(26) i ' :

- To actually solve the general case, we need to use what is called "Prony's method."
This method is over 200 years old (!} and is beyond the scope of this question, so the
] interested reader is directed toa reference from this newsletter [1]. The answer is:-

¥(t) = sin( 2n(105/360)t + 2n(10/360) )

S)

continued on pg. 34
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Basic Elements of Digital Signal Processing

Finite Wordlength Effects — Part 1

-by Bernie Hutchins

1. IN'TRODUCTION

Taken as a whole, the topics related to the effects of finite wordlength comprise what
are perhaps the most boring and unattractive chapters in the DSP literature. (Are these
- not just the complications of reality - the grist of the practitioner - not in the realm of high
level engineering ideas?) The topics taken individually are, however, not only of great
practical importance, but extremely varied and of considerable depth. it is easy to
become almost entranced by some of them when you get a close enough look

Ina discrete time system, time is quantized. This time-quantization we cal! .
"sampling,” and virtually everything we normally discuss under the topic headings of
Digital Signal Processing (DSP) depends on this sampling. = Strictly speaking however, if
something'is "digital” it really ought to be discrete in amplitude as well as in time. This
means that the values of samples and of multiplying coefficients are not of infinite
precision, but rather must take on only certain discrete values. In the case of s:gnal
values, this is often termed quantization (we often speak of "quantization noise") while for -
coefficients, we are likely to speak of "coefficient roundoff." While we tend to group ali
such finite wordlength effects together, there are many dlfferent mamfestatlons in practlcal

- cases With numerous interesting consequences.

- We can begin by noting that there is one lmmense dlfference between the quantlzatlon
of signal values and the rounding of coefficient multipliers. In both cases, we are talking
about rep!acmg some presumed infinite precision number with one that must be selected
from a set of values that are actually available. For example, we might suppose a
number should be 19.7659243... but we must settle for an integer, and might prefer to -
choose 20, although 19 might be the choice if we had to settle for truncation. (In'most real
~ cases, we are talking about a binary representation of course, but the presentation here,

using decimals, is sufficiently similar and easier to follow:) .

Now, if the numbers being quantized are signals, the quantization result_s'in an
equivalent error in the signal values, and this can sometimes, but by no means always, be
characterized as a random noise. Note that this representation is non-linear. Thisis -
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perhaps clear when we consider that the transfer curve due to quantlzatlon is of a

staircase shape instead of a straight ramp. (We may even argue that the non-linearity is -
very mild when the step size is small, but it is still non-linear.) More to the point perhaps, -
consider the addition of two numbers, 17.6 and 12.7. Adding, we would get 30.3, which
would round to 30. If we round first however, these would become 18 and 13 which add

to 31. Thus S|gna[ quantization fails the most basic linearity test.

But what happens when we quantize coefficient muitipliers? For example, an FIR filter
might have 4 taps that should be nominaily 3.3, 55.4321, -12.111, and 19.001. If we had
to choose only integers by using rounding, we would choose 3, 55 -12, and 19. (With
truncation, we might have 3, 55, -13, and 19.) Note that we can characterize this result of
quantization as one of having the "wrong filter." We see however that the error is nof the
same for all coefficients. Indeed, it is very small for the case of 19.001 being rounded to
19, but much larger (as an absolute number; and relative to the coefficient value) in the
case of 3.3 rounding to 3. But suppose that someone came along and asked for
coefficients of 3, 55, <12, and 19.  We would state with pride that we could offer them
~ exactly the filter they wanted. 1t would be Linear Time-Invariant (LTI) and its frequency

response would be error free. Thus we can see that a filter with rounded coefficients is
usually the "wrong filter” to some degree, but it is still LTt and is a "perfectly defined wrong
filter." In production, we get perfect copies always (contrast this with an analog filter
which would depend statistically on component tolerances - no two be:ng exactly the

same).

Our first fundamental distinction is thus that signal quantization can result in some form -
and some quantity of "noise" and/or "distortion" while coefficient roundoff results in-
frequency responses that are not exactly (and in some cases, unacceptably different from)
what we had in mind. We can now move on to a second introduction - here termed an

overview.

2. AN OVERVIEW OF FINITE WORDLENGTH PROBLEMS

2a. Quantization Noise

In the introduction, we mentioned that the quantization of signal samples can result in
~ an equivalent noise. This we shall eventually characterize and quantify. Clearly, if we
have more bits rather than fewer, we intuitively and correctly expect less noise. Inan
audio signal, this noise sounds like "white noise" - similar to a hissing noise of a leaking
tire. (Also, this is often compared to the background hiss of audio tape, or of the
interstation noise of an FM radio - but both these examples are less familiar with fewer

~ and fewer tape devices, and with "muting" FM receivers.)
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Actually, the noise modeling of signal quantization error may well not be valid for small
signals, and/or for simple signals (one, or only a few frequency components). In such
cases, a harmonic distortion model may be much more useful. Surprisingly, one solution
to such problems is to add noise - analog noise or so-called "dither” which effectively
allows encoding of levels smaller than the least significant bit. Surprisingly, properly
employed dither actually greatly reduces the non-linearity of a quantizer, often with a
_ relatively small price to pay in the form of an elevated noise floor.

~ All this is interesting enough, but it is also possible to accept the inevitability of the
quantization noise, and to then shape it so that it is effectively inaudible. This "noise
shaping" becomes possible through the use of "oversampling.” In essence, the noise is
pushed into the frequency range above human hearing - this range having been opened

-up by the oversampling. This permits such things as bragging about a 1-bit D/A converter
on the one hand, or the ability to claim 24 bits in a 16 bit format on the other (to the
bewilderment of marketing personnel).

2b. 'Coefﬁcient Roundoff - and Scalinq

In the introduction, we also discussed coeff[ment roundoff - the well-defined wrong
filter. 1t likely occurred to the reader that while we were talking about coefficients that
were relatively close to integers (i.e., the numbers were generally much greater than 1 in
magnitude), that many filters have, and must have, coefficients that are small. For
example, the feedback coefficient branch of an IR filer might have coefficients of 6.77, -

- 2.12, 1.04,-0.62, 0.28, -0.09, and 0.015. We would not expect good results if we chose

_ rounded integer coeﬂ" cients of 7,-2,1,-1,0,0, and 0. We would expect terrible results -
for one thing, three of the feedbacks are Iost so three poles of the filter would be lost. We
wouid also cons:der ourselves lucky if the filter were even stable.

