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Here we have issue No. 200. Enough said about that. The main contribution here is
that we get around to the "Sampling Element” of our "Basic Elements of DSP" series, which
we have managed to fit into a single newsletter. A good number of separate sampling examples
were separated out and should eventually appear as part of a future newsletter, or as an application
notes.

Further Adventures With Analog Synthesizer Newsgroups

Some years back, as reported in an editorial "it's Better than TV" (EN#188, Feb. 1997)
we had a run-in with some people on the internet who were posting schematics from our
newsletter without permission and often without attribution. Issues raised went from copyright
infringement to plagiarism to simple bad manners. All and all, the exchange was quite silly.
Little is resolved in these newsgroup exchanges because any thoughtful contribution seems
to spawn a half dozen weaker minded scrawls. (What was that cartoon? - On the Internet,
no one can tell that you're a dog.) This was part of the criticism of the editorial, which had a
serious side as well as a good-humored side.
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Most of this squabble was eventually posted (even private emails!) on the "Analogue
Heaven" or the "Synth-DIY" sites. | know that a number of the major players disappeared
from the scene, and | lost track of the Synth-DIY site. | just couldn't find any way of seeing
the messages without subscribing, and | have more than enough email without inviting more
in. In early November of 2001 | stumbled on the excellent archives for Synth-DIY (which does
not seem to be working for the last couple of weeks as of this writing in early Dec. 2001): at
http://www.buchi.de/SDIY/. | spent an entertaining hour or so going over a few years of
messages relating to Electonotes. The incentive to surf was, as is usual for me, a pile of
ungraded exams that needed ignoring. (Hey Look! The lawn needs mowing!) Here are a few
of the things | would have been tempted (only tempted) to respond to if | had seen them when
they first appeared.

(1) First, there was some discussion of having Electronotes available on a CD. Either we or
someone else would make it available on some terms and conditions that might or might not be
agreeable or even practical. There is not the slightest doubt that this would be the cheapest
and most convenient form to mail it about the US and the world. But this is the only thing about
the idea that is clear in even just its practicality.

Most people of my acquaintance (and age and eyesight!) do not like to, or cannot read
documents on a computer screen, nor does everyone have a computer with a CD ROM drive.
For myself, | can write on a screen but | can't proofread (or necessarily read something
someone else wrote) on a screen. | need a hard copy in good light, and as importantly, | need
to be able to scribble on the hard copy if | am to make actual use of it. | absolutely hate to
scroll through a long document on a screen looking for something. Generally a book can be
opened to a relevant section in seconds. Browsing through a book involves moving the eyes
naturally left and right. Browsing though a document on a screen takes forever and gives one
a headache. The "paper" moves and the eyes (and or head) move up and down trying to
follow. If the scroll speed is fast enough to not take all day, it is so fast that an extra
millisecond hesitation on the mouse key leads one to wonder if a whole paragraph (or even
several pages) have disappeared unnoticed into the floor or ceiling!

In consequence, | think a CD would only be of use in certain cases. It would be useful to
people who do have the talents and perceptual facilities to view documents on a screen.
Presumably some such people exist. It would also be useful to someone who was trying to
save shipping charges who has an economical means of converting the whole thing to paper
on the receiving end. (Because this would be about 8 hours of laser printing for one sided
copies, this seems an unlikely choice.) The only remaining scenario would seem to be people
who would only want to print out a few pages or who just wanted the collection for possible
reference. That is, people who do not want to read it in the sense of actual use or study.

Another interesting question is what would be on the disk. Presumably - everything. Buta
few months after the disk (or run of disks) was made there would be new material to add. How
does this join its predecessors? Do you order a new disk. Does it come over the internet?

Would the CD be secure, or would it soon be pirated to the point where few people would
care to pay for it rather than just grab a free copy that is going by? Sounds like the MP3
scenario  What would happen to my attempts to sell paper copies even if rampant pirating did
not occur? | don't know [Is this CD a legal or an illegal copy? Right now, any CD of our
material would be illegal. That's simple ] '

- EN#200 (2)




Now, along with the suggestions that a CD be made available, some people commented on
what they saw as the obvious advantage to me. First, they said | would not have to stand in
front of the copy machine whenever a new order came in. Wow! Do the math! [ estimate that
we have nearly 6000 pages in the "Everything"” package. If | could slap an original on the glass
every 10 seconds, it would take 17 hours to make a full set. And we have not done our own
copying for about 15 years, so we would have to pay someone to do the copying. And the
originals are not in great order or always in good repair. There are four file drawers of originals.
Even an agnostic would say a prayer while approaching this cabinet (please, please be there!)

Of course we do not make copies one at a time. Most of the materials we have on the
shelves or boxed away. This overprinting of older materials is, incidentally, why we can still offer
the everything package for less than 5 cents/page. (These stocks, along with the time we took
to produce the intellectual material, constitute our investment in Electonotes. And Electronotes
still owes us! We have to get more back.) Making up a full order actually takes only 20 to 40
minutes. This does not suggest that we do not reprint. Just about every full order turns up an
item or two which we have run out of. This leads to the problems of finding (and often repairing)
usable originals. But - | only have to locate and repair selected items - not the whole 6000
pages - at any one time. Then there is the new investment in printing a couple of years worth.
Yes - a CD would be easier - if it did not kill the paper business, or people did not want paper
copies. Posters suggest that the CD business would be lucrative. What do you think?

Here is how we can think this through. Let me make the following offer to any responsible
person: | will enter into a contract with you, and offer you the exclusive rights to produce and
sell CD's containing the available Electronotes materials. You can sell as many as you want at
whatever price you want. 1 will provide you with a full set of copies for your originals.

You will agree to the following: You will pay me $X on the signing of the contact and $X on the
anniversary of the signing for a minimum of five years. You agree that | can continue to sell
paper copies, and that Electronotes and | hold all copyrights. You agree that all your advertising
and promotion will make it clear that with regard to the CD's, the customer is dealing exclusively
with you, not with Electronotes, and Electronotes has no obligation to them. In short, for a
yearly fee, you get the "lucrative”" CD business! You cover your expenses (scanning, CD
production, postage, bad checks, etc.) and make your yearly license payment to me, and you
keep all the rest as profit (or perhaps you are doing this for free - it's up to you).

So---Whatis X? Clearly, to me X is the amount of profit | would expect to loose for not
making paper sales. Fair enough? | have a reasonable way of estimating this. For you, Xis
an amount you expect to be able to pay me and still have a successful business. Thisis a
matter of estimating your sales, your expenses, and setting your ptices. | do not have much of
an idea about this - hopefully you do. Do you suppose that X should be zero? Well, keep in
mind that 1 do not watch TV, but | presume there are still people on late at night telling you you
can make a fortune with no money invested. If you believe them, go with them - please not with
me. (Some investment is necessary - for example, as mentioned, | have to pay up front for the
paper copies which sit on my shelves.) 5Xis your "at risk" investment, your incentive, which
will also assure that you will take measures to prevent pirating of the CD, because you still have
to pay me for five years even if something goes wrong. It is just a matter of trusting the ciber

world.

EN#200 (3)



The world is full of what seem to be good ideas. [Most universities have a way for students-
to suggest ways of improving lectures. The single most intelligent suggestion | have seen
along these lines was that we should have a complementary donut and coffee tray at the door
(a 9AM class!). Alas - no it did not happen.] Let's have a CD sounds like another good idea.
But in suggesting that someone else do it, | am asking other people to think it all the way
through. And clearly considered, | am asking them to take the risk (I have not suggested
royalties), and indeed to some extent, to insure me against their getting tired, or not protecting

the product.

But this is a serious offer. If you are interested, please submit a business plan and your
notion of what X might be. If you are inclined to pass this offer along to others, do not
paraphrase or abbreviate it, as there are at least three important subtle clues in the text, put
there for the serious reader.

(2) More distressing, there seem to be a few comments (unfavorable) about the way
Electronotes does business, and this is extremely annoying to still have this going on. This will
stop, or we will take steps to put a stop to it. One basic question is: is there anyone who has
sent us money who has not received his or her material.  Without question, the answer to this
is YES! At least once a year, we pack up a newly arrived order, and send it promptly, correctly
addressed, and it comes back! You figure it out. It happens to all mail order businesses. Do
people write the wrong address on the form? Do they move suddenly? There are almost
certainly other packages that do not get delivered correctly which do not come back to us, and
we do make shipping errors (see "Troubleshooting" below). The USPS is indeed excellent, but
not perfect. We had a couple of problems recently. A former collaborator and dear friend

- continues on page 55

INTRODUCTION TO THE SAMPLING ELEMENT

Probably every field of scientific or engineering study has one fundamental principle which
can be pointed out as being essential for a useful understanding of all its subdivisions.
Cosmology has general relativity, biology has evolution, geology has plate tectonics, and so on
andon. DSP has Sampling. The "Basic Element of DSP" in this issue is the Sampling
Element. Logically it might have come first, but for a number of reasons (e.g., the desired
continuity with the analog filtering material) we did the Digital Filtering Element first, in three
instaliments.

The material here, presented in a single installment, was first written about two years ago,
and has undergone some revision. Since that time, a number of additional problems and/or
examples have been developed which might have been included - but it is long enough as it is.
These additional materials will likely appear in this newsletter at a later date.

