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BOOK REVIEWS

| recently read The Legend of Barjo Restaurant - the Life of Josephine McAllister
Stone by J. Emily Foster, Soleil Press (2001). The book is pretty much self-published
(but available from Amazon.com!), and likely mainly of local interest. Possibly some of
you have been fortunate enough to have eaten at the Barjo Restaurant (in Norway,
Maine). It was a place where they served you plenty of great tasting, wholesome food,
and never worried about giving it fancy names. Jo served her hot meals on hot plates
(she heated them in the oven) and the waitresses always warned you not to touch the
plate when the food was set on table, and you remembered not to try it a second time!
It was a place where if you asked to take out a slice of pie for your grandfather up at the
nursing home you were asked which flavor he preferred, and if you tried to keep things
simple by saying he liked all of Jo's pies, you were asked his name and then told which
flavor he liked best, and then they wouldn't accept any money for the slice.
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Of course, | loved the book, but it was surely because | knew enough about the
people and the places to relate. Great story that it is - it is hard to imagine that a general
reader would get too excited about it. 1t occurs to me that Tracy Kidder could pull this
sort of thing off and write a best-seller called Restaurant. But alas, Kidder only writes

about ordinary people.

Reading the Barjo book was for me what many people would describe as a nostalgic
experience: back in time, to previously visited places, and to old friends. Butitis more
than that. It is of course not my diary of events | myself experienced. | learned much
much more than | originally knew, and pasted these things on an increasingly familiar

framework.

Analog Days - The Invention and Impact of the Moog Synthesizer, by Trevor Pinch
and Frank Trocco, Harvard University Press (2002), which | was reading at the very
same time, was also a book which transported me in time and in place. It too was a
book which reminded me of many things | did know at one time, while at the same time
adding details. Most importantly, it told me many things | did not know before. Many of
the people in the book | knew quite well, while others of them | never met. A lot of the
stories | knew, but there were many more that | now learned, and 1 could fit them into a
more complete picture. And it triggered fond memories of stories that | knew that were of
course not in the finite-length book. During the evenings | was reading these two books,
it was often a jolt to find myself on my couch in ithaca in the year 2003.

Analog Days is first of all a scholarly work, extremely well researched, and yettold ina -
lively way uncharacteristic of many histories dealing with technological issues where it is
often left to the reader to provide any elements that would make the work compelling.

For readers of this newsletter, this was probably not necessary - they-would have had to
read it for the information - but the lively presentation is a bonus. By the way, it should
go without saying at this point that all our readers should read this book.

| first heard of this book (that it was being written) back about 1995 from Ron Kline at
Cornell. and subsequently met with and talked with the authors a couple of times. In the
years that followed, | sort of wondered if it was actually going to come out. When it did, it
was clear that during the years they were working on it, they had been working hard. It
seems that they spared no effort to get to the right people to interview and get to original
sources. They could have cut corners - but they didn't. :

This book is about Bob Moog. It is his story they are telling, as the subtitle suggests.
But it does not ignore the other pioneers such as Don Buchla and Alan Peariman. We
meet these people and many more, much as Bob, initially quite isolated, likely also met
them as time went on. And the portrayals are honest and usually charming - no need

for a hagiography when the characters were so interesting. .

( - continued on page 28 )
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ACTIVE COMPENSATION OF
SALLEN-KEY LOW-PASS FILTERS

-by Bernie Hutchins

1. BACKGROUND

Active filter designs are often trivial to do on paper.(where we assume idealized
elements). Realization with real components and solder may or may not be more
difficult. While the use of real elements can complicate design, many "ideal designs”
will be perfectly satisfactory in practice, with no modifications to the "cookbook" paper
des:gn We are likely to have this sort of success if our filters are of low order and
designed for low frequency operation. However if the order is high (perhaps greater

“than eight or so) and/or if any of the poles are high-Q (perhaps greater than 20 or s0)
and/or if the frequency is high (perhaps greater than about 10% of the gain-bandwidth
product of the op-amp used), we may have to be more careful. Care in this sense may
relate first to the need for passive components with greater precision (lower tolerances):
so-called "passive sensitivity." Or (very likely) it may also relate to the choice of active .
elements (op-amps) with higher gain-bandwidth product (GBP): so-called "active _
sensitivity." Because it is usually impractical to just get better and better op-amps, the
preferred approach is to employ certam compensatlon techniques to.tailor the
performance - : .