Clearly, we have two options. If we had a f!oatlng point arithmetic available, we could

- fairly easily implement non-integer numbers quite close to nominal, and this we would
expect to be quite useful. However, often being stuck with fixed point arithmetic, how
would we get at a coefficient like, for example, 0.2209? Well - as a ratio of integers. We
could investigate various integers ny-and ny such that ni/n; is sufficiently close to 0.2209.
However, division is not a forte of DSP chips, and we might well want to restrict our values
of nz to powers of 2 so that division is accomplished with a shift. For example, suppose
we chose n; to be 1024. This would make n{ equal to 226 (0.2209 x 1024, rounded). The
actual coefficient implemented would then be 226/1024 = 0.2207, an error of about 0.1%.
Surprisingly, while this particular example is sometimes plenty good (e.g., for FIR filters) it-
is not at all hard to find cases (high-order liR filters) where this is far too much error.

Additional humerical prob'lems are related. We often find ourselves adding up
(accumulating) many results of multiplies by a range of coefficients, and would like fodo -
the division by a single post-addition shift. This complicates (restricts) our choice of na.
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In addition, with fixed-point we have to choose coefficients so that signal levels do not get

too small (a permanent loss of actual resolution from that point on) or too large (saturation
or overflows to consider). This is the so-called "scaling problem” - keeping the signal level
just right at all points within a filter structure. o .

2c. Overflow QLlestions

When signals get too small, we expect signal quantization effects to become more
pronounced. Why not always keep signals very large? Well, with fixed point, and to a
much lesser degree with floating point, there are limits to the absolute value of numbers.
For example, with 16-bits, we could only represent integers to about £32,000. What
happens if you exceed these limits by calling for a larger number? .

: Most DSP chips offer the option of "saturating" or "overflowing.” In saturation mode; if
you ask for a number greater than the maximum, you get the maximum: This is what
happens in an analog system when a signal "clips" against the power supply levels. In
general, this is a harmonic distortion generating situation. " [n overflow mode, things seem
even worse. Instead of a (desired) positive number greater than the most positive one |
available, you get numbers on the negative side, which are much more serious errors. . {
This is in fact worse than saturation, if we are talking about the final result. But, what if the -
overflow is the result of an as yet uncompleted accumulation of partial products? If we
have overflowed in the positive direction, the next product accumulated might be negative,
and the overflow error is reversed, exactly (back from never-never land). We hope to end
up the accumulation in the original range. Clearly this rescue would never be possible .
following any case of saturation. |s it realistic fo expect such a fortunate circumstance? | !
Not always, but in many cases we can expect and control this occurrence. For-example, : %
a series of filter coefficients may alternate in sign while the signal is low-frequency. ' ]

2d. Floating Point to the Rescue? |

- Many things are easier to do with floating point arithmetic. For example, with floating
point, overall scaling (through a cascade of digital filter sections} is likely just a matter of
one correcting multiply at the very end. With fixed point, we generally need to optimize -
each section as we go. (Yet such floating point processors may not run as fast as fixed
point)  Can anything go wrong with floating point? Of course, and one such thing is
SCIMD (Scale-Change InterModulation Distortion). Keep in mind that floating point is not
infinite precision. In fact, with floating point, what we really have is a fixed-point mantissa
and a fixed-point exponent combined. We gain dynamic range. We can represent much’ -
smaller and much larger numbers. But still, while we can get much, much closer to the |
number zero than we could with fixed point, we don't expect to get closer, to the same
‘accuracy, to larger numbers. That is, while we might be able to represent 3x107°, we
can't expect to represent 4x10?'+3x10”® (which would come out 4x1 0%h, \
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In the same way that we have lost 3x10?° in the example above, in the case of a signal

~ consisting of small and large components, a small component may be fost. - Yet the - -

situation is even worse than that, because a large component is not large ail the time. A
large amplitude sinewave is large near its peaks but small near its zero-crossings.
Accordingly, we may have the situation where a large component turns the small one off
and on (modulates it). This happens when the sum gets so large that the exponent gets
larger and one or more places are lost in the mantissa. Because we assume no specific
- relationship between the frequencies of the components, the modulation products will in -
general be in positions where there were no components in the original signal. Thus we
have an inter-modulation distortion caused by a change of scale.

‘2e. Limit Cycles - Small and Large

It is our usual expectation that if we have a filter and if at a certain instance it has a
measurable input and a measurable output, that if we subsequently arrange for the input
to become and remain zero, that the output will show a continuing trend toward zero as
well. By no means do we expect the output to go immediately to zero - the filter needs to
work the numbers through, around, and out. Put another way, the fiiter of course has a
transient response, and the event of a zero input is just another fransient. But, if the filter
is stable, the "energy" cycling inside should at least decay, and further, since a digital filter
is subject to signal quantization, we expect decay io reach levels which would actually
round to zero (even where the theoretical response only decays exponentially,
approaching but never actually reaching zero). This is what we expect for a LTI system.
But, quantization is non-linear. The individual steps may be small, but nonetheless they
are steps. Even worse, in overflow mode, some severe non-linearities can result. Both
of these can result in a filter output, with a zeroed input, ending up not at zero, but in a
limit-cycle attractor. By tradition, the limit cycles due to the quantization steps are usually
called just "limit cycles" or "small-scale limit cycles™ while the large-scale limit cycles are

- termed "overflow oscillations."

A smail-scale limit cycle occurs when a signal at the output is decaying but then gets

- ‘stuck. This is largely the result of a rounding or truncation effectively increasing the value
of a filter coefficient (you multiply x by g and get gx which rounds to a value y > gx which is
the same as increasing g). In very rare cases, we can think in ferms of an equivalent LTI
system. But generally, it is a residual low-level "buzz." It need not always occur. With
truncation, it may occur with decay from a state of one polarity but not from the other.

- These are not always even worth worrying about.

Overflow oscillations on the other hand are always a problem, but more interesting.

 They are large and unpredictable oscillations, often chactic and can even demonstrate

~ fractal properties.  For the exact same filter, one instance of overflow may stick the filter in
a length three overflow sequence. Removing this, we might see a length 147 sequence
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the next time it overflows. These may be triggered simply by having the signal level
overflow somewhere inside the filter, at which point, getting rid of it is not usuaily a matter
of reducing the input level, even all the way fo zero. Sudden, large changes. of input

- amplitude may kick you back out, but you may well need to stop the filter and reset its
internal points to zero, or set to saturation mode rather than overflow mode.