As with the digital filtering material, it was our intention to briefly revisit the conventional
introductory material, and then to take the subject further into the ominous "intermediate” level.
We anticipate that readers have some basic ideas about sampling, and we want to "look into
the corners" a bit more '
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Basic Elements of Digital Signal Processing

Sampling Element

-by Bernie Hutchins

1. INTRODUCTION TO SAMPLING

The sampling of a signal seems to be a relatively simple idea. We often sample in real life.
For example, we may check the thermometer periodically, every hour say, to be aware of the
temperature outside. If it is 20 degrees at 8:00 and 30 degrees at 9:00, we might guess that it
was about 25 degrees at 8:30 (an assumption on the smoothness and slowness of transitions).
In practical terms, these discrete samples and additional information we infer from them are
often sufficient for our purposes. 'We would think it silly to sit by the window staring at the
thermometer continuously. Similarly, we are generally sufficiently aware of the time of day
through irregular glances at the clock. That is, sampling may still works even when the
samples are irregularly spaced. (In this second example, how would you even manage to look
at the clock at regular intervals? Watch another clock?)

Against this everyday background experience, the actual mathematics of sampling may be
cumbersome, We have absolutely no difficulty looking at a mercury thermometer at 9:00 and
determining that the temperature is 30 degrees. This observation is a conversion from a
continuous "signal" (temperature as a function of continuous time) to a discrete sample - a
snapshot if you like. (Incidentally, likely this observation has involved quantization - we have
likely rounded to 30 degrees - but this fact is not essential to sampling itself )

What may make the mathematics cumbersome is the association of sampling with the
corresponding Fourier transform ideas. We generally have some notion of the "spectrum” of a
signal in terms of its Continuous Time Fourier Transform (CTFT) and we would like to know
what the spectrum looks like after the signal is sampled  In the simplest terms, what happens is
that the original spectrum of the continuous-time signat is replicated about each integer multiple
of the sampling frequency. Thus our procedure when we recognize that we have a sampling
problem is:

1) Draw a straight line and mark one point as zero frequency.
2) Mark off some integer multiples of the sampling frequency. For example, fs, O,

fs, and 2fg will usually suffice.
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3) Identify the spectrum of the original continuous-time signal, and sketch it
centered about zero.

4) Replicate this sketch about all muitiples of the sampling frequency. Worry about
getting the frequency scale correct, but don’t worry about the amplitudes until
and if it becomes absolutely necessary.

5) Study the resulting situation.

For example, Fig. 1a shows a case where we have a triangular shaped spectrum with a
maximum frequency of fmax = 0.4 fs.  Note that the spectral replicas do not overlap each
other anywhere. Fig. 1b on the other hand shows the case where fmax = 0.6 fs, and in this
case, the spectral replicas do overlap in part - the phenomenon known as "aliasing." This
observation alone leads us to the most basic understanding of the "sampling theorem” - that
‘the bandwidth must be limited to less than half the sampling frequency. In such a case, we
expect to be able to recover the signal exactly from its samples by using a low-pass fiiter with

a cutoff at {g/2.
Tt ’ 2t 3ts o

0 0.4fg 0.6f5 fg

Fig. 1a Ordinary sampling - the original spectrum, a triangular shape between -0.4fg and .
0.4{g, is replicated about integer multiples of fg. The original spectrum can be recovered with
a reasonable low-pass filter that is relatively flat from 0 to 0.4fg, and which rolls off to

negligible gain at 0.6fs.

Fig. 1b Here the original spectrum is wider than the case of Fig. 1a, extending up to 0.6 fs.
This original spectrum is still replicated about all integer multiples of fg. Now there is overlap
of replicas (aliasing) between 0.4fg and 0.6fg. If the original spectrum were low-pass fiitered
to 0.51g prior to sampling (a "house" shape rather than a triangle), there would be no aliasing,
but the information between 0.5fg and 0.6fg would of course be lost. The aliasing of Fig. 1b
can not be undone, but the corrupted portion could be removed with a low-pass filter with
cutoff 0.4fs. In this case, the information in the original spectrum between 0.4fg and 0.6fg

would be lost.
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On the other hand, in some instances we can be much more flexible in our
interpretation of the sampling situation. For example, the spectrum may be bandpass-
like, in'which case, even when the frequencies being sampled are greater than fg/2
(e.g., Fig 1¢), we may well not have any overlap of replicas, and we could recover the
signal just fine (in this case, with a bandpass reconstruction filter). Also, for signals with
bandwidths much less than fg/2, we often have considerable latitude in our choice of
reconstruction filter. Finally, it is not even necessary that samples are uniformly spaced
in time (as long as the average sampling rate is high enough). Of course, in the majority
of cases, the signals we sample are low-pass in nature and sampled uniformly in time.

original
0 6f; 0 3£,
“~ £
N L T f 2f 3f
.”$ ~ ~ ~. .- _\s. . s s
“ ~ ~ I — RN s — ~———-— unshifted
. -~ = —— shifted by f,

oo o . shifted by f,

' ~ .
~ - = e R .
H H H H H ----- o

- 0 fs 2fs 3t
spectrum replicated
about all integer multiples of fg

possible bandpass
recovery filter -

-fg 0 fg 2fs 3fs

Fig. 1c Here the original spectrum actually exceeds 0.5fs everywhere, but has a finite
one-sided bandwidth that is less than 0.5fg. In such a case, it is possible to recover the
original spectrum completely. In this particular case, this can be seen to be very simple,
since there is no overlap, and a bandpass filter is simply employed. If there is overlap,
a more complicated procedure is required.

Many practicing engineers may have no conceptual problems with sampling -
recoghizing that specific electrical devices are capable of encoding from continuous
signals to "point samples” (sequences of numbers) in a wholly useful manner. Further,
these same engineers may well achieve success in both sampling, and reconstruction
from samples, based on the simple (visual) procedures suggested above, particularly as
they have developed a good measure of engineering intuition. Others may still desire
to explore the mathematical tools, but even they are advised to first appreciate the
visualizations that are possible.
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2. SAMPLING MATHEMATICS

2a. IMPULSE SAMPLING: SAMPLING WITH DELTA-TRAINS

One popular (although also problematic) procedure for demonstrating the spectral replication
property that results from sampling is to invoke the so-called "Shah Function" which is a periodic
train of Dirac delta functions. (Accordingly, the mathematical baggage that accompanies the Dirac
deita's comes along here.) The point of view is to consider the samples to be the result of
multiplying the continuous time signal by the time-domain delta-train. Then, we ook in the
frequency domain for convolution of the original spectrum with the Fourier transform of a delta-train
This Fourier transform of the time domain delta-train is a delta-train in frequency  If the spacing of
the impulses in time is T, the spacing in frequency is 1/T Hz, or 2a/T radians/second. We thus
easily see convolution as handing us the replication picture with frequency spacing being the
sampling frequency, with scaling constants to be determined. The above may be all some readers
may need to know about this approach.

Some intuitive measure of the understanding of the delta-train relationship can be afforded by
recalling the Fourier series of a pulse train. Recall that the Fourier series coefficients are given by:

P2
o(k) = (1/P) f fty &2 gt (1)

-P12

where P is the period of a periodic function f(t). [Alternatively we simply take the CTFT of one cycle
of f(t) and sample it at frequencies Q = (2nk/P), dividing the results by P.] In either case, for a pulse
of width T, centered about t=0, repeating with period T, we get:

(k) = (3/T) [sin(ake/T) / (nke/T)] (2)

As 1 approaches 0, we see two things happening. The term in [], the sinc function, flattens
out to a constant 1. But at the same time, the (¢/T) factor goes to zero. Fixing this situation
by muttiplying the original pulse height by 1/x, we end up supposing that the spectrum is
c(k)=1/T as 7 approaches 0. In multiplying the original pulse train by 1/t, we maintain an area
of 1 under each pulse even as the width shrinks At the same time, we need to recognize that
the c(k) themselves are to be considered delta-trains because they are samples (in
frequency) of the exact same nature as the ones we have just taken in time.  Thus we find an
amplitude scaling of 1/T, and a corresponding dimensional irregularity, as we go from the
original CTFT spectrum to the sampling replicas. In order to correspond exactly to the
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conventional DTFT, we would need to normalize the frequency axis so that the sampling
frequency is 2x (without any physical dimensions), usually by thinking of T as having a
dimensionless value of 1. '

2b. DIRECTLY RELATING THE CTFT AND THE DTFT

The Continuous Time Fourier Transform (CTFT), Xa(Q), of a signal x,(t) is given by:

w .
X,(Q) = f x.(t) ot [CTFT]  (3a)
- with inverse:
fee]
X = (1/2x) f X @ e dn finverse CTFT]  (3b)
00

while the usual form of the Discrete Time Fourier Transform (DTFT), X(ei®), of a discrete time
sequence x(n) is:

o
Xy = X xmye [Usual DTFT] (4a)
Nn=-co
with inverse:
T
x(n) = (1!21t)-_J X(el®) ein® dey [Usual Inverse DTFT] (4b)
-

Here the frequency « is the "normalized" version of frequency, which is considered to be
dimensionless. This can be related to the physical frequencies Q (radians/second) or f (Hz, or
cyclesfsecond) as:

o = 2n(Q/Q.)= 2r(f/f) = 2afT = QT (5)

where Qg and fs are the corresponding sampling frequencies, and T=1/; is the sampling period.
Since the CTFT is expressed in terms of physical frequency, it will be very useful to also
represent the DTFT and its inverse in terms of Q instead of . That is, we insert QT for ®, and
this results in the equations:
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[+.¢]

X@0T)y= 3 x(n)einQT [Physical DTFT] (62)
n=-co
T
xw = (20 [ X(i2T) QT gy [Physical Inverse DTFT] (€)
-afT

where the limits on the integral from o= -n to = become -n/T to #/T in terms of ®=QT, and the T
outside the integral results from de = Td(, all the rest of the reformation being simple substitution.