In large part [1,2], we have confi ned our efforts in dealing with aotive sensmwty to
two paths. In the first path, we recalculate the transfer functions using ising real rather than
ideal op-amp models. In the ideal op-amp, we assume that the differential input voltage
is zero. In the real op-amp, the output voltage of the op-amp is related to the dlfferent|al

input Voltage (Ve -V)as:
 Vou=(GE)(Vs - V) | M

where G is the GBP of the op-amp in radians/sec, while the "s" in the denommator
indicates that the usual single-pole roll-off (integrator) model for the op-amp's mternal '

compensation is being used.

This adds a pole to the network for each op-amp it contains. For example, there are
many second-order networks that use a single op-amp, and when we use a real op-~
amp, we now find (typically) two poles at the near-nominal positions and a third pole
which is real and often relatively far away out on the negative real axis. Our ¢ concern is
than usually with the two near-nominal poles, which we find have moved to some
- degree, and we wish to know if the actual performance will be nonetheless satlsfactory
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In cases where it is not satisfactory, we can often use an "overdesign” technique. This
is a classic ploy of determining the direction and amount by which the performance
degrades. We then redesign the filter in the opposite direction by a corresponding
amount. The hope is that it may then "fall back" to a position that is just about right.
With iteration, this can be very effective.

The second path is one of constructing our filters with improved building blocks [2]

. Most commonly we have used this approach when dealfng with filters based on
integrators and summers (the "state-variable filter" and certain signal-flow-graph
realizations). In an initial attempt to realize these structures, we quite naturally choose

- integrator and summer circuits that are perfect if we consider the op-amps to be ideal.
We know that when we use real op-amps, we pick up additional poles, and because the
circuits involve several or many op-amps, serious performance degradation can result
(again, at high orders, frequencies, and Q's). Our attempt to deal with these real op-
amp problems is to use sub-circuits that are "improved" integrators and summers. This
we have approached in terms of "passive compensation” (of active sensitivity), adding
small "trimming” resistors or capacitors; or by "active compensatlon" (of active
sensitivity): adding even more op-amps - but in a way such that undesirable effects
cancel at least in part. Thus we have used both passive and active methods of dealing
with the active sensitivity problem, which we have apphed to the individual bunldmg

blocks of the circuits.

This second path has been employed to construct successful state-variable filters _
[1.2]; not infrequently using more trial-and-error than theory. We have also made efforts
to look at the state-variable filter by real op-amp analysis [3,4], with the idea that we
could then always apply an overdesign method (at least for fixed-frequency cases).
The analysis further shows [4] that when active compensation of the integrators and
summers is used, the positions of the desired poles moved much less (relative to no
compensation) and the residual poles and zeros took on a particularly advantageous
arrangement - said arrangement apparently being inherent in the general method [5,6].

2. SALLEN-KEY WITH A REAL OP-AIV_IP

One thing which we have not yet looked at is the idea of using act:ve compensation -
of single op-amp filters (as stated, we have relied on overdesign). in fact, we can try
this most easily with the Sallen- Key arrangement, since this circuit is well studied and
uses a finite gain voltage amplifier, and we know how this amplifier behaves with a real

op-amp [7], and how to actively compensate it [8].

2a. Ideal Sallen-Key

Fig.‘ 1a shows the usual n‘etwt)rk for a Sallen-Key low-pass filter. Here the triangle |
indicated by K is understood to be an ideal voltage amplifier with a gain of K. Fig.‘_1b '
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Fig. 1a Sallen-Key ﬂ—c
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Fig. 1b Non-Inverting Amp. Fig. 1c _Simp!ified Form

shows the way the amplifier is usually realized with an op-amp: If we assume an ideal
op-amp, we find an ideal voltage amplifier with gain 1+R./R'. Note that only the ratio
of resistor values matters, so it is convenient to represent them as in Fig. 1c. Network
analysis easily leads us to the transfer function of the overall fiiter:

Ta(s) = K{R?C?) /[ s2 + (3-K)s/RC + 1/R*C?] 2

and this is likely very familiar [1]. At this point we note that we are thinking of K as a
constant (independent of frequency). But it is perfectly possible to have K(s} and simply
plug the expression for K(s) into equation (2) in place of K. Shortly, we will do just that.
We will use K(s) for the real op-amp case and for the active compensated case. In
reality, this plug-in simplifies the algebra only some - we do not have to redo the
network analysis for the rest of the network, but we still have some algebra to chug on
after the substitution. For notational purposes, we have indicated equation (2) as being
T2(s) where the 2 corresponds to two poles (the two nominal poles).
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2b. Non-ldeal Op-Amp

In the case of a real op-amp, we need to bring in equation (1). Using Fig. 1c we note
that the (+} input to the op-amp, V., is just Vi, The (-) input to the op-amp, V., is
determmed by the passive voltage divider:

V. = Vou [ R'/ (KR-R'4+R')] = Vou/K - 3)

We note that when we have an ideal op- amp 'such that V. = V_we arrive at Vout/'\/.n Kas
we have mentioned. However plugging into equation (1) we arrive at:

Ki(8) = VoulVin = KG / [Ks + G ] | '- @

which indicates that the voltage ampln‘" ler is not just a gain K but rather a frequency
dependent gain Kq(s) which is a first-order low-pass. (Of course Ki(s) —-Kass — Qor
as G — «.) The pole of Ki(s) is at -G/K; hence the low-pass cutoff is at G/K. Since
G/2m is something like 1 MHz to 5 MHz, this low-pass amplifier would have a cutoff well :
above the audio range. Butwhatdoes it do to the Sal!en Key filter? :

2c. Non-ldeal Op-Amp in Sallen-Key

Here we borrow equation (2) and plug in equation (4):
Ta(s) = K (s)R?C? / [+ (3 KT(s))s/RC + 1/ch2] |

= (G/R®C? /[ s* + (GIK + 3/RC)s? + (3G/KRC - G/IRC + 1/R202)s + GIKchz] ) |

The result is of course third-order. There are three _po!e‘s.‘ This is not a new result and - B

we have used this to show the active sensitivity of the real Sallen-Key [9]. None the
less, Ta(s) will be a fundamental comparison case for the compensation method that

follows

3. APPLYING ACTIVE COMPENSATION TO SALLEN-KEY

3a. Fixing the Amplifier

How do we fix the amplifier? Well, this we have looked at [8], and the method is fo put
a second op-amp in the feedback loop of the first as in Flg 2a. Th:s is a tricky-looking
circuit, but only because we are being efficient. All that we really have is an. op-amp
stage (upper op-amp) with an attenuator 1/K followed by a gain of K (net: unity) in the
feedback loop of the lower op-amp. This was the "magic trick" we have seen [2] - -
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Fig. 2a Active Compensated Eig. 2b Equivalent But Less
Non-Inverting Amp. | Efficient Form of 2a

make the two op-amps have the same "noise gain" (inverse of feedback ratio from the
op-amp output to the inverting input). This is more clearly seen.in Fig. 2b. Fig. 2ais
just sharing the same voltage-divider, and is preferred because it uses fwo fewer
components, and there is no issue of having to match the divider ratios.

Analysis of Fig. 2a for the real op-amp case IS justa matter of app[ylng equation (1)
to both op-amps. The result is: .

Ka(s) = VoulVin = (G/K)(G+sK)l[s + Gs/K + GHK?]. - (6)

This hardly looks ;!ike an imp_rovement.‘ K1(s) was frequency dependént, but o'nly first- -
order. Ky(s) is second order. In fact, Ky(s) has a zero at s = -G/K and poles at:

P12=-GI2K H(GI2KN3 | - S @
Again, this po!elzero array (Fig. 3) is the "magic result” we have séen ‘where the phase

due to the zero exactly cancels the phase due to the two poles immediately around zero
frequency (with significant cancellation for a range of useful frequenc:es as we go above

Zero).