2f Noise Gain

We have suggested a "noise model" for the quantization of large (large relative fo the
quantization interval) complex (many frequency components) signals. Below we will-
calculate the equivalent noise. There are two cases where we expect this quantization
noise to be generated: of course when we quantize an analog signal, but also when we
round off to the original number of bits following a multiply. Accordingly, we need to know
what level of quantization noise we should expect at the output of a system as a result of
multiple quantizations (often with different quantization levels). Do noise sources get
amplified? They can - and perhaps by a lot. How do we add different quantization noise
contributions? We add up noise powers. :

3 SPECIFIC TOPICS IN FINITE WORLDLENGTH

‘3a  Noise Model (QUANTIZATION NOISE POWER)

Recognizing that we are dealing with round-off errors that are not exactly known, we

must resort to some model that may offer insight and guidance during design. Here we

~will look at a standard noise model that applies to large, complex signals. Inthe next
subsection, we will use a harmonic distortion model that offers a better description when
we are dealing with small, simple signals. We will then see that additive "dither” is an
approach that offers some unexpected relief from harmonic distortion, and indeed, from -
the quantization non-linearity in general. Eventually we will arrive at useful ideas involving
oversampling and noise shaping. We begin with the usual noise model - calculating the
noise power associated with a quantization interval Q.-

In Fig. 1 we show particular instances of quantization where a signal is sampled and
then quantized to levels separated by interval Q. it is convenient to think of the level Q as
being a voltage, and we will associate the actual quantization procedure with rounding to
the closest available level. We assume that the input signal is large and complex. By
large, we can only mean that the amplitude of the 3|gnal is >> Q (no other level is
available to serve as a reference to small or large). By "complex" we mean that the signal
 has many frequency components and hkely random components (such as a speech or
music signal). The point is that the sequence of quantization errors is to be considered
- random, and uncorrelated with the signal. The errors are expected to be just about
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Fig. 1 A large "complex" signal is likely tc_i have errors that may be c’onéidered random

anywheré_ between levels with equal probability. In such an instance, the distribution of
errors is flat on the interval -Q/2 to +Q/2 and is normalized to 1 by setting the probability to
1/Q (Fig. 2). The quantization noise power (perhaps most usually calted the variance) is

thained by integrating the square of the distribution:

- Qr2 | -
og”= (1/Q) | Xdx = Q12
-Q/2

(1)

'This'_is a fundamental and well-known result [1]. Th§ quantization error has an inherent -
power of Q2/12.. Note that the result depends only on Q. Well - almost.

Q.

xn)

o)l = Q ATE

Qe ey

Fig. 2. Uniform probability
distribution of the error

EN#204 (11)

Fig. 3 Noise model

of quantization

7



“The result apparently does not depend on the amplitude of the signal, the number of -
bits (number of levels), or the sampling rate. Actually, we should only say that it does not
depend on the sampling rate. While we do not see a factor representing the amplitude, or
the number of bits as variables in our equation, we should not forget that we have made
some assumptions. The amplitude must be very large relative to Q, and this in turn
requires that there be a lot of levels. Thus we need to assume that there are a lot of bits,
perhaps 12, 16, or 24 as opposed to only 3, 2, or 1. And the signal is making use of
these bits - the more significant bits are not being neglected. Meetirig all our
assumptions, we can work with a noise power of Q¥12. We thus think of (i.e., model)
quantization as being the addlt[on of random noise (Fig. 3).

Having decided that quantlzatlon results in a noise amplitude of Q/V12, we can

- calculate a signal-to-noise (S/N) ratio assuming the maximum pOSSIble signal level. 'If we
have B bits total available, and one bit is required for sign, we have 25" levels separated
by interval Q that are available: a maximum amplitude 2 1Q An RMS value of this
amplitude would be 25 1QN_ so the S/N ratio would be:

2PQ N7
SIN= =15 28 o 2)
QN2 |

in decibels, this would be:

20 10g10(S/N) = 1.76 + 6,02B db | O @®

We thus get the fundamental result (reasonable approximation?) that each bit added
improves the S/N ratio by 6 db, and roughly; we expect a S/N ratio of 6B db. We
immediately understand the 6db/bit result as being a consequence of the 2:1 reduction in
- error for each new bit added.

3b  Harmonic Distortion Model

In contrast to large complex signals, we now want fo look at small simple signals. By
"small" we mean a sighal amplitude that is comparable to Q, and for "simple” we can
consider a single frequency sinusoidal waveform. Fig. 4a shows a simple sinewave of
~ frequency 0.025f; (f is sampling frequency) of amplitude Q/2 (peak-to-peak amplitude Q),

centered at Q/2, sampled 40 tlmes/cycle (samples not visible in plot). When we quantlze :
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this by rounding, the result is the square wave of Fig. 4c. The spectrum of the original
‘sinewave is just a smgle line (Fig. 4b) while the spectrum of the quantized sine (Fig. 4d)
shows harmonics typical of a sampled square wave (approximately odd harmonics with
the k™ harmonic falling off as 1/k).

We can understand the additional frequency components as being a resuit of the non-
linearity of quantization, and such a phenomenon is known as harmonic distortion. Note
-that there areé some additional smaller components as well, and these are essentially an
aliased continuation of the harmonic distortion. We will be looking at this aliasing through
a second example in Fig. 5. The remaining portion of Fig. 4 (e-j) will be dlscussed in
Section 3c

F:g . 5 shows a situation that is identical to Fig. 4 except here the frequency is 0.3f; as
compared to 0.025f; in Fig. 4. In this case, it is difficult to see the details of the time
waveforms (Fig. 5a sinewave; Fig. 5¢ quantized sinewave). Yet we see a very interesting
result in the spectra. Fig. 5b shows a perfectly pure frequency component of 0.3fs. Fig.
5d shows its strongest component at 0.3f; and a strong component at 0. 1fs (with many .
lesser components). While in Fig. 4 we saw what was apparently harmonic distortion, in
Fig. 5 we see what seems to be a sub-harmonic (1/3 the original). (Of course, the
component would sound exactly like a sub-harmonic.) Yet this component is actually a
" harmonic - the third harmonic. The third harmonic of 0.3f; is of course 0.9, but this is in
turn aliased to 0.1f;. Thus we understand that while this non-linear generation of
harmonics follows correct bandlimiting and legal sampling, the components generated by
the sampling are subject to aliasing just as though they were included prior to sampling.

- Yet one more example is shown in Fig. 6 where the frequency is 0.36fs. Fig. 6a shows
the original spectrum while Fig. 6b shows numerous strong components in addition to the
major one at 0.36f;. For example, the third harmonic of 0.36f; wouid of course be 1.08fs,
‘which is aliased to 0.08f;. A fifth harmonic would be 1.80fs which would be aliased to

- 0.2f;. Fig 6b shows a considerable array of harmonics aliased back to the baseband.

Although not shown, we c¢an also choose frequencies such as 0.364326.. .fs which is
subject to the same general processes, but which would not alias its harmonics to equaily
- spaced positions in the baseband. While the view is essentially the same, it is difficult to
display a clear result because the FFT's used here for spectral analy5|s would be subject

to "leakage.”