At this point we want to look at the case x(n) = x,(t=nT) where T is the sampling interval. This
procedure (which we find in 1975 era DSP textbooks) will lead us to the same result of spectral
replication that we find with impulse sampling. We begin with equation (3b), the inverse CTFT,
which is true for all t, and therefore certainly for t=nT

[+

Xa(t=nT) = (1/2n) f X () &l NT g0 (72)
-0

The integral over infinite limits in equation (3b) can be represented as a infinite sum over finite
segments of length 2x/T as:

o Q=2m+1)n/T
Xa(t=nT) = (12m) X f Xo(©) T g0 (7b)

m=-c0 = Q=2m-1)=/T

By a change of variable, Q = Q' -2m=/T, we have:

P O=nfT
Xat=nT) = (12m) X f X () elNT goy (7¢)
me-w Q=T
or (since dQ' = dQ):
o0 T
Xg(t=nT) = (12m) [ Xe(2+2nm) SHQF2zm/MHNT g0 (7d)
m=-0 -nfT
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Recognizing that e ™ =1 for all integers m and n, and multiplying by T/T=1 we have:

@0 T

Xo(t=nT) = (T2m) % (1) f Xa(Q # 27m/T) ST g0 (7e)

m=-0 -nfT

Reversing the order of summation and integration:

T I
X(t=nT) = (T220) ( [(4T) 2 X (Q+2nm/M)] &NT 4oy (7
-t m=-co

This integrand is exactly of the form of equation (6b}, the physical inverse DTFT, with:

o

XE) = [(1M 2 X+ 2zm/M)] (8a)

m=-oo
Noting that 2n/T = 2nfs = Q, the sampling frequency in radians/second:
-

XMy = (M) Z. XyQ+ mog)] (8b)

m=-0 :

which clearly shows spectral replications, spaced at intervals of the sampling frequency, and
scaled by 1/T. In terms of o:

-
X(Ee®) = (M) 2 Xl + 2nmiT) (9a)
m=-o
or.
X = @AM 2 Xl (e +2mmyT ] (9b)
m==-00

showing spectral replicas at spacing 2=.
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2c. RECOVERY WITH SINC INTERPQOLATION

2c-1 Basics

Given a set of discrete samples, how do we recover the original, continuous-time signal?
The easiest way of answering this question is to observe that an appropriate low-pass (or
possibly other type) filter will recover the original spectrum, i.e., reject the sampling-generated
replicas (Fig. 2). Then we have only to recognize the unigueness property of the Fourier
Transform to claim the recovery of the original time domain signal .

replica original replica replica
oY N TN -
~fs ' 0 fg fo/2 fs
a practical filter
7 , i M4 limits of ideal filters
7/ N : S .
recovered
AN
0 fg

Fig. 2 A Variety of filters are possible for reconstruction

There are two situations in which this question of recovering from samples may be asked.
In the first situation, we know that the samples were obtained from a continuous-time
waveform, and our goal is to recover that waveform (for example, a digital recording of a
musical performance). In the second situation, the samples are handed to us and we are
asked to "make what we can" of them. Neither of these cases makes sense until we come to
terms with some realistic notion of a bandwidth associated with the samples.

It is not infrequently supposed that the bandwidth is automatically half the sampling
frequency. This supposition is perhaps attractive in that the mathematics for this special case
gives a simple easy-to-sketch picture, and further, this view can be a consequence of
assuming (1) that the sampling theorem was obeyed and (2) that we are being conservative
and assuming that the worst case is being approached. Corollary to this assumption would
be the assurance that a signal bandlimited to a values fg less than fg/2 is also bandlimited to
fg/2. The major problem with this assumption that the bandwidth is f5/2 is the resulting
requirement of a reconstruction filter that is ideal. Note that in the case where we know the
samples were obtained from a continuous-time signal we have an excellent chance of
knowing that the band-width was less than fg/2, and there is always the need to achieve
reconstruction with a practical low-pass filter.
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2¢c-2 ldeal Low-Pass

Although we have no chance of ever finding an ideal low-pass filter to install in our
projects, we nonetheless make good use of ideal low-pass filters as mathematical
objects to indicate general results. In Fig. 2, we show a practical, non-ideal, gradual
cutoff low-pass which is sufficiently flat in the band below fg and is of negligible gain
above fg-fg. We could of course use any ideal low-pass filter that has a cutoff fc, where
fe is above fg and below fg-fg.

The filtering process is a frequency-domain multiplication. Correspondingly, in the
time domain we want to convolve the signal that is input to the filter with the impulse
response of the low-pass filter.

=2

f(t) = (1/2m) f F(Q) el dQ  [Inverse Continuous-Time Fourier Transform]  (10)

-0

Here F(Q), the filter's frequency response is rectangular: it vanishes outside of the
interval -Qg¢ to +Q¢, where Qc=2xf¢ is the cutoff frequency in radians/second. Inside
the passband, we will take the frequency response to be T. This value of T, instead of
just 1, is needed to make up for the 1/T that we found scaling the replicas in equations
(9a) and (9b). Equation (10) is easily integrated to:

f(t) = (QcT/n) [ sin(Qct) / Qct ] = (2fcT) [ sin(@nict) / 2nfct ] (11)

which is in the form of a familiar sinc function, the expected result of transforming a
rectangle. At this point we note the simplicity that results from choosing fc=fs/2 = 1/2T.
This means that equation (11) is zero when t is a multiples of T, except at t=0 where
equation (11) becomes 1.

To more fully appreciate this simplicity, note that the convolution procedure needed
here is equivalent to summing a set of weighted and displaced version of equation (11).
That is:

x(ty= (@fcT) 2 x(n) {sinf2rfg(t-nT]/ 2rfc(t-nT) } (12a)
N=-co '
which becomes, for ig=fg/2:
x(t) = 2. x(n) { sin[(WT)(t-nT)] / (WT)Ht-nT) } (12b)
N==co
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Fig. 3 A "textbook example" where the non-zero samples are convolved
with a sinc function (corresponding to an ideal low-pass with
cutoff equal to 0.5.

Fig. 3 shows an example of this reconstruction. Here we assume that there are only three
non-zero samples, x{(0)=1, x(1)=0.6, and x(2)=-0.4. These are shown in terms of the
individual weighted sinc contributions, and the sum of the three. Note that for this special
case, the reconstructed curve goes exactly through each of the original points. This
statement includes the points not specified (thus zero by default) - it goes exactly through
these zeros. Yet note well that it is not zero except at these integer points. The recovered
curve is of course a perfectly good waveform bandlimited to 0.5fs. Accordingly, we could
resample this curve at the same sampling frequency fs=1 with a different initial starting point.
The resampling could be done at (iniegers+1/4) for example, in which case we would get non-
zero samples for all n.  Thus while we may get the impression (from Fig. 3) that the situation
here involves a signal that is nearly always zero (is non-zero only for three discrete samples),
the actual signal is, in general, always non-zero, either as a continuous-time signal, or as
samples. Accordingly, Fig. 3 is a "textbook example" but must be understood 1o be a doubly
special case (special bandwidth, special initial timing).

2¢-3 Bandwidth Assumptions

We can not escape the issue of bandwidth which we have introduced above. First of all,
we need to deal with signals that have bandwidths less than fg/2, since we are going to use
real filters in association with our sampling. In fact, it is this issue of using real filters that
provides us with a simple (perhaps even sufficient) manner of dealing with bandwidth
ambiguities.
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In this reality-based view, we know that we will often have need of two, real, continuous-
time low-pass filters. The first of these is the so-called "input guard" or "anti-aliasing" filter
placed between the signal to be sampled and the actual sampling device. In a useful
sense, this anti-aliasing filter defines the bandwidth. It not only tells us the general low-pass
cutoff frequency (the bandwidth) but also specifies the rejection properties above the cutoff.
We choose this so that we feel that, for practical purposes, for expected input signals, there
will be insignificant spectral energy above fs/2. In a conservative design procedure, the
nominal cutoff frequency is chosen to be below fg/2, allowing room for a reasonable roll-off
by fs/2 For example, we might look to use a 3.7 kHz low-pass cutoff for an 8 kHz sampling
rate (typical of speech).

With the bandwidth now provisionally described in terms of an input guard filter, it makes
good sense to consider our second filter, a reconstruction filter (also called a "smoothing
filter” or an "anti-imaging"” filter) that has the same bandwidth; perhaps even as being
-identical in design and realization to the anti-aliasing fiter This bandwidth-as-defined-by-
filters view is useful. In cases where we have only the reconstruction filter (for example, the
digital synthesis of musical sounds), we can still think of bandwidth in terms of the
-reconstruction filter's cutoff.