3b. The Active Compensated Amplifier Inside the Sallen Key

Finally we get to something new (Fig. 4b).f Just as we plugged K;(s) into equation
(2) we can plug equation (6) for Ky(s) into equation (2). We arrive at:

(GIK)(G+Ks)/R?*C? _ |

Tals) = - (8

st+ (G/K+3lRC)s + (G¥/K2 + 3G/KRC - G/RC + 1/R2c:2) s |
+(3GYK?RC - GleRC + G/KR2C?)s + GYK?R?*C?*
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This, as expected, has four poles, and one zero. Our interest in solving for the poles
ahd zeros is to see where the exira two poles end up. It will turn out that we again get
the "magic result." This will lead to the understanding of why when one op—amp '
messes thing up, a second op—amp may lead to significant correction. '

4. COMPENSATION - FREQUENCY RESPONSE VIEWPOINT

At this point, it is useful to calculate a few examples to see how a single op-amp can
degrade a filter's response away from nominal and how the addition of a second
compensating op-amp can restore a useful response. The first example we will
consider is an 8"™-order Butterworth lowpass, assuming a normalized GBP of G,=50.

[ For example, if we had 4.5 MHz GBP op-amp, we would be designing for a low-pass
cutoff of 90 kHz.] Note that this 8th order network is composed of four 2™-order sect:ons

in senes

12+

0.8

- - - - 0.7071

06

Fig. 52 Nominal response of an g.order
04F - | - Butterworth low-pass with frequency :
normalized to the pole radius. (half-power
point). The response is maximally flat.

02}
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which has a normalized GBP of G,=50 : :
- we see a peaking in the passband and : : -
the cutoff frequency is shifted down f :
slightly. This network would have j :
= four op-amps in total. .
: i . . . : i
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X K | : i
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Fig. 5¢ By using active compensation,
two op-amps with G,=50 we find the ! j
- response returns to near-nominal. This : : ]
network would have eight op-amps E 5
in total. |
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Fig. 5a shows the nominal [ideal op-amp using Ta(s)] response normalized to a cutoff
frequency of 1. With real op-amps [four 2nd-order sections like Fig. 4a, described by -
Ta(s)], the response of Fig. 5b is obtained. This response shows a peaking in the
frequency response, reaching about 1.15 as the cutoff is approached, instead of the flat
Butterworth response. Now, using active compensation [four 2nd-order sections like
Fig. 4b, described by T4(s)], the response of Fig. 5¢ is obtained, which seems
indistinguishable from the nominal response (Fig. 5a). Actually it has a very slight rise -
to 1.0043 and a slightly higher cutoff frequency.

For a second example we can look at an 8th-order Chebyshev low-pass. Fig Ba
shows the nominal [ideal op-amp, Ta(s)] response This filter has a designed-in equi-
ripple of 1.0812 as shown. Assuming a value of G,=50 as in the Butterworth example,
we get Fig. 6b for the real op-amp case [T3(s)] and Fig. 6c for the compensated op-amp:
[T4(s)]. The real op-amp case of Fig. 6b shows a rise to 1.54, while the compensated
case of Fig. 6¢c shows a rise of 1.23. So while G,=50 was enough for the 8th-order
Butterworth, it does not work anywhere near as well for the Chebyshev (which has
higher Q poles) Increasing Gy, to 100 (getting an op-amp that is twice as fast, or
designing for half the cutoff frequency) works better. Fig. 6d shows the Ta(s) case for
Gn=100 while Fig. 6e shows the T4(s) case, with peakings of 1.33 and 1.11 respectively

Fig. 6a A nominal response for an
8-th order Chebyshev showing an
equi-ripple bassband.

et w0
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Fig. 8¢ Here using active compensation
Gi=50we see some degree of improvement
0.4 in that peaking is reduced and the cutoff -
is closer to 1. Sdill, this is nothing to
brag about.
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Fig. 6d By using op-amps with G;=100 1% ;
instead of G,=50we see some i\ :
B improvement relative to Fig. 6b. This [ ;‘ y
is the uncompensated case. This is 1 :
probably not something we would use. :
i N é
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Fig 6e Final!-y, with active compensation
and G,=100we get a response that is : 5
- probably acceptable. This is the eight A : 7
op-amp version. Compare with Fig. 6¢ ; :
and Fig. 6d. : f
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(relative to the 1.0812 that is designed in). So this works much better - about a 3%
error While not shown, if we were to go to G,=250, the rises are to 1.1852
(uncompensated) and to 1.0862 (compensated), again relative to 1.0812. This error is
more like 1/2%. So we see that a very significant improvement can be achieved.

Yet the reader must be cautioned that calculations need to be made to be sure that
the method is helpful. For some cases, while helpful, the improvement is not really
enough (Fig. 6b and Fig. 6¢). In some cases, for example if G, is only around 5 to 20,
there may be no real improvement - the responses are different, but both are too bad to

use.