3c Dither - Breaking Up The Harmonic Distortion

-There are many portions of Fig. 4, Fig: 5, and Fig. 6 that we have not discussed. A
“quick glance at these makes it clear that we were talking about problems with harmonic
distortion, and that now we are bringing in some random signals, and we usually do not
think of bringing in random elements as a means of eliminating problems. Yetitis
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Fig. 4 A small
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harmonic dist-
ortion. With the
addition of noise
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tion, the distort-
ion components
can be broken
up onto the
background
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Here the spectra
are generated
using an FFT:
The strong DC
component has
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for clarity




precisely this added noise that does end up with an improved signal - at least from the
point of view of audio signals. - This is the famous "Dither” signal.

Dither has a Iong history [1], going back to a number of mechanical devices (gear
driven computers) that just worked better when they were bounced around a bit (better in
an airplane than on the ground). The old practices of electrical engingers tapping the face
of an analog "moving-needle” panel meter, or of the chemist reading a balance while it is
stilf swinging are not unrelated. Even more astounding perhaps, some animals are able to
take advantage of noise (a process called stochastic resonance) to perceive signais that
are otherwise below their threshold of detection (to the animal's advantage one way or
another). Yet while it is not new,’ ” it is still a remarkable result.

'Fig. 4e shows the addition of a random signal of "amplitude” Q to the original sinewave
of Fig. 4a. Exactly as we would predict, the spectrum of this combination (Fig. 4f) shows a
strong sinewave over a broadbanded background noise. This is not better than Fig. 4b -
but we were not interested in comparing unquantized signals. Fig. 4g shows the
quantized version of Fig. 4e. As in the case of Fig. 4c, we still have only two quantization
~levels total. Yet, as we expect, when the sinewave is near its zero crossing points
- (crossing 0.5 in this case) we get multiple zero crossings that are due to the noise. In
some sense, the hard edges of the blocks have been cracked apart The result is not
readily available fo the eye from Fig. 4g, but from the spectrum of Fig. 4h, we see that the
harmonic distortion seen in Fig. 4d is gone, in favor of a broadbanded background. Put
. simply, we would have liked a pure sinewave (Fig. 4b) but we can't have that so we prefer
Fig. 4h (which is similar to Fig. 4f) to the harmonic distortion of Fig. 4d. (We would expect
Flg 4h to sound similar to Fig. 4f, which we know we hear as a sinewave plus random .

noise.)

“Fig. 4i and Fig. 4j show a final manipulation where the samples of Fig. 49 are averaged
together eight at a time. This gives us a reasonable fee] for how dither works. The
averaging is a low-pass fi iltering, as can be seen in Fig. 4. Note that the output time
signal (Fig. 4i) tends to reach the quantization limits where the original sinewave peaked.
Near the zero-crossings of the original sinewave, the dither caused a rapid fluctuation
between quantization levels, which roughly speaking, balanced to the guantization
midpoint. The procedure is essentially the same as pulse-width modulation. As the
" sinewave moved up above 0.5Q, it increased the probability of levels Q=1, and as it
~ moved below 0.5Q, approaching 0, it increased the probability of Q=0. It is as though the

‘noise searches beyond the limits of the sinewave for the better estimate of the truth.
While the resuilt of Fig. 4i is not a great imitation of the original sinewave, it is the spectrum
of Fig. 4 that is most useful. In this case, dither allows us to trade a undesirable distortion

for an acceptable random noise.

The additional graphs in Fig. 5 are similar to the correspondlng ones of Fig. 4. The
‘most important comparison is probably that between Fig. 5d ("subharmonic") and Fig. 5h
(background noise). In this case, we see that averagmg (Fig. 5i and Fig. 5j) does not
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Fig. 6 Here the situation is similar to Fig. 5 except the frequency is 0.36f;. The
spectrum in (a) is pure, but the spectrum of the quantized signal shows an array of
aliased harmonics (as numbered). Once again, dither breaks up thé individual

- components, except for the desired fundamental.

appear so effective, and this we can understand by the oversimplified nature of this low-
pass filter: the 0.3f; component sinewave survives this length-8 averaging only in the
second sidelobe. In Fig. 6, we see the strong contrast between harmonic distortion

components (6b) and noise (6d)

3d Dither -'Incre'asinq Resolution

- In Sectlon 3c we used dither to break up frequency components that were heard as

' harmomc distortion and replace theim with a more beénign background noise. While this is
“impressive, the use of dither goes even further. In fact, it allows us to effectively encode

signal levels that are below the quantization interval (Fig. 7), and to effectively increase
resolution to achieve signal levels that are not small, but whlch are between avallable

quantlzatlon Ievels (Fig. 8)

. Fig.7a shows a sinewave of amphtude 0.4Q. Its spectrum in Flg 7b is a pure
smewave of frequency 0. 3f.S Yet when quantlzed we get everythmg rounding to zero
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(Fig. 7¢, 7d). The signal is lost. When dither is added (Fig. 7e, 7f), we get a noisy
sinewave as before. Now with quantization (Fig. 7g, 7h), the lost sinewave reappears.
Keep in mind that we are comparing Fig. 7h to the null result of Fig. 7d. This suggests
that even very smalll signals compared to the quantization level may be usefully encoded.
" [From the point of view of a crayfish in a babbling stream, the babble noise might be
added to the vibrations of a hungry bass, makmg it possible to just trigger a threshold for

firing a nerve cell.]

Perhaps the aspect of using dither that is of the most general importance is that of
increased resolution, the ability to achieve effective levels that are between available
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Fig. 8 Although 1.25Q is not an actual quantization level, through the use of dither,
we can approach the 1.25Q level as an average.
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quantization levels. Fig. 8a shows a dc level of 1.25Q, which is rounded to Q (Fig. 8c).
With the addition of dither (Fig. 8b) of amplitude Q, we see that now multiple quantization
levels are reached: many (about 3/4) are Q and fewer (about 1/4) are 2Q (Fig. 8d). Now
by averaging (Fig. 8e), we can achieve an output that hovers about 1.25, the true value.
Here we have averaged over 50 samples, so it is only the output samples from 50 to 200
in Fig. 8e that represent a typical result. '

It is probably clear that nothing depended on our choosing 1.25Q. We might have
chosen 1.26Q or 1,7234Q, and we would still expect some useful frend toward that level. -
The exact degree to which a quantizer achieves increased linearity and increased
resolution by this procedure depends on correct selection of dither amplitude and
probability distribution shape. In most cases, the dither would be supplied by some
pseudo-random digital method.