At some point however, we may wish to obtain a more rigorous understanding We know
for example that if we have a signal known to be bandlimited to 0.4fs, we can sample it at fs,
and then we could recover it with a variety of filter shapes and a range of cutoff frequencies
for the filter that have satisfactory (flat) passband properties, and satisfactory rejection by
0.6fs. How would we demonstrate this? In fact, how do we get a test signal that is
bandlimited to 0.4f57

Taking a clue from our discussion above relating to the definition of bandwidth in terms of
a filter from which the signal emerges, we see that we can get a signal bandlimited to 0.4fg
by using a sum of appropriate sinc functions. In fact, we "construct" this signal pretty much
as we "reconstruct” from samples, using equation (12a). One difference is that in
constructing a bandlimited signal, we don't even need equally spaced samples, or even
samples as such. Essentially anything could be convolved with the sinc of equation (12a) to
get a test signal. The sinc itself could be used, but we might feel more comfortable with
something less special.

Now for the interesting part. Note that when we now sample this signal at fg, we expect in
general to get an infinite number of non-zero samples. This is even true for a bandwidth of
0.5fs with a genéral starting time (as we noted above}. This suggests that we really do need
to sum the reconstruction equation (12a) over an infinite number of terms to get the right
answer. But two things work for us, both which involve the roll-off of 1/t that is in the
denominator of the sinc function. First, because of this roll-off, the sinc contribution due to
samples that are far from the current region of interest will be minor. Secondly, if we have
constructed our test signal from samples (i.e., sincs that are centered on these samples) that
are inside or near the current region of interest, the samples taken far from the region of
interest are small to begin with. Put another way, the sinc roll-off makes samples smalier
and smaller as we go out from the center, and further makes the contribution from these far
away samples even smaller as we come back. All and all, on ordinary plots, we can see
perfect or near perfect recovery even from a finite, relatively small number of summed sincs.
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In doing this experiment, it may be at first disconcerting that a sinc, convolved with a
sample, will not go through that sample for cases where the corresponding filter's cutoff is not
0 5fs. This is a matter of the gain and change of the spacing of zeros in equation (12a). Of
course, these sincs will not go through zero at the other sampling points either. What we do
know is that the sum of all the sincs involved will work.

One last point of interest is that once we have filtered with a low-pass filter with a cutoff at
0.4fg, for example, we could follow this with a low-pass filter with a cutoff at 0.45fg, for
example, (or anything that is flat on 0 to 0.4fs) and we expect no change, as is obvious from
the frequency domain picture (multiplying two rectangles gives the smaller rectangle}. In
consequence, it must be true that the convolution of two sinc functions gives the one sinc of
the pair that corresponds to the narrowest rectangle, the sinc with the more widely spaced
zero crossings. This strange result is helpful when we consider a signal constructed at one
bandwidth being reconstructed at another.

Fig. 4 (a - f) shows examples of experiments that can be done starting with these ideas.
Three somewhat different but related experiments are found here in pairs of figures: 4a and
4b, 4¢c and 4d, 4e and 4f The captions that accompany the figures contain many details.

Fig. 4a and Fig. 4b relate to the construction of a signal with a bandwidth of 0.3, which is
then sampled at 1, and reconstructed with a bandwidth of 0.7. Al is fair here -and we might
expect a perfect reconstruction, but this would require an infinite number of samples. With
only the nine samples shown, the reconstruction is imperfect, but would improve if me kept
more samples. For example, if we had kept samples from say -25 to +25, and reconstructed
from these 51 samples, the region shown from -4 to +4 would look virtually perfect, although
we would expect there to be at least some noticeable truncation errors around -25 and +25
now.

injudicious choice of filter bandwidth leads to two common errors, aliasing in Fig. 4c, and
an attempted reconstruction that ends up contaminated by part of a higher frequency image in
Fig. 4d. These look similar, but note well that the output in Fig. 4c is "lower in frequency," and
the output in Fig. 4d is "higher in frequency," relative to the input. The firstis an anti-aliasing
failure, and the second is an anti-imaging failure. Neither result is correct or acceptable.

In Fig. 4e and Fig. 4f, we show two examples of bandlimited signals that.do go through
original prescribed points. In Fig. 4a we saw that using three samples (0,1}, (1,2), and (2,-1)
as input to a filter with a cutoff of 0.3 did not result in a signal that went through these points.
Is it possible to find a waveform, bandlimited to 0.3, that does go through these points? The
answer is yes, and there are an infinite number of such waveforms, of which we show two. In
these cases, we find, as unknowns, the values of initial samples at particular times, which, if
passed through a specified low-pass filter, go through the second set of prescribed points
(knowns). This is better thought of as a sinc expansion, and the solution is a mater of solving
N equations in N unknowns.
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Fig. 4a Three samples [solid dots at (0,1), {1,2), and (2,-1)] pass through an ideal
low-pass with cutoff 0.3, using equation (12a). The waveform is
bandlimited to 0.3. it does not go through the original points (it need not).
No scaling and/or shifting of time and/or amplitude will make it go through
these points. (See also Fig. 4e). 1tis a perfectly good test waveform.
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Fig. 4b The test waveform of Fig. 4a is sampled at integers -4 to +4 (solid dots).
Using only these nine samples, the reconstruction shown is achieved, using
a low-pass cutoff of 0.7. It is better near the center, and would be better still
if more samples were used in the reconstruction. '
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Fig. 4c Here the sample points [(0,1),(1,2), and (2,-1)] are constructed with a low-
pass with cutoff 0.85, then sampled at 1, and reconstructed with a cutoff of
0.5. The reconstruction shows aliasing (lower frequency output) because
the input bandwidth exceeds 0.5. This is a failing of the anti-aliasing
(guardj filter at the input.
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Fig. 4d Here the samples [(0,1), (1,2), and (2,-1)] are constructed with a bandwidth
of 0.5, sampled at a rate 1 (no problem), but then reconstructed with a filter
with a cutoff of 0.85. The reconstruction shows higher frequency
components because a portion of a sampling replica (0.5 to 0.85) is
included. This is a failure of the output anti-imaging (reconstruction,
smoothing) filter.
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Fig. 4e There exist samples at t=0,1, and 2, which when passed through an ideal
low-pass with cutoff 0.3 will have an output that goes through (0,1), (1,2),
and (2,-1), and these are shown by the (¥'s). Finding these is just a matter
of solving three equations in three unknowns, startmg with the sinc
expansion. Compare to Fig. 4a.

4 1 1 t 1
-4 -2 0 2 4 5]

Fig. 4f The waveform, bandlimited to 0.3, that passes through (0,1), (1,2) and (2,-1)

as seen in Fig. 4e is not unique, if the input samples can be Iocated at other
times. Here we show samples at times 0, 0.5, and 3.
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2d. SAMPLE-AND-HOLD AS A STEP IN RECONSTRUCTION

~ One thing that may bother a student of DSP is that the samples we deal with supposedly
have zero width. Moreover, the spectrum of these samples is replicated an infinite number of
times Perhaps we could argue that there is a trade-off: having an infinite amount of energy,
but only having it for zero time, somehow compensates. But it is more to the point to
recoghize that the signals we deal with as mathematical sequences of numbers have no
automatic corresponding physical reality. Physical reality is imposed on a signal only when we
convert the signals from a mathematical to an electrical form, and this is almost always done
with a D/A converter. Specifically, the D/A converter outputs a voltage that corresponds to a
particular number, and it holds this voltage until such time as the digital input changes. Thus
we are dealing with, and frequently think in terms of, a sample-and-hold. Equivalently, our
sequences represent piecewise constant functions (stepped approximation) when physically
realized

1tis intuitive that a piecewise constant situation is a step in the direction of moving from a
discrete to a continuous signal. This is particularly evident as the step length is made very
small (sampling rate is high). In this situation, the "samples” clearly have non-zero width, and
the energy in the signal is clearly finite it follows that, due to the S&H, the spectral images
must somehow be rolling off at high frequencies. That is, the inherent sample-and-hold action
is somehow some form of low-pass filtering. This "voluntary” contribution to the recovery
simplifies some things, and complicates others.

Specifically, the sample-and-hold (also called a zero-order hold) can be regarded as the
convolution of a sequence of samples with a rectangular pulse of width T, where T is the
sampling time. Mathematically, we need to do this by making our samples into Dirac delta
functions that are weighted by the samples, and then doing convolution as integration.
However, the simple picture of Fig. 5 gives us the essential idea

L= 11

) 1 0 T

Fig. 5 Sample-and-Hold as convolution of point samples with a rectangle
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As usual, we will find it convenient to look at muttiplication in the frequency domain
instead of this time-domain convolution. The Continuous-Time Fourier Transform
(CTFT) of the rectangular pulse is of course:

e T
Hy(Q) = I hu(ett dt = i o0t it
oo 0
=TelQT2 sin(nT/R)/(rT/2} = (1/ig)eimts sin(ni/fs)/(nf/fs) (13a)

This frequency response, like that of the ideal low-pass of equation (12a), has a
scaling of T that makes up for the 1/T scaling of the sampling replicas. Here we have
also shown the exponential term e12T/2 which is due to the hold being extended causally
here (a delay of T/2 as seen in the frequency domain). But what is most important is
the sinc roli-off:

[Hu(€)| o< [sin(nts)/(xf/ts)] (13b)

This roll-off is shown in Fig. 6. If we assume, for example, that the spectrum
corresponding to point samples is significant for frequencies from 0 to 0.4fg, we can see
that the S&H roll-off causes a significant roll-off in the band, reaching a level of 0.7568

(-2 42db) at 0.4fg. Whether or not this is important depends on the particular

0.9355 J
0.7568=-2.42db ;
4 0.6366=-3.92db !
06 S S ‘ |
o2 , LT
o
-0'20 02 04 086 0.8 1 1.2 14 16 -

Fig.6 The Sample-and-Hold Roll-Off s>
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application. We might suppose that it would not be a problem with telephone speech, but
could be for music. [fit is @ problem, reasonable cotrections for this roll-off are known, and
could be made part of the digital processing prior to D/A conversion, or could be part of the
analog reconstruction filter. Another approach would be to shorten the hold time, making it a
fraction of T (see Section 3a).