5. COMPENSATION - THE POLE/ZERO VIEWPOINT

In Section 4 we looked at frequency responses as a way of usefully evaluating the
active compensation method. Perhaps a more conventional view is the use of
pole/zero plots: how much do nominal poles move, and what addltlonal poles and zeros

are now hanging around.

Consider.for example the case of a 2nd-order ButtenNorth where the two nominal
poles are:

p2 = {-0.7071 £0.7071j } | | 9
With G,=20 for example, the real op-amp poles [Ts(s)] are now at:
ps ={-0.6252 £ 0.6981j, -14.3616 } (10)

so we see that the nominal poles move considerably and we pick up an additio_nal real
poles (at-14.3616). In the case of active compensation [T4(s)], we find four poles:

ps={-0.7122 £ 0.7128j . -7.0939 + 10.3128;} (11a)

and now a zero appears at:

z=-12.6120 (11b)

In this compensated case, the nominal poles were far less disturbed, and we note that
the two additional poles, along with the new zero, are a good approx:matlon to the

"magic" case (Fig. 7).

A conventional presentation of active sensitivity is that of displaying a single _
quadrant of the near-nominal poles for a range of values of G, [10]. Fig. 8a shows this
view for our 2nd-order Butterworth example) where the nominal pole (of a pair) is
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Fig. 7 Here we see the
four pole one zero result
using T4(s). We have two
near-nominal poles and
an array of two poles and
one zero approximating
the magic resuit.

0.8

06

0.4

021

x=nominal pole
o=compensated pole
#*=uncompensated pole

Fig. 8a A conventional
I plot showing active
sensitivity for various
values of G,
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071f : -
Gn=100
Ed
0.705 -
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x=nominal pole
o=compensated pole

0.695 * =uncompensated pole |

: 069 1 1 i 1 L i 1
072 0715 -0.71 -0.705 0.7 0695 -069 -0685

Fig. 8b A blow-up of Fig. 8a better shows the effectiveness of active cmpensation.
Actually, no this scale, all three results are quite close to nominal (For 2" order).

indicated by the x, the real op-amp pole is indicted by a ' %', and the compensated pofe
by a '0'. We note from Fig. 8a that the real op-amp results (WhICh are inside the radius
of the nominal poles) are entirely comparable with previous offerings [11,12] while the
new compensated poles appear outside the radius of the nominal poles. - From Fig. 8a
we also notice that for G,=2 and G,=5 (not cases that we would be likely to. try) all the
results are poor. For G,=20 and G,=100, we see much better results, and we can see
that active compensation is superior. A more zoomed-in view is provided by Fig. 8b.
Note that G,=20 compensated is superior to G,=100 uncompensated (real op-amp).

Also, G,=100 compensated is very hear nominal.

6. FREQUENCY RESPONSE OF THE "MAGIC" ARRAY

Previously we have praised the "magic" array (Fig. 3) for its near zero phase
response at low frequencies [13]. As previously discussed [13], the magnitude
response is not flat. Actually, it is quite flat for a while, but then peaks considerably,
approaching1.5. - This is seen in Fig. 9a where we have used the case of a zero at -1
and poles at -0.5 V3 j/2. Other choices for the poles, all on the same circle shown,

sometimes occur [14].
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Fig. 9a The magic array has a not-so-magic bump reaching nearly 1.5. Yet we must keep in
mind that the frequency is in very large units here - with 1 corresponding to the position of the
zero (G/K in many of our examples). In Fig. 9b, (below) we see a zoom-in and we see that
the peaking only reaches 1% at a normalized frequency of 0.1,

1 ) t Y 4

1.01F -
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0 0.02 0.04 008 0.08 0.1 G/K
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The important thing to note is that the peaking that approaches 1.5 occurs for a
frequency around 0.8 times the G/K. That is, it is very high up, and unlikely to be a
factor. Perhaps a more realistic view is provided by Fig. 9b which shows that for
normalized frequencies from 0 to 0.1, the peaking only gets to 1% at 0.1.