3e. Oversampling and Noise Shaping

3e-1 Introduction

Here we will be looking at two methods that are usually very effective if used together.
The first is oversampling, taking samples (or obtaining them by interpolation) at rates that
are substantially higher than that required by the sampling theorem. There are many
reasons why oversampling is useful. The second topic is noise shaping. This means
that we may be able to arrange things so that while the quantization noise power is
necessarily present, most of it can be made inaudible. In the context of this section, we
are attempting to reduce quantization noise, and at the same time, reduce the number of
bits in our data converters, which seems contradictory.

In the derivation of equation (1) for quantization noise power, we noted that only the
quantization interval Q was involved in the final result.  We argued that in the derivation
there were some implied conditions (of importance) on signal level and on the number of
- bits, but none on sampling frequency. In fact, the assumptions with regard to the
charactenzatlon of the quantization noise in the frequency domain are generally extended
to suggest that the spectrum of the quantization noise is white (the values of the error are
uncorrelated), from f/2 to +f/2. (For simplicity, we only need to speak of the noise from
0 fofs/2.)" Accordlngly, suppose that we have a sampling rate of 44.1 kHz and are
digitizing a music signal. We know that the standard of 44.1 kHz was selected in part (as
a major "ballpark" factor) with the idea that half this rate just manages to exceed the
audible bandwidth. This audible bandwidth is variously takenr as 15 kHz, 18kHz, or 20
kHz - it varies with different individuals and drops with advancing age. But suppose we
instead chose 88.2 kHz, so that the quantization noise is distributed from 0 to 44 1 kHz.
We would only hear the noise inside an audible bandwidth from about 15 Hz to slightly
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under 20 kHz. About half the noise would become, automatically, inaudible (see Fig. 9).
(Incidentally, there are other ways in which the high-frequency noise might be blocked.
The amplifier might not pass it, or the loudspeakers might not respond, so the noise might

never even get to the ear )

* [t is important to understand why this oversampling is a reasonable thing to do - why
we might hope to win the game we are playing. Of course, it makes perfectly good sense
that if we take more samples per unit of time, we have, in a very general sense, a better
approximation to the actual analog waveform. But the sampling theorem has told us that
(mathematically) we need not try harder in the direction of increased sampling rate. VWhat
we are after is less quantization noise, We need to understand two things: that we can
use a higher sampling rate to obtain the equivalent of more bits, and that it makes sense
(considering the electronics involved) to use the oversampling approach.

Fig. 10 shows a typical "sampling cell" [2]. The cell's sides are T (= 1/fs) and Q. In
reconstructing from digital samples to an analog waveform, we are first building with
blocks this size (the output of a D/A for example). After that, we will smoothen the
waveform with some analog filtering.  This analog filtering closely resembles integration in
a local frame. We are thus concerned mainly with the area of the building block, QT in -
this case, but the exact shape of the block becomes less important. If we add a bit, our
blocks become smaller, and we have an area (Q/2)T, half the original. Two added bits
would mean working with an area of (Q/4)T. The same areas could be obtained with
oversampling by 2, Q(T/2), or oversampling by 4, Q(T/4) as shown in Fig. 10. Soour
trade-off seems to be between increased resolution in amplitude, or increased resolution
in time. Why do we choose time (oversampling)?

-The flrst reason for choosmg time is that, while we are specmcalty concerned here with
reducing quantization noise; we already needed to choose a time (or sampling rate)
approach because of another problem: the analog filtering problem. We have the
problem of implementing analog input guard (anti-aliasing) filters and reconstruction
(smoothing) filters, and with a sampling frequency only slightly greater than twice the
bandwidth, these need to be very sharp - of high order and extreme sensitivity. |f we opt
instead for even just twice the original sampling frequency, the filters are much easier to -
design. (In fact, we more-or-less change from a difficult analog filtering problem to a
doable digital filter problem by doing this.) No alternative approach of instead increasing
the number of bits would affect these analog filtering diffi cult[es in any way. So we have a
first reason for oversampling.

The second reason for choosing increased subdivision of the sampling cell in time has
to do with analog signal-to-noise considerations. Any analog voltage source (perhaps a
microphone amplifier) has a maximum size signal, and some background noise-floor. At
the same time, some voltage levels we may consider are likely to have offsets and other
variations (drift) with time and temperature that are non-negligible. And the components
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used are known only w1th|n tolerances of a few percent. What this means is that when
we start with a certain voltage level, say +10 volts, if we expend 8 bits, we have values of
Q less than 100 mV, and by the time we get to 16 bits, the levels would have to be less
than 1 mV apart. Typically, analog noise lévels could be larger than this. These would
be difficult to work with, and way too expenswe In fact, we are hoping to work with fewer

bits, not more.

Given this difficulty of further subdividing the amplitude scale, do we have a similar sort
of problem in asking our electronic circuitry to divide time up into smaller and smaller
intervals? Well, we are talking about audio rates, and we know that radios exist. We
have a lot of room in that direction. A sampling rate of even as much as 12 MHz might
be workable. Moreover, we have so much potential in the direction of higher sampling
rates that we generally think not just of gefting to something workable with 16 bits devices
(breaking even), but getting to the same performance with far fewer bits - perhaps a single
bit. Of course, as mentioned, we are not going to get to 1-bit on oversampling alone -

we will alse need noise shaping.

This idea of using a sampling rate that is substantially higher than the minimum
- required (common]y factors of 2, 4, 8, and 16 higher, and may go as high as 256), is
“known as "oversampling." In some cases, this simply means recording at a higher rate --
actually a sampling process. In many other cases, the actual oversampling technique
refers fo the recreation of additional samples that are calculated from stored samples
(e.g., a CD) rather than the taking of original samples at a higher rate. For example, if we
have sampled at 44.1 kHz we couid in theory perfectly reconstruct (return to analog) a
- signal with a 20 kHz bandwidth (nearly so anyway). This means that we could then
resample (oversample) the recovered analog signal at a higher rate, for example, 176.4
kHz. A better, less round-about method would be to construct the additional digital
samples numerically from the available samples - the process of digital interpolation,
which is well understood [3]. There are many advantages to oversampling. For
whatever reasons we have for resorting to oversampling, we are going to get, for free, a
reduction of half the noise power each time we double the sampling frequency. This
amounts to a reduction of the noise amplitude of 1/72, which is a 3db improvement or half
abit. Not a great deal, but it might be simply a free bonus. This 1/2 bit per octave of -
oversampling is a reference values we need to keep in mind below.