We note as well that the sinc roll-off helps us remove replicas, since the sinc roll-off goes to
zero at multiples of the sampling frequency. From Fig. 6, however, it is clear that it is not all
that effective for the first replica at least, rejecting only to about 1/2 at 0.6fs.

All and all, we must have a S&H in order to output physical ehergy for a real-world signal.

Given this fact, we have to deal with the roll-off correction when necessary, and at least it
helps, rather than hinders, the removal of replicas.

2e. OVERSAMPLING

It is evident that we can not obtain ideal low-pass filters for recovering signals from
samples, nor should we necessarily expect the actual realization of filters that are satisfactory
(for practical purposes), to be trivial. While we note that the process of designing a recovery
filter should end up with a device that is inherently analog (continuous time), doing the entire
job as a traditional analog "active filter” is no longer the only approach. In the past, we
designed analog filters to make it possible to utilize digital filters. Today we design digital
filters to make the residual analog filtering requirements much easier. This is one application
of what we call "oversampling,” which is in turn one branch of the multi-rate DSP art.
(Reduction of quantization noise and a more linear phase response are additional reasons for
using an oversampoling approach )

The problem of designing a satisfactory recovery filter is a matter of obtaining a flat
passband and a roll-off rate that is fast enough to get the response down to a negligible value
before a spectral replica is encountered. For example, if a signal has a bandwidth of 4.7 kHz
and is sampled at 10 kHz, then we need to use a low-pass recovery filter that is sufficiently flat
up to 4.7 kHz, but which then gets down to a negligible gain by 5.3 kHz, a transition region of
only 600 Hz. In practice, this might lead to the need for something like a 10th to 16th-order
analog active filter, which can be very difficult to build.

Fig 7 is a sketch of an example spectrum cotresponding to an original signal having a
bandwidth that is flat between -1 and +1 Further, the signal is sampled at a sampling
frequency of 3, so for the frequency range shown, we see replicas centered about 3 and about
6. We give these rectangles an amplitude of 0.8 to avoid a cluttered diagram since we have
also plotted some filter shapes, which are our real interest here.
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Fig. 7 Two Possible Analog Low-Pass Recovery Filters

Two analog filters are shown. The nominal job of these filters it is to pass

frequencies from 0 to 1, but to then get down to negligible gain by a frequency of 2, thus
removing the replicas between 2 and 4, 5 and 7, and so on (i.e., all replicas). The first
filter is a 4th-order analog Butterworth low-pass with a -3db cutoff set to a frequency of
1.3, ltis reasonable to contend that this filter is not satisfactory since it would pass a
considerable portion of the replica between 2 and 4, and is not particularly flat in the
passband. The second filter is an analog 10th-order Butterworth low-pass with a -3db
cutoff at 1.1. This filter is apparently more satisfactory, rejecting well by the frequency
of 2, and being flatter in the passband, and would be our choice of the two. The
practical difference however is that the 4th-order filter could be easily constructed with
two op-amps and a dozen passive components (8 resistors and 4 capacitors) with
tolerances no better than 5% (i.e., all inexpensive easily obtained components). The
10th-order filter on the other hand would require 5 op-amps, 10 capacitors, and 20

- resistors, and these would need to be of a tolerance of perhaps 2% or 1%, and might
even require hand trimming. This "sensitivity” issue with active filters is well-understood.

With oversampling, we would try (for example) to somehow remove the spectral
replica that is between 2 and 4 prior to employing the analog filter. [f we can do this,
then the fourth-order filter could likely be used. The point to note here is that if we
remove this replica centered at 3, (and alsc remove the replicas centered
at 9, 15, etc., while keeping those centered at 8, 12, 18, etc.) then the resulting
spectrum is exactly what we would have had if the same original signal had been
sampled at 6 rather than at 3. Such a development can be considered "oversampled"
because achieving the equivalent of a sampling frequency of 6 would be a much higher
sampling rate than the minimum required. (Here the minimum sampling frequency
would have been 2. We actually chose 3 to allow room for the cutoff region of a
practical filter. We would need a special reason to go to 6, and here we have it.)
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Of course, in most casés we don't expect to achieve the removal of half the spectral replicas by
going back and sampling at a higher rate. But we also conclude that the samples we would have
‘taken are not totally unavailable to us either. This is because, with the proper effort (a 25th-order
filter perhaps), we can reasonably return to continuous time, thus obtaining the time signal at all
times, and of course therefore, at all intervals of 1/6. Our actual effort is not unlike that suggested:
using a high-order filter. The difference is that it will be a digital filter. There are three important
points concerning this approach: (1) we digitally process the samples we already have to obtain the
missing samples, (2) we can implement high-order digital filters easier than we can analog filters
with similar performance, and (3) we are dealing with a periodic frequency response, which is
slightly less convenient than the analog "get down and stay down" response.

While we will shortly return to this filtering (frequency domain) approach, we also find it useful to
think in terms of the time domain. What we are looking for is a means of obtaining "stand-in"
replacements for samples we failed to take - at least a reasonably good estimate of the missing
samples We naturally think in terms of some type of interpolation, and the simplest case (other
than a hold) is linear interpolation. This means that we estimate a missing sample between two
known samples as the average of the two known samples. In terms of a digital filtering operation,
approached through time-domain thinking, we would first place zeros midway between the original
samples, thereby increasing the sampling rate from 3 to 6 (but not changing the physical spectrum -
See Fig 14b) This zero-padded sequence is then convoived with a three-tap FIR filter that has
impulse response values 1/2, 1, and 1/2 For convenience take:

h(-1) = 1/2 |
h(0) = 1 (14)
h(1) =1/2

from which we get the frequency response from the DTFT, equation (6a) as:
H(f) = 1 + cos(2xrf/6) (15)

This filter (frequency response magnitude is shown in Fig. 8c) has a double zero at z=-1 in the z-
plane, and is a crude low-pass. Accordingly, while the procedure was initiated as time-domain
interpolation, the result is a form of low-pass filtering.

In order to test these ideas, consider the way we could obtain an actual test signal of the type
that was simply sketched in Fig. 7. We could use the inverse CTFT on a rectangular spectrum For

example, taking the bandwidth as being £ 1 Hz (Q = £ 2x), we calculate:

on )
x(t) = (1/2m) [ e itdQ = 2 sin(2nt)/(2nt) (18)

-2n

EN#200 (24) BEoDSP - SAMPLING (20)



08F

. o6r
0al
o2t
00 05 1 1?5 z 2.5 3
Fig. 8a Bandwidth=1, fg=3
1
o
o6l
Q4F
0.2
% 3 z
Fig. 8¢ Magnitude Response of -
Linear Interpolator
| —_
o8l
as}
ol
ozl
% 1 T N 4 5 B

Fig. 8 A Length 17 Filter

BEoDSP - SAMPLING (21)

o8

08}

04r

o2r

cD 1 ] 3 4

Fig. 8b Fig. 8a, zero-padded

replica Vv
a.6F
04
] J\ A
co 1 2 3 4 5 6
Fig. 8d Zero-padded with
Linear Interpolation
repiica
\ N —
08
PX:
Q.4
02r
i [ ; ’ E; : /—11 5 8

Fig. 8f Zero-padded Filtered by
length 17 Filter

EN#200 (25)




replica\’

1.————} e — 1  ————
0.8F 1 08r
0.6} 1 08
Gdr 1 94
o2r ] ozr
% 1 2 3 4 s 6 % 1 2 3 4 Js : 8
Fig. 8¢ A Length 201 filter Fig. 8h Zero-padded filtered by
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which we then want to sample at 3 Hz. Thus we evaluate x(t) at intervals of 1/3. Fig. 8a was
obtained using 601 samples of equation (16) centered about 0. We then take the magnitude
FFT of the 601 time samples, and frequency-calibrate to the range 0 to 3 Hz. [Note the
"Gibbs phenomenon" peaking on the edges that are due to truncation.]

The next step is to "zero pad" the samples, placing zeros between the original samples. The
magnitude FFT of this length 1202 signal is seen in Fig. 8b, and is seen to correspond nicely to Fig
7. This zero-padded sequence is then convolved with the sequence 1/2, 1, 1/2, with the resulting
spectrum shown in Fig 8d. Here we immediately note that the rectangular spectrum has been
shaped by the raised cosine of equation (15), Fig. 8c. We see that this linear interpolation has
resulted in a digital low-pass filtering, but not a very good filtering. We have rounded off the images
we want to keep and only taken a big chunk out of the one we want to remove.