7. CONCLUSIONS

Most electrical engineers who are involved with signal processing, even those who
concentrate mainly in DSP, know about the Sallen-Key configuration. Further it is’
generally recognized that while Sallen-Key is not robust when pushed to the limits, it is
nonetheless used with good success away from these limits. At times, this leads to
tendency to push the applications too far when some filter specification is increased in

order and/or in frequency.

-What we have shown here is that when a design falls short of what is required, we
can sometimes rescue it with active compensation and still keep our comfortable Sallen-
Key network and its simple design equations That is, we do not have to change any
component values, but just add op-amps and a few more resistors. This is likely to be a
useful and pragmatic solution for some design upgrades, and may even be "piggy-
backed" in when quantities of a particular piece of equipment are small,

itis a good idea to mentioning that these actively compensated circuits may look
strange to some engineers who are not familiar with the actual purpose and the
implementation. That is, not unlikely many engineers (assuming ideal op-amp notions),
will come to the conclusion that your "improvement" does nothing but waste
components. We mention this in case you need to defend your design, and also,
having seen these ideas, you are unlikely fo forget that there was a good reason for
adding the components should you happen across them in someone else's circuit.
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THE CURIOUS AMBIGUOUS LENGTH
OF A TRIANGULAR WINDOW

-by Bernie Hutchins

Triangles!

Recently in supervising some student projects for a poster presentation in a DSP course, | had
temporary custody of some blank poster boards in my office while students went to classes
nearby. To my amusement, these boards had diagrams of suggested projects on the back.

One of them was for a dinosaur project. 1 wondered if some student might become dissatisfied
with his or her DSP project and flip the board over and go with the example provided! A second
one had a math project on triangles as the example layout. Now, triangles are important in. DSP
(not just more important than dinosaurs) in that they are convolutions of rectangltes, the impulse
response of linear interpolation filters, and a simple class of data windows. This and a few other
things brought to mind a neglected project of my own concerning triangular windows, and the
results of finishing this are presented below.

THE PROBLEM

Suppose we havé a discrete-time rectangular window of, say, length 7. For example,
we might well imagine it fo be: :

1 n=-3,-2,-1,0,1,2,3
rny= (1)
0 all othern ' '

How long is this window? Well - length 7! Simpie enough. Now, what if we had a
triangular window of length 7. We might think of: :

{ 1/4 n=-3
2/4 n=-2
34 n=-1 _

t2(n)= < 4/4 n=0 2)

3/4 n=1 '
214 n=
14 n=

v 0 allothern
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Again this seems simple enough. But there is an argument waiting here. 1sn't this really
a length 9 triangular window? After all, the actual triangle, from which our samples are
derived, goes to and reaches exactly 0 at n=-4 and n=+4 (Fig. 1).  Perhaps we should
consider these two ends as part of the length. Of course, we could continue this game
and claim it is a length 99 window, etc., simply be adding more zeros, although this
becomes silly. But we might logically argue that the actual window simply does not exist
outside of the range of the generating triangle.  if so the only legitimate values for the
length about which we care to debate seem to be 7 or 9. It may seem a philosophical

point at best.

Here we will argue that the window is length 8. Let's see why this might be so. Fig.
2 shows how the exact same triangle used in Flg 1 can be sampled to give a length 8
window. Here we sample as:

' 18 n=-7/2
3/8 n=-5/2
5/8 n=-3/2
7/8 n=-1/2
ts(n) = < 718 n=1/2 (3)
' 5/8 n=3/2
3/8 n=5/2
1/8 n=7/2
. 0 for all other samples

Actually we have sampled at half integers, but clearly we have eight non-zero values
instead of just seven. Clearly, except for samples exactly at the integers, we always get
eight non-zero samples (Fig. 3). [ In ts(n) above, as in t7(n), we have symmetric
samples. All other sampling choices are non-symmetric (although length 8).] Sowe

- might like to say that tz(n) is neither length 7 nor length 9, but really length 8 like its
infinite, other cousins. While this is "cute,” there is a bigger issue.