More to the point, what if we could arrange for the qua'ntization noise, now uniformly
distributed in frequency, and therefore, partly in an inaudible region, to be preferentially
distributed in the unimportant region above the audible range? This is what we call
"noise-shaping" (see Fig. 11) [4,5]. Noise shaping and oversampling are separate
notions, but we almost always consider how the two work together, and we will discuss

these procedures essentially as one here.
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3e-2 Two Applications-to Consider

The two major applications of Oversampling/Noise-Shaping (OSNS) are, not
surprisingly, recording and playback. In engineering, there are usually trade-offs and no
"free lunches."  But oversampling comes close to being a free lunch. While it requires
some cost (at least in engineering effort), once implemented, there are usually only good

. results from an implementation/performance point of view. We get less guantization
=% noise, less phase distortion, simpler analog interfaces. All of this can resuit in better
' performance at lower prices. In the two applications, the resources are allocated in
different ways however. - This is because there are usually relatively few recorders and
many, many players. The recorders are optimized for high performance and reasonable
cost. The players are optimized for reasonable performance and tow cost.

The structures and procedures surrounding OSNS are unusual (stch as discrete-time
filters that work with unquantized samples), sometimes counter-intuitive, and often appear
in their most extreme versions (such as quantizing to only one bit). In Sections 3e-3 and
3e-4, we will attempt to present the noise shapers in a complete and fairly realistic
context. Before we begin these studies, we can infroduce some to the items that will
appear in the figures. . ' -

Fig. 12a shows a box labeled Q which we will consider to be a quantizer or a re-
quantizer. in the quantizer case, the box takes in samples x(n), which we take to be
discrete in time, but not yet in amplitude. [n a re-quantizer case; we would be thinking of
x(n) as being represented by a number of bits, and we want to reduce the number of bits
used (perhaps to just a single bit). In.either case, we are interested in the errors that
result from quantization. Accordingly; below the Q box we show a summer that
calculates the errore(n). . S
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Fig. 12b shows details of an actual quantizer realization. This perhaps looks silly
because we use an Analog-to-Digital (A/D) converter, which we mlght think is itself a
. quantizer. ‘ltis. Thenin calculating the error, we need in turn to use a Dtgltal-to-Analog
~ (D/A) converter. In a sense, a scheme like Fig. 12b is already pretty much a model. The
A/D and the D/A are part of some overall convertér chip which handles samp!ed data. At
one extreme, the A/D could be just a single bit device (a comparator) and the '
correspondmg D/A would be just this one bit fed back.  Even simpler is the re-quantizer of
Fig. 12¢. This re-quantization is actually just a matter of not moving some of the bits
further along. The bits passed-along are the most significant bits while the least significant
bits are automaticaily the error. Again, in many cases, only one bit is kept.
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In Fig. 12a, we saw that a quantizer produced an error that could be recovered by
subtraction. -1t follows that we can model the quantizer as a summer where the error e(n)
is added (Fig. 12d). We need fo note that this is a model. There is no actual noise
generator or summer. It's just that the quantization process produces an error which we
treat as additive. The noise e(n) is intefnal to the Q box. We can not feed noise into the
Q box, nor take it out, except as we can recover e(n) if we have the input and the output of
the Q box. At best, we know something about the statistics of e(n). Perhaps the best
way to view the quantizer model is seen in Fig. 12e, where the e(n) in the Q box is
unknown, but is being measured by the e(n) below the summer.

'Eventually we will see that the noise generated internally to the quantizer can have an
altered spectral shape. This is a matter of the overall feedback structure around the
quantizer. [n such a case, an altered model (Fig. 12f) is sometimes seen. Like e(n)
itself, the noise-shaping filter Hys(z) is a model. Typically, Hus(z) will be first-order (1 - 71
or second-order (1 - z")2. While there is no noise generator, nor any hardware noise-
shaping filter, the noise-shaping transfer functions are real enough in terms of the overall

structure.

3e-3 Oversampling Noise-Shaping Recording

In the recording case, we have in mind an analog signal with an audio bandwidth of'
perhaps 20 kHz. - We want to convert this to a standard format of perhaps 16-bits at a
sampling rate of 44.1 kHz. Initially we might think of using "brute-force,” an analog input-
guard filter of high order (perhaps 12" to 16" order) cutting off sharply between 20kHz
and 24kHz, followed by an analog-to-digital conversion system which would need to be 18
bits or more to get 16 "good bits" (the error is specified for most converters as 1/2 the least.
significant bit). =~ With recording, as we said, price is less of a consideration, but we still
need performance. We hope we can get better performance at less cost by using OSNS,

rather than brute-force. _ :

Fig. 13 shows the application of the OSNS procedure to this recording process. The -
central portion of the scheme is what is called a "sigma-delta” converter. [The alternative
name "delta-sigma" converter is also used, but refers to the same thing. There is perhaps
currently an edge to the sigma-delta choice of name, particularly as the literature refers to
sigma-delta modulation (SDM)]. At the very left, we see a microphone fed to a "wimpy"
analog low-pass filter (perhaps just a first-order R-C low-pass). Here we assume that the
low-pass filter gets down to a negligible level by some frequency F¢/2. So the analog
signal can be sampled at a rate Fs, producing a discrete-time signal x(n). Here we will
assume that Fs>>f; where f, is the sampling frequency we eventually want to end up with.
For example, we might have Fs=705.6 kHz while f;=44.1 kHz, which is oversampling times

16.
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We now turn our attention to the central portion between x(n), the unquantized dlscrete
~ time signal, and y(n), the quantized signal. Note that the system has two inputs, x(n) and
‘the internally generated noise e(n). We see that the system consists of a summer, a
discrete-time integrator, and a medeled quantizer. It is fairly easy to solve for Y(z) as:

Y@ =E@)[1-2"1+X(z) 2" “

The significance of this equation is that the noise is subjected to a high-pass shapmg, _
while the signal is merely delayed (no spectral shaping). The noise shaper, [1-Z 1, has a
response of 0 at f=0 and a response (gain) of 2 at f=F¢/2. It is not difficult to integrate the
frequency response of the noise shaper from 0 to /2 (or to the edge of the audible band
or other specified cutoff) to get the total noise power [6]. The general result (Hauser's rule
of thumb) is that this first-order noise shaping will add the equivalent of 1.5 bits per octave
of oversampling with a "penalty” of one bit (the gain of 2). For our example, there were
four octaves of oversampling (1 — 2 — 4 — 8 — 16 ) so one would expect a 4x1. 5 1=5

bit improvement.

What this means is that if the quantizer converts say, 12 bits, that the additional 5 due to
oversampling would produce 17 bits total. This is where the structures below the noise
shaping quantizer come in. Note that we have to reduce the sampling rate from Fs, the
output, y(n), to fs at the CD location. This of course requires a reduction of the bandwidth
to f/2 - the job of the digital pre-decimation filter which would be clocked at Fs, but which
would have a low-pass cutoff of f/2. Note that the predecimation fiiter is also what we
need to remove the shaped noise. Finally we note that the filter itself is likely FIR and
produces an output as the result of digital multiply/ accumulate operations. In our
example, we assumed that y(n) has 12 bits. If the filter coefficients are 16 bits, the _
accumulated product could have 28 bits or more, and the noise shaping has made 12:+5 =
17 of them significant, which would be enough for a CD.