Clearly we need a better digital low-pass filter. One approach (which is interesting and
productive at times) is to start with a better time-domain interpolator (such as fitting a higher order
polynomial rather than just a straight line to the data). Here however we will just use a standard
method {minimized integrated squared error in the frequency domain) and just use the filter, not
being concerned with the actual design. :

Fig. 8e shows the magnitude response of a particular length 17 low-pass filter. When we
convolve the impulse response of this filter with the zero-padded input, we get an output
sequence which has a magnitude FFT as shown in Fig. 8f. Note that this is a much better.
aittempt at removing the spectral replica centered about 3. We still clearly see the shape of
the filter (Fig. 8e} in the spectrum (Fig. 8f). Finally, Figures 8g and 8h show the
corresponding results for a length 201 filter. This final result would seem to be totally
satisfactory. In cases where more improvement is needed, we can oversample by larger
factors. For example, oversampling by 16 or more in CD players is common.
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3. VARIATIONS ON ORDINARY SAMPLING

Understanding is almost always improved when we go beyond material we
absolutely need to know to more difficult material. In looking at some unusual sampling
procedures, we have this idea of obtaining deeper understanding in mind, but aiso these
procedures are at times real occurrences in practice. Perhaps the most important idea
is that of a "conservation of information." Do we have enough numbers (per second) to
recover our signals [1]?

3a. GATED SAMPLING

3a-1 Gated Sampling and Sample-And-Hold Compared

In this section, we will look at the procedure of "gated sampling” which occurs in
analog multiplexing. This we will compare with sample-and-hold (S&H) which we looked
at in Section 2d.

in gated sampling, we do not take point samples, but instead the "samples” are small
segments of the actual analog waveform (Fig 9f). These are the result of multiplying the
original continuous-time waveform (Fig. 9a) by the periodic gate (Fig. 9e). The usual
motivation here is obtained by recognizing that T can be substantially smaller than T.
For example, if T = T/5, we could try to simultaneously sample five different analog
waveforms, each offset for no overlap, and all five could be summed and transmitted
down a single channel. This is classical analog multiplexing. At the far end of the
channel, the five signals could be separated by a de-multiplex procedure, and the full
waveforms reconstructed (we need to show that this is possible). Note the simplicity of
the "sampling" here: we do not really need analog multipliers, but just switches
controlled by the gates. Nor is A/D conversion involved. We do need to be sure we can
reconstruct the signal in the wide gaps.

An interesting comparison here is the similar-looking S&H (Fig: 9d) which we obtain by fi first
point sampling the analog waveform. Unilike the original S&H of Section 2d, here we will
assume we are using a shorter hold time, ©<T instead of t=T. Our motivation for this might wel}
be to alleviate the probiem with the roli-off of the original S&H (Fig. 6). The spectrum with the
shorter hold time is still shaped by a sinc, but the roll-off is more gradual, as seen in equation
(17) In fact this might be used in practice, but the shorter rectangles will mean less total energy
into a reconstruction low-pass filter, and the signal-to-noise ratio can suffer.

The difference between Fig. 9d and Fig. 9f is thus a matter of the shape of the tops
of the "pulses," being perfectly flat in Fig. 9d and being curved, in some manner, in
Fig. 9f. The case of Fig. 9f clearly involves more information, and we hope to gain some
advantage from this excess. While we do expect spectral images from any sampling
procedure, note that it is clear that as T — T these must disappear in our mathematics,
because at =T the continuous-time waveform comes back unchanged.
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Here it will be useful to "shorten up"” the mathematics a bit. Consider r(t) to be a rectangular
pulse of width T centered at 0. The CTFT of r(t) is R(Q2) given by:

R(Q2) = 1 sin(Qt/2) /(Q1/2) (17)

which is a variation on equation (13a). Borrowing the "shah" symbol [2],

W(x) = 2 3(x-m) (18)
m

is a delta-train. Thus we can multiply x(t) by W(t'T) and have a correct representation of x(n), as
long as we intend to integrate over the x(t)LLI(/T) terms, which will happen when we use
convolution. Similarly, we can represent the gate g(t) as I(t/T)*r(t) where the "+" denotes
convolution. In addition, similar representations using the shah are found
in the frequency domain. Note in particular the CTFT pair:

W{t/T) <---> T W{fT) (19)

so as expected, a spacing of T in time corresponds to a spacing of 1/T in frequency.

We first note that:

xu(t) = [ x() WET) Jer(t) | | (20)
‘which is ordinary point sampling followed by convolution with the hold rectangle, while:

xg(t) = [ FOHUET) ] X0 (21)

where we first generate g(t) by convolving a shah and the rectangle, and then multiply by x(t). In
the frequency domain, multiplication and convolution change places, so that:

Xu(Q) = T [ X(Q)*U(QT/27)] R(Q) (22)
and
Xg(Q) = T [R(Q) WHQT/2m)] * X(Q) (23)

This "“fun" set of relationships tells us that when we use the S&H, the original spectrum X(Q) is
first replicated by convolution and then shaped by R(€), the sinc roll-off. In the gated sampling
case, however, W(QT/2x) is multiplied by R(Q) first, and then the spectrum X(Q) is replicated by
convolution with a delta-train that rolls-off. Thus in the case of gated sampling, the spectral
replicas are not distorted, having the exact same shape; only their amplitudes are modified.
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Note that as t—0, in either the gated case or the S&H, R(Q)—1 and both cases revert to
point sampling. As t—T, in the gated sampling case, R(Q) is 0 except at
0=0, and the continuous-time case (nho replicas) returns.

3a-2 The Extra Information in Gated Sampling

Above we found that the spectral images obtained with gated sampling are perfect copies
of the original continuous-time spectrum except for overall multiplication factors that are known
- calculated from a sinc function, equation (17). This was in contrast to the S&H case where
the set of images (or any sum of overlapping images) was distorted by the sinc function. Yet
the S&H roll-off is relatively easy to correct (most DSP evaluation cards that plug into
computers offer this feature). So gated sampling and S&H are mainly compared here for their
symmetrical formulas, but are otherwise quite different and are uniikely competitors for any
actual application.

As suggested, there is one immense difference between the two which needs fo be further
explored: the gated sampling case has "extra samples” (extra information) in reserve.
Essentially we refer to the fact that point samples (or the held levels with S&H) have no
information other then the valuies of the samples themselves. The tops of gated samples, in
contrast, are of course not flat in general, being actual portions of the original continuous-time
waveform, and this is extra information - theoretically an unlimited reservoir of extra
information. This will offer us the opportunity to discard gated samples (equivalent to
downsampling) and still recover the original signal, even if the lower sampling rate (reciprocal
of interval between kept gated samples) is insufficient for the bandwidth.

To begin to understand this we need to recognize that the "sampling theorem® is much
more general than the usual form in which we find it first presented (as above). Indeed we
- should think more in terms of "conservation of information," sometimes referred to as a
"dimensional theorem” which states the number of pieces (dimension) of information needed
to reasonably specify a waveform: N = 2BT,, where B is the bandwidth in Hz and Ty is the
length of the signal. This effectively includes the usual sampling theorem if we rewrite itas a
rate: N/Tg> 2B. The difference is thinking in terms of a finite-length signal, some notion of
usable approximations instead of exact (impractical) reconstruction, and no pre-specified
notion of the N pieces of information (in particular, they need not be equally spaced samples).
This is used for “back of the envelope” calculations of feasibility.

Perhaps the notion of orthogonal expansions is the most familiar idea relating to what we
are suggesting here. It is perfectly possible to think of the usual bandlimited '
sampling/reconstruction ideas as a sinc expansion with the samples themselves being the
coefficients of the expansion [equation (12b)]. We shall see in Sections 3b and 3c how
alternative basic functions for the expansion appear relative to variations on conventional
sampling.
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But, back to the question of the extra information that we believe must be present in gated
sampling. There are two ways in which we can see that gates sampling can undergo
downsampling without loss of information. The first method is to argue that if we have the gated
samples, we can always take point samples within the gated samples, as in Fig. 9, where we
show two such samples per gate. Making the usual assumption that the bandwidth in Hz is less
that 1/2T, it is clear from the studies above that either the gated samples themselves, sample
set A, or sample set B is sufficient to recover the original signal. What is not so well known (as
will be seen in Section 3b) is that the signal can also be recovered from sample set C. That is,
we can keep two samples within one gate and cast out the two samples in the next gate, and so
on, effectively throwing away (downsampling) every other gated sample. It is the average
sampling rate that matters. It is further clear that we can, at least in theory, continue this idea
indefinitely, taking three samples per gate and casting out two of three gates, and so on.
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Fig. 9 Gated Sampling as a Reservoir for Points Samples

The second way in which we can see that we can downsample the gated sampling
and still recover the original signal is to observe that the original spectrum can be
recovered even after overlap. Suppose that we have an original spectrum as shown in
Fig. 10a, and that this spectrum is "full-bandwidth" reaching all the way to fg/2. We
thus have spectral copies about fg, 2fs, and so on, each maintaining the shape of the
original, but having different amplitudes [using equation (17)}:

A = 1T sin{nkt/T) / (nkt/T) (24)

For example, if t=T/4 so that the gate is on 1/4 of the time, then the amplitudes are:
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0.9003t
0.63667
0.30011

0
0.18017t etc.
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Next suppose that we discard every other gate. This is the same as sampling at fg/2, or
having a sampling interval of 2T. We will then get spectral replicas that overlap, as in Fig.
10b. Here 1 is still T/4 in our example, so the amplitudes are different, but still determined in
the same manner from equation (17):

By

T
0.97457
0.90037
0.78427
0.63667
0.47057
03001t etc

s WN =0 l?\_

The point is that we have complete overlap at this point, and the spectrum of interest from
0 to fg/2 is corrupted, being the sum of the original and the replica centered at fg/2. Can we
recover the original spectrum X(f) from the sum W(f)? [Here we are assuming that original
signals are real. If they are complex {not a common case, but sometimes encountered) than
we would need twice the information (real and imaginary parts at every sample), and the
argument here would need to be modified.]