If in the curious case t7(n) is really length 8, it must have seven zeros. Of course,
ts(n) already has seven zeros. We can easily find the zeros for any particular sampling

by using any available root finder program on a case-by-case basis. For example, the
six zeros of t;(n) as a length 7 window are at:

z=j, § -1,-1 4 A | (4)
The seven zeros of tg(n), which is length 8, are at:

z=j, j, -1, 1, -1, - | | ®
Thus tg(n) has an additional zero (three total instead of just two) at z=-1 (Fig. 4).
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There are a lot of questions here. Where is the seventh zero of {;(n)? Must it not be at

infinity or at zero? What about all the other length 8 samplings of the triangle? Where is

their extra zero? And - does any of this make any difference? Since all these are just

sampling of the same triangle (Fig. 3), aren't the frequency responses (Fourier '

~ transforms of the windows) the same? Sampling theory suggests that the exact starting -
times for the samples aren't suppose to matter. If the starting time matters - why? A lot

of questions.

Let's look at the fast questions first. Although it may go without saying, the exira
zero at z=-1 that is present in ts(n) makes a difference. (Indeed it is the same extra zero
that always appears with even length, even symmetry.). This gives us a counterexample.
Thus the starting time matters and sampling theory does not apply. Fig. 5 shows the
responses involved, and in fact ts(n) seems to be a significantly better triangular window

in that its sidelobe is much smaller.
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Fig. 5 The DTFT's of the two different samplings of the triangle are dn‘ferent
Note that Ts(f) has a s:gnn‘" icantly smaller sidelobe.

A BANDLIMITING FAILURE

Now, the reason why sampling theory does not apply to this problem is that the signal
being sampled, the triangle, is not bandlimited. We knew this - we just forgotl That is,
while tz(n) and tg(n) are samples of the exact same friangle, they are not samples of the
same bandlimited signal. To illustrate, Fig. 6 shows the bandlimited function
(bandlimited to a frequency of 1/2, the sampling rate being 1) that actually goes through
the seven non-zero points of tz(n), and indeed, through zeros for all other sample points.
This we find by convolving the samples with interpolating sinc functions [1]. Fig. 7 shows
this same function with more information added.
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In Fig. 7, the solid curve is the bandlimited function, while the dotted curve is the
triangle. Note that the seven window samples of t7(n) (circles on top of a stem) are the
intersections of both these curves. Indeed we thought of the circles as being the result
of sampling the friangle, and we used these samples to find the bandlimited curve that
went through the same points. Now, in taking the tz(n) samples, we shifted the sampling
times by 1/2 (the *in the triangle in Fig. 7). We note that these are different from the
samples at the same points in time that correspond to the bandlimited curve (the points

marked with a +).

Fig. 8 is an extension of our presentation and is similar to Fig. 7 although it is a little
more cluitered. Here we begin with the is(n) window samples (circles atop stems) and
find the bandlimited curve that goes through these. Note well that this is not the same
bandlimited curve that went through the t;(n) points. [in fact, it is significantly smoother
and is barely different from the triangle. This can be understood by considering that the
difference between the triangle and the bandlimited function in Fig. 7 is principally the
third harmonic. Fig. 5 shows significantly less third harmonic energy (vicinity of f=3/8
relative to a f=1/8 fundamental - eight samples per cycle of the triangle) for the ts(n)
window relative to the t;{n) window. These same conclusions about harmonic content
also follow easily by taking the length-8 FFT's of t,(n), padded with one zero, and of ts(n) ]
Continuing with the procedure we now take samples of the bandlimited curve (marked
with a +) and we see that these are not the same as the t7(n) window (marked with ax;
as is most evident near the middle and at the ends.

! 1 1 1 I 3 T

- triangle i
#"_ bandlimited

Fig. 8 The bandiimited signal
going through eight samples
of the triangle is not itself a

ogl triangle either

/- ts(n) window

0.6

tz(n) window

v

04

712 512 -3/2 -1/2 1/2 3/2 5/2 T2
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FINDING THE EXTRA ZERO

Finding the roots of polynomials of order greater than two is trivial when done
numerically, and usually impossible without numerical help. Thus we find it trivial to work
with many different samplings of the triangle as in Fig. 3, and compute the roots (the
zeros). We find that there are seven roots, six of which are atj, j, -1, -1, 4, and -j while
the seventh is somewhere else.  To understand this better, and to in this case arrive at a
closed-form formula for the seventh zero, write down the polynomial from the zeros.

Assume that the seventh root is at z=p.