Fig 14 shows a sec_ond-brder noise shapér‘. The analysis of this network is not difficult
and yields:

Y@ =E@(1-2"+X@) - - ®

Here the noise is subject to a second-order high-pass, while the signal is still subject to
only a flat response. (In this case there is no delay - there are a number of structures that
amount to virtually the same thing.) The rule of thumb for the second-order noise shaper
results in 2.5 bits for each octave of oversamplmg, with a 2 bit penalty. . Four octaves of
oversampling would result in an 8- blt gain. :

Note that with second—order noise shaping and an oversamplihg'factor of 256 (8

octaves - which would be Fe=11.29 MHz - possible but not easy) there would be an 18-bit -

gain. Accordingly even a single bit quantlzer could result in 16 or more good bits. This
is more or less the idea of getting to a 1-bit converter. It's not that easy in practlce -

addltlonal tricks are required.
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3e-4 Oversamplinq Noise-Shaping Plavback

Fig. 15 shows the playback side of the OSNS procedure. in the "brute force" approach
(Fig. 15a), we would expect to take samples from the CD at 16-bits and 44.1 kHz.  This
would be converted to analog with a good 16-bit D/A conversion (i.e., perhaps an 18-bif
converter) followed by a sharp analog filter with a cutoff between 18kHz and 24kHz. As
with the recording case, oversampling alone gives us some relief.  In using oversampling
(Fig. 15b), we would first increase the sampling rate from f; to Fs through an interpolation
procedure, which involves a digital low-pass with a cutoff at f/2. The interpolated sighal
is then passed through a good 16-bit D/A conversion, and then, only a simple analog low-
pass is needed to remove the residual steps (the images are spaced at Fs, not at f;).
effect, the strong digital low-pass and the weak analog low-pass act in series to achieve
the needed image rejection. Accordingly, oversampling alone is working to greatly ease
the analog filtering problem, and it is also the case that we also get some noise relief, the
1/2 bit per octave of oversampling. For example, if we had oversampling by 16 (four
octaves) we would gain 4x0.5 = 2 bits, as a bonus. These two bits mlght well mean that a

16-bit converter would give 16 good bits.

_ Here in this case we are talking about a playback device. Thus we want to get’
component cost down, and a 16-bit converter is still very costly. By using noise shaplng :

we can obtain extra bits. Here, we can use the extra bits to reduce the number of bits in

the converter. That intention makes this a re-quantization problem.” In fact, one ideal

- goal would be to get to the extreme of only having to convert a single bit: essentially just a

comparator (the sign bit) - not an actual D/A converter. _ '

- The noise shaping requantizer is seen between x(n) and y(n) in Fig. 15¢c. Here itis the
error that is fed back, rather than the quantized signal in the cases of the recorder. The
signals x(n) and w(n) would be of the original wordsize, while y(n) would be fewer bits,
perhaps just one sign bit. In fact, the error need not be computed - it is just the discarded
least significant bits (see Fig. 12c). The re-quantizer (Q) is modeled exactly as the
quantizer way, and we expect that as long as we are reducing by many bits, the same
- arguments regardlng the error statistics apply. It is easy to compute Y(2) as:

Y(z) = X(2) +E(z) (1-2") | - (6)
- which is our familiar noise shaper while the signal itself is unshaped Fig. 16 shows an
alternative, second-order noise shaping requantizer to be used between x(n)and y(n) in
Fig. 15. The re-quantized output is now:

Y(@2) = X@) + E@) (1-2" _. | N €)'

~ which is familiar second-order noise shaping.
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full-size.  strong analog filter

' DA |- | |[ T |
. : fB ';2 ‘
Fig. 15a A brute force pIaYback system would involve a full-size (or slightly larger) D/A

converter, and a very sharp analog low-pass filter. Both of these are expensive
and/or difficult to implement. '

digital full-  weakanalog
| up-sampler ‘interpolation  gjze filter
@ Fsifs] ek _}\_ —(]

Fig. 15b By using oversampling, interpolation with a digital filter to a much higher
sampling rate, we can get around the requirement of having to have a sharp analog
fiter. That is, the digital filter does most of the work. Because of the oversampling,
some improvement in S/N is automatic, but only at the rate of 1/2 bit per octave of
oversampling. This might allow us to use a slightly smaller D/A converter.

digital weak analog

up-sampler inferpolation , E[n] ' fiIt_er |

FSHST 1

Tol2

Fig. 15¢ Here we retain the oversampling interpolation, and the weak analog filter, but
we have added the first-order noise-shaping requantizer (requantizer since we are
reducing the number of bits). Here, the D/A converter is part of the “Q" box. Note that
here, because of the noise shaping, we hope to obtain enough additional bits that the
D/A is of a much smaller size — only one bit if possible. The first-order noise shaper
gives us 1.5 bits per octave or oversampling, with a 1 bit penalty. '
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Fig. 16 Second-Order Noise Shaper (Playback)

More details of the noise shaping process are seen in Fig. 17 and Fig. 18. In Fig. 17a
we see a sine wave of frequency 0.02 and amplitude 0.8 as the input of the re-quantizer of
Fig. 15. Here the quantization is from a very large number of bits (no quantization
- actually) to just a single bit, as represented by the dots at +1 and -1. Also shown is a

reconstructed waveform based on an average over 20 samples. This reminds us a good
deal of the experiments with dither looked at earlier. The reconstructed waveform is
unimpressive compared fo the original sinewave, but extremely impressive relative to the
one-bit samples (the dots) from which it is derived.. Note that without noise shaping, the
~one-bit samples would be just a square wave, and a good deal of harmonic distortion
would be the result. ' :

The view in the frequency domain (Fig. 17b) is even more revealing. Here the original
sine wave should be a single dot (seen at amplitude 80) while the output of the quantizer
is the ugly spectrun shown by the dashed line. It is appropriate that the erratic dots of
Fig. 17a should have such a noisy appearance. We are at first inclined to reject this until
- we recognize that it was our purpose to accept much more noise (we are increasing the
- quantization interval) but to force it into the high frequency region. Indeed, we see that the
bottom 10% of the spectrum is tiny except for the one desired component. We may have
- the case that the spectral energy above this is inaudible, or perhaps we have a low-pass
filter rejecting it, 'sut:h as the length 20 averager (dotted line) shown in Fig. 17b.