Note that we do know the constants By and B4, and we have the sum W(f) for all f between
f=0 and f=fg/2. For a particular frequency f in this interval, we have (Fig. 10b):

Bo X(f} + By X(fs/2—f).= W(f) (25a)
and it is also seen that:
B X(fg/2-f) + By X(f) = W(fg/2-f) (25b)

We now have two linear equations in two unknowns which we can solve for X(f) and X(fs/2-f).
Solving for X{f) we have:

By W(f) - By W(fg/2 - )
X(f) = (26)
By2 - B42
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Fig. 10 In (a), we see spectral replicas with the exact same shape, which do have
different amplitudes A¢. In (b) we have downsampled the gated samples so
the spectra overlap. These are still of exactly the same shapes, and the
amplitudes By are known

This tells us that we can recover X{(f) from W(f) since we know By and By and since
By # By. If By=B4, we would have the spectrum that corresponds to point sampling. In
this case, the equations are ambiguous and can not be solved.

It is easy to write the equations above and discuss the solution. In fact in general it
is much easier to argue that it is possible to recover a signal from some variation on
normal sampling than it is to actually do it. What we would actually need to do here
would be to separately filter out the spectral portions from =0 to f=fg/4, and from f=fs/4
to f=fg/2, shift these by modulation methods, and then add everything back together.

It is not unusual for the "overhead" to wipe out'any advantage. Of course, the problem
gets worse if we try downsampling by numbers greater than 2. However, we see that
gated sampling can be "downsampled" in a lossless manner indefinitely! '

3b. SAMPLING IN PAIRS / AN AVERAGE SAMPLING RATE

Above in Section 3a-2 we discussed gated sampling and mentioned that one way to
understand downsampling of gated samples was to consider taking samples in close
pairs within the gate (promising to give the details later). Here we want to look at this
procedure of taking samples in pairs [2). We can start with the premise that we are
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taking samples at intervals T where the bandwidth of the signals is 1/2T - ordinary sampling cbeying
the ordinary sampling theorem. Now suppose that we continue to take a first set of samples, Set A,
at even multiples of T (0, 2T, 4T, 6T, etc.) but that the second set of sample at odd multiples of T (T,
3T, 5T, .. etc.) are not taken. Instead, a different second set of samples, Set B, is taken, at times
displaced from the first sampling times by a time interval o (o, 2T+a, 4T+a, etc ). We now have two
sets of samples, Set A and Set B. Neither set can be used alone to recover the original signal. This
is clear since either set, taken at a sampling rate of 1/2T, is insufficient to support the 1/2T
bandwidth Neither would we have any success (as long as a = T) of low-passing the sets
individually and summing the results. The one thing we would perhaps cling to is the fact that there
are enough total samples, on average. There may well still be enough information It is just that the
recovery procedure is expected to be more complicated.

A more complete description of the recovery procedure is offered in Bracewell [2]. Here we will
note that the spectra corresponding to the two sets are overlapped, and we know tnat portions of
the two spectra, corresponding to a delay in time, are related by an exponential factor gema in the
frequency domain (standard CTFT properties). In much the way we were able to solve for the
original spectrum in the case of gated sampling (Section 2a-2), Bracewell solves the paired
sampling case. Further, he then jumps back to the time domain so that we can reconstruct by
convolution, in the manner used for sinc interpolation [equation (12a)] The difference is that the
interpolating functions are not the usual sincs; rather we get two interpolating functions. The first is:

a(t) = sinc(2t) - B t sinc2(t) (27a)
and

b(t) = a(-t) (27b)
where the constant B3 is:

B = n/tan(ox) (28)

and where the sinc function is here defined as:
sinc(x) = sin{mx)/(nx) (29)

The encouraging thing about these result is that the interpolating functions a(t) and b(t) contain
terms in sinc(2t) and sincZ(t), both of which are capable of spawning waveforms that "wiggle" twice
as fast as sinc(t) itself. This is important in as much as interpolating with sinc(t), with the
undersampled original Sets A or B, produces an aliased (lower frequency) waveform, and we are
certainly going to need something that generates some faster components.

In actual use, the original waveform is obtained by convolving the samples sets with their
corresponding interpolating function:
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x(t) 7= a(t)*xa(n) + b(t)xxg(n) | (30a)
= a(tyx{ x(t) WYT) ] + blty=[ x(t) W{t/T-o) ] (30D}
where xa(t) and xg(t) are Set A and Set B respectively. The interpolating functions a(t)

and b(t) are plotted in Fig. 11. Note that in the actual interpolation (convolution) of
equation (30b), the interpolating function b(t) is appropriately offset by a.
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Fig. 11  The interpolating functions for paired sampling (c=0.2T)

Fig. 12 shows an actual example. Here we have a sinusoidal waveform of frequency 2/3
sampled by Set A (+) and by Set B (o) at a frequency 1. The interpolation using equation (30b)
is seen to still be a good match to the original waveform [The ends show more discrepancy
than the middle. and these end effects are due to truncation error and are similar to those we
saw in Fig. 4b.] For comparison, we can interpolate only set A using a sinc(t) interpolation
function (ideal low-pass with cutoff 1/2), and this is seen to be the lower frequency 1-2/3= 1/3.

3C SAMPLING THE SIGNAL AND ITS DERIVATIVE

Above we have spent considerable time on sampling the signal itself at regular intervais.
Just above in Section 3B we have seen that samples at alternating, irregular intervals are
possible Here we will look at the simultanecus sampling of a signal and its (first) derivative.
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Fig. 12 Here a sineusoidal waveform of frequency 2/3 is sampled at a sampling frequency
of 1, at the integers (0) and separated 0 2 from the integers (). Using both
sets of samples, the sinusoidal waveform is recovered at frequency 2/3

Using only one set of the samples, the aliased sinusoidal waveform of
frequency 1/3 is found.

A few opening comments are perhaps useful First, if we attempt this, we could use a simple
analog circuit to produce the derivative and then sample this analog derivative. Secondly, thinking
in terms of the rate of information, an average sampling rate of sorts, the simultaneous sampling of
the signal and its derivative give us twice the information rate, and we expect to be able to support
twice the bandwidth. Finally, we might well expect this to work since it would seem to be a limiting
case of paired sampling as « —0.

Here, as in the case of paired sampling, we are not overly interested in recovering signals from
extra information by a complicated process if recovery by a simple process without the extra
information is perfectly viable Thus in sampling both the signal and its derivative we are interested
in sampling both at intervals T while working with bandwidths that extend into the region of
frequency from 1/2T to 1/T. That is, in sampling two things rather than just one we hope to be able
to double the bandwidth or else use only half the sampling rate. (To better appreciate this, suppose
that we are sampling in a spatial dimension along a line on the surface of the earth - "tramping
through the wilderness." We might well find it more convenient to take multiple samples at an
accessable location rather than have to reach a difficult location.)
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The setup for this case, called ordinate-and-slope sampling by Bracewell [2] is not
unlike that for the paired sample case. Here CTFT properties relating to differentiation as
seen in the frequency domain (a multiplication by frequency itself) can be employed.
Again, Bracewell solves for the original spectrum, and transforms the results into
interpolation functions and an interpolating procedure (via convolution) back in the time
domain.

x(t) = a(t)xx(n) + b(t)=x'(n) 1)

where x'(n) are the samples of the derivative. There the interpolating functions are:

a(t) = sinc(t) (32a)
and
bit) = t sinc2(t) (32b)

and we are again pleased to see functions capable of producing "wiggles" faster than
sinc(t) itself. Putting equation (31) into a bit more concrete form, we have:

x(t) = a(t)*] x(t) WE/T ] + b()+[ x'(t) W(HT) ] ' (33a)
Q o
= ¥ x(msinc2(t-n) + £ x'(n)(t-n)sinc3(t-n) (33b)
Nn=-co n=-cc

In the case of the paired samples, our actual demonstration was in terms of a fixed
sample rate (of 1) followed by our choice of a frequency (2/3) that would have caused
aliasing with ordinary frequencies. In this ordinate/slope example, we will choose a
different sort of display, mainly for variety. Here we will hold the frequency of our signal
fixed (at 0.1), and then we will systematically lower the sampling rate

For this test, we choose a sinusoidal waveform, so we will also show the cosine to
indicate the form of the derivative. In addition here we have tapered the ends of the
signal so as to reduce end effects due to truncation. For each of the three sampling rates
chosen, we will show the signal as we attempt to recover it from the samples alone, and
as we recover it from both the samples and the samples of the derivative.

In Fig. 13a, we choose a sampling rate of 1/3=0.3333.., greater than twice the
frequency of the sinewave (twice 0.1 = 0.2). We see successful and comparable
recovery in both cases. In Fig 13b, the sampling rate is 0.2, exactly twice the frequency
of the sinewave. For this example, note that the samples themselves are all zero — they
just happen to be zero, but they are perfectly valid samples. '
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Fig. 13a Sampling a sinusoidai
of frequency 0.1 and its
derivative at 1/3=0.3333...
allows recovery from the
samples or from the samples
and the samples of the
derivatives

Fig. 13b Sampling a sinusoidal
of frequency 0.1 and its
derivative at 1/5=0.2 (critical
case allows recovery using
both the samples and the
samples of the derivatives
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Finally for Fig. 13c, the sampling rate is 1/7 = 0.14286, |ess than twice the frequency of
the sinewave. Here the attempted recovery from the samples themselves gives an
aliased result, while recovery from the samples and the derivative continues to return

the correct frequency.