AT@)=A(z-j)(z+])Nz-])z+]z+1)(z+1)(z-p)
= AZ' + A(2-p)z® + A(3-2p)Z° + A(4-3p)z* + A(3-4p)z° + A(2-3p)Z* + A(1-2p)z - Ap (6)

Here we have multiplied out all seven factors of the form (z - z,) where z, are the zeros,
but we have also added an overall multiplier A. This is necessary as the roots of a
polynomial identify the polynomial only up to an arbitrary multiplicative factor.

We note that we have eight coefficients that are functions of A and p, and that these
are weights of the samples of the window. We know these samples for any choice of
sample timing. For example, if we have the tg(n) window, we have at the ends (the z’

and the z° terms);
A=1/8  (7a)
Ap = 1/8 (7b)

‘which leads to A=1/8 and p=-1. There are other equations of course that lead to the
same answer. For example, for the tg(n) window, the z° and z' terms give:

A(2-p) = 3/8 (8a)

A(1-2p)=3/8 - (8b)
which again gives us p=-1 and A=1/8. The redundancy in the equations is a
consequence of our choice of the triangle in the time domain, or the zero pattern in the

frequency domain. The problem is highly structured. Note that if we look at t7(n), either the
first or the last coefficient must be zero. The first, A, cannot be zero or the polynomial

disappears. Hence p must be zero.

For a general sampling of the triangle we have a sample B for one end and a
corresponding sample (1/4 - B) for the other (Fig. 3). Again, using the ends:

EN#202 (26)




Extra Zero (p)

(9a)

A=B

-Ap=(1/4 - B) - (9b)
These equations give the zero p as:

p=1-1/4B (10)

which is the general answer (Fig. 9).

1

 ty(n) (zero at
negative infinity)

i

ty(n) delayed by one sample
(zero at zero)

Jr——'“ Undeﬁned "“‘“‘9

i i 1 ! 1 ! 1 I

0.05

Fig. 9

01 0.15 02 025 03 035 c4 045 05
B

For values of B of 0, 1/8, and 1/4 (se also Fig. 3), we find cdrr.esponding
zeros at negative infinity, at -1, and at zero, which in turn corresponds to
tz(n), tg(n) (Fig. 4), and ty(n) delayed-by 1. We find that the useful range

- of Fig. 9, a plot of equation (10), is for B = 0 to B=1/4. Beyond this, the

results repeat periodically.

REEFERENCE [1] B. Hutchins "The Importance of the Notion of Bandlimiting to

Sample Reconstruction, Electronotes, Vol. 18, No. 184, pp 3-20
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BOOK REVIEW - ANALOG DAYS (Continued from page 2)

For me, and for the long time readers of this newsletter, the book divides historically
into three parts: prior to the mid-60's, the late 60's until the mid-80's, and beyond the
mid-80's. The middle period is the one we know best: the (seemingly) halcyon "golden
era" where new ideas and products seemed to infiltrate an eager marketplace. But as
much fun as this era was, it was not an easy time, as this book relates, although it is
doubtful many of the participants would have taken the option to opt-out. It was
worthwhile doing, and even though mistakes were made, it was a proud era.

The earliest time period tells us mainly what Bob Moog was doing, and emphasizes
that there certainly was no "master plan" as we often suppose, looking back at what we
view as a reasonable success. In fact, it was pretty disorganized at times, and as is
often the case, things happen by accident. But it does answer some interesting
questions of the "Who thought of doing...?" type. Someone would express the need for
something (usually in imperfect terms), someone else would run across the street for a
doorbell switch, and presently major conceptual pieces of the puzzle came into focus,
leaving everyone to wonder if it should not have been obvious all along.

The last era (post-golden-era) is perhaps the least known and is in some ways a bit
distressing. This is not just a story of the "best laid plans ...." going wrong (indeed as we
note, the plans were often non-existent), but also of a grand vision caving in to the reality
of the marketplace and of less admirable ideas about the place of the synthesizer
relative to a continuing musical art: big companies taking over and producing lowest-
common-denominator (almost toy) machines; the synthesizer producing commercial
jingles but not concert music; a preference on the part of the music-consuming public for
prosaic results that did not challenge the synthesizer's capabilities.

The book gets into few technical details. There are a few technical misconceptions
that do not detract much from the story being told.

Trevor and Frank have written a great book, from which we can learn a lot, and it
gives us much to be proud of. And its fun foo. Most highly recommended.

-Bernie Hutchins
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