Fig 18 shows a similar case, except here we have the second order noise- shapmg re-
quantlzer of th 16. : _ . _
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QUESTION (Continued from Page 4)

so the samples of equation (4) came from an amplitude A=1, and the samples are 105°
apart starting at 10°. ' _

So much for bemg given samples and being told they belong to a .sinusoidal waveform.
What if we aren't fold that? Rather, we just have some samples to ponder.

| Well we might suppose that we can learn abeut the time 'samples__by takingan FFT to
see what it looks like in the frequency domain. But; when we use the FFT, two things
must be kept in mind. First, the frequency resolution for a length-3 signal is going to be

- absolutely horrlble in general We will be forced to consider the three samples points to

be composed on a single sinusoidal waveform plus a constant. Secondly, the FFT will
- assume periodic repetition of these three points. Not too much hope. But we leamn from
what happens. Of course nothing prevents us from taking the length -3 FFT's of the three -

~ points. |
[0 5 3/2] <> [1.3660 -0.6830+0.3170j -0.6830-0.3170j] (6a)
[0 V32 -\3i2] «—> [0 015 0+1.5 ] - (6b)

- We note right away that the second sequence, eguation (6b) has the simpler FFT..
lndeed there is no constant (DC) term, and we have a pure sine. This was a
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~ conseguence of choosmg a frequency of exactly 1/3 for this case. We have an exact
integer number of samples (3) per cycle. The resolution is perfect,

For the FFT pair of equation (6a) recall that the frequency was supposed to be 1/12.
But of course, the only FFT frequency available for a length 3 FFT is 1/3, so the FFT
represents the result accordingly. Because we only have three samp[es of the length 12

cycle, there isa DC offset. The FFT is lying to us!

To see what bandlimited functions, in the FFT sense, corresponds to these two cases,
we can interpolate the three given points by zero-padding the middle of the FFT [2]. Fig.
4b shows the simpler case. It works - we get our sinewave with frequency 1/3 back.

Fig. 4a is thus going to be the case from which we can learn something additional. Note
that it does fit the three input points, and that it does have a DC offset and a component
at frequency 1/3: What it does not show is the "true" frequency of 1/12, which is shown

as a dotted line in Fig. 4a.

-1 od

YIS

frequency=1/3

04f "

G2

0.2} 1
IV 1 K. 1 1 1 L

.'I . _ 1 ',' _!- 1 1 - L
e 10 20 30 40 . 80 60 @ 10 20 £l 40 50 60

Fig. 4a By taking the FFT (DFT) or the Fig. 4b Here because the frequency -
three given points (not much datal) we of the sinewave actually was 1/3, which
find a fit to frequency = 1/3. But the is the only DFT sinusoid for length 3, we
points came from frequency = 1/12. - have perfect resolution and recovery. .

This result with the FFT shows us that the FFT is of only very limited use when it
comes to reconstryction.  Actually we should say that we had no right to expect much
- from just three samples The FFT forced the result to be represented in terms of its own

frequenCIes

What now?
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Well, perhaps we should now ask what bandlimited waveform corresponds to the

given sampfes This seems right, as we eventually expect to recover a signal from
samples by using a bandlimiting low-pass filter. Of course we might have tried this before -
. Prony, and before trying the FFT, but we learn a lot by attempting things in different ways.
So the question is: If we take three samples of a sinusoidal waveform, and pass them
through a bandlimiting low-pass, do we get the sinusoidal waveform out? Fat chance!
What happens if you put a localized set of non-zero samples into a low-pass? You get

out a smoother, but still localized "blob."

When we get down to looking at how a low-pass filter works, it is convenient to use
time-domain sinc interpolation corresponding to an ideal low-pass [3]. This simply means
that for each sample, we multiply a sinc, centered on that sample, by the sample value,
and sum up all the sincs. Fig. 5 shows a sinc interpolation for the case of just two -
samples. As suggested above, we get a Iocahzed wiggle WhICh dles off when we get
away from the non-zero samples.

2

1+

038

06y

First Sinc

- Surn of two sincs
geoes through the
given points

Fig. 5 Classical
bandlimited interpolation
with sinc waveforms -
corresponds {o some
notion of an ideal
fow-pass filter. Note

that the sum is significant -

04 \
Y, Second Sine | | only locally about the
1 non-zero samples, and
-y \ | tapers off away from
A AN these samples

02f

o e

D21

Interpolates to Zero at All Other Sample Points
1

0.4 1 1 1 1 i
2 -1 0 1 : 2 ' 3 4

- Fig. 6a shows the sinc interpolation for the three samples 0, 0.5, V3/2, along with the

sinewave of frequency 1/12 which fits these two samples. The interpolation is perfectly

~good and is correct — giving us the bandlimited answer. Of course it does not resemble
the sinewave, first because it dies off away from the non-zero samples and the sinewave
is of constant amplitude for all time. But neither does it resemble the sinewave locally in

~ the vicinity of the non-zero samples. Fig. 6b shows the same interpolation procedures

applied to the samples 0, V372, -V3/2; the frequency of 1/3. Again the localized blob does
- not resemble the constant amplitude sinewave. But there is some resembiance locally in
~ the vicinity of the non-zero samples, better detailed in Fig. 6¢. This can be understood in
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that the three samples in the case of frequency 1/3 actually do correspond to a full cycle,
- while three samples are only a fragment of a cycle in the case of the frequency of 1/12.
Again - interesting, but not what we were hoping for.
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Finally we can try it more or less the right way.” We want more samples, and samples
of many cycles. After all, small bursts of sinusoidal cycles are heard as "clicks" and are
not what we expect musically. The waveform of an individual musical "note" would have,
typically, hundreds of cycles. Here we will try something fike six full cycles, 18 samples

~ total, and we choose a frequency of 1/2.71 (somewhat arbitrarily) so that the samples are
not repeats from cycle to cycle. Fig. 7a shows the result of sinc interpolating the 18
samples, along with the actual sinewave. Here we again see the interpolation sum dieing
off away from the actual samples, but the sum does resemble the sinewave, not too well
at the ends (Fig. 7b) but quite well nearer the center (Fig. 7¢). Since we are actu_ally
doing filtering, we can think of the end errors as transients, while the good center is a
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In terms of the interpolation sum, the errors are due to the truncation
(windowing) of the sine wave. The discarded samples just beyond the ends are not
supporting the interpolation of the sinewave. = This is the result that is tmportant fo
understand in the context of digital audio. Finally we are more or less recovering the
S|gnai from-sparse samples ~ fewer than three per cycle (Fig. 7¢).

Fig. 7a Sinc interpolation of 18

samples of about a six-cycle

RN “burst” of a sinewave is quite
NARNALLL good near the middle of the

U\/\w | “burst” (Fig. 7a, Fig. 7¢) and
RIRTRIRI not so good at the ends

(Fig. 7b). The interpolated
results are shown by solid

Hou I lines - the sinewave by a
R ' A dashed line.
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