4. BESAMPLING, COMPRESSION, DOWNSAMPLING,
DECIMATION, EXPANSION, UPSAMPLING,
AND INTERPOLATION

4a. INTRODUCTION

The problems discussed above have for the most part been concerned with sampling
in the sense that a particular continuous-time signal existed and served as the source of
samples, and also as a goal for reconstruction from these samples. But there are also
situations where we have already achieved sampling, and we then want to make
adjustments to the resulting sequence of numbers. The sort of things we may want to
do typically involve the removal of some samples (the related processes of "resampling,”
"downsampling," and "decimation") or to add samples (the related processes of adding
zeros 1o the sequence, "upsampling," and then filling in or “interpolating” the zero values
to more useful values).
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One view which we can often make use of is to observe that in manipulating one
sequence to another, we can usually employ a "what if" approach. We start with one
sequence, obtained from a sampling process which we understand, and do something to this
sequence, creating a new sequence. What if this second sequence had been obtained
directly by use of the original sampling process? Typical of this approach is the observation
that if we take samples, and then throw every other sample away, somehow we can
understand this usefully in terms of sampling the original signal at half the original sampling
rate. The history does not matter. This view often offers us a "reality check” of considerable

value.

Possibly nothing is more injurious to relatively easy understanding of the material here
than the problems associated with terminology, and with frequency conventions. Associated
with the idea of discarding some samples from an original sequence are the terms
decimation, downsampling, and compression (and likely others). Associated with the idea of
adding samples to an original sequence are the terms interpolation, upsampling, and
expansion (and likely others). Different textbooks may use these terms in different ways.
One must be extremely careful to not infer too much by the use of a particular term, but to
instead rely on the actual description of what is done.

[We can not hope to suggest a resolution to these terminology problems, or even offer a
full catalog, except to perhaps suggest that priority might well be given to the terms expansion
and compression, and to insist that the term interpolation should never be used for the case
where zeros are inserted in a sequence, but not then simultaneously replaced with more
suitable non-zero values. One saving thing seems to be the relatively consistent use of a
symbol or notation, usually seen in block diagrams, that employs a number and an associated
arrow pointing up or down, usually enclosed in a box. But even this occasionally
deteriorates. Buyer beware!]

And this issue of terminology is only the first source of confusion. As mentioned, there are
also problems with frequency conventions. Prior to the widespread exposure to the extremely
useful notions found in the "multi-rate" DSP art, it was not unreasonable to consider a
"normalized" sampling rate. (This normalization still is exceedingly useful in digital filter
design, for example.) Typically this normalization was chosen as one sample per second (1
Hz) corresponding to 2r radians per second. Subsequently the actual dimensions (inverse
second) were forgotten so that the 2z sampling rate became dimensionless. With the idea of
indexing equally spaced samples as a sequence, defined on the integers, it made sense to
have the sampling rate always be a dimensionless 1 (or 2x}). But with the advent of multi-rate
DSP, we had the contradictory situation where the sampling rate was always the same, and
where we had more than one sampling rate. This leads to the need to constantly renormalize
at each step. In consequence some counterintuitive scalings of the frequency axis have
appeared,

Here we will insist that it is necessary to understand things in terms of both physical
frequencies and normalized frequencies. While we believe that physical frequencies are a
much better choice for engineers, it is unquestionably also true that the normalized (purely
mathematical) presentation is so prevalent that it too must be understcod.
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In our presentation, we will first define some terms as best we can. We will then
develop the mathematical tools of resampling, compression, and expansion. Next we will
compare and contrast the physical and mathematical cases, pointing out that they [ead to
equivalent results. Finally, some additional downsampling examples will be presented.

4b. SOME TERMINOLOGY AS WE SEE |T

4b-1 Reducing the Number of Non-zero Samples

RESAMPLING: The input sequence is multiplied by a resampling sequence of the
same length as the sequence (or nearly so). For example, the resampling sequence [1 0
010010 ...]sets two of three samples to zero. The original sequence and the
resampled sequence are the same length For example, if the original sequenceis [ab ¢
defghijkl] the resampled sequence would be [200d00g00j00]

COMPRESSION: We keep only every N" sample of the input sequence. The output
sequence is only 1/N as long (or nearly so).

DOWNSAMPLING: This can be simply the same thing as compression [t can also
refer to the actual change of physical sampling rate. For example, the full and complete
conversion of sampling rate from 50 kHz to 40 kHz.

DECIMATION: Again, this can be the same thing as compression. It can also refer to
a physical situation where the sampling rate is reduced. In such a case, it is usually the
case that a pre-decimation filter reduces the bandwidth so that no aliasing results from the

loss of samples.

4b-2 Adding to the Number of Samples

EXPANSION: Zeros are inserted between all samples of the original sequence.
Expansion by N adds N-1 zeros between existing samples and the resulting sequence is
N times as long. For example, expanding fabclby 3gives[a00b00c00]

UPSAMPLING: Usually, the same as expansion. Used in the case of physical
frequencies, it may refer to the inverse of downsampling, a full and complete conversion
from 40 kHz to 50 kHz for example.

INTERPOLATION: Not expansion. It is expansion followed by a replacement of the
inserted zeros with replacement samples, perhaps through a time-domain interpolation
procedure, or equivalently, through a frequency-domain low-pass filtering fo remove
sampling replicas. ‘
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4c. MATHEMATICAL DERIVATIONS

4c-1 A Mathematical Form for a Resampling Function

The idea of a resampling function sy(n) can be presented as:

sy(ny =..... 001000...001000...001000. ... (34a)

LIe-ngth N J

One period of sn(n) is of course just:
sy(n)=[1000..00] n=0,1,. ..(N-1) (34b)

where we use the same notation for one period since we are about to take the DFT anyway.
The DFT of sy(n) is Sy(k) which is 1 for all k as is easily seen:

N-1
Sn(K) = = sp(n) ed@Nink =1 )
n=0
Then we can take the inverse DFT to get sy(n) back:
N-1 7
sp(n) = (1/N) = Sp(k) eit@nNink
k=0
N-1
=(1/N) T ei2uNnk )
k=0

The advantage of equation (36) over equation (34a) is that it is in a usable mathematical form.

4¢c-2 Resampling

Given a time signal x(n), its resampled form yg(n) is:
Ys(n) = x(n) sn(n) | (37)
By definition, the DTFT's of x(n) and yg(n) are:
o

X(eo)= ¥ x(n)eiwo | (38)

n=-co
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Ys(el) =
n

ys(n) ene (39)

o

=00

We can substitute equation (37) and equation {36) into equation (39):

oo N-1
Ye(ei®)= X x(n) (1/N) T el@dNnk grinw (40)
N=-00 k=0

which can be rearranged as:

N-1 =
Yg(eio) = (1/N) £ = x(n) eil-@nNk+aln (41)
K= N=-co

which we then recognize as:
N-1
Yg(eio) = (1/N) = X(ellw-@uNK ) (42)
k=0
This equation simply indicates that the spectrum of the resampled signal is the spectrum

of the original, scaled by 1/N, plus N-1 scaled replicas inserted in-between. Thisis
entirely consistent with the notion of a sampling rate lowered by N.

4¢-3 Compression (Down-Box)

In compression, a sequence yg(n) is obtained from x(n) by the following rule:
ye{n) = x(Nn) (43)

This means that every Nth sample is kept while all other samples of x(n) are discarded.
To avoid certain pitfalls, it is most useful here to recognize that yc(n) is a compression
of the resampled sequence yg(n). Thatis:

yo(n) = ys(Nn) (44)

Thus we write;

Ye(eo)= T yg(n) edne (45)
N=-co
= X ys(Nn)eine | (46)
N==-c0
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If we substitute m=Nn (h=m/N) we have:

© \
Yolelo)= = yg(m) edmeoN = Yg(elo/N) 47
m=-co

Now using equation (42):

N-1
Yeo(ei®) = (1/N) = X(ello/N- (2x/N)K] ) (48)
k=0

This is correct, but requires some care evaluating the argument. For k=0, we find that the
spectrum is expanded by N. Accordingly, normal sampling replicas at intervals of

2n are spaced at 2Nz, At the same time, the terms for k=1 to N-1 must be added, and these
are displaced at intervals of 2x to fill in expanded spectra at afl multiples of 2z, This makes the
original spectrum appear merely to expand by a factor of N from 0 and from 2z, toward =,
although the actual mechanism is more involved.

4c-_4 Expansion (Up-Box)

Happily, the third and last case, expansion, is the easiest case to evaluate. In expansion, all
samples are kept, but pushed apart so that N-1 zeros are placed between the original samples.
That is: _

ye(n) = x(n/N) n an integer multiple of N
=0 else (49)
[>¢] o0
Ye(el)= 2 ye(n) eidne = T x(n/N) eine - (50)
: n=-co N=-co

Substituting m = n/N

o0

Ye(el®) = = x(m) eiNno
m=-oo

= X(eiNo) (1)

This is a compression of the frequency axis by a factor of N. This compression not only makes
the apparent bandwidth smaller by a factor N, but (N-1) spectral repeats, normally at intervals
2%, now appear inside the region 0 to 2x, spaced at 2a/N, and_appear similar to sampling
replicas. Because there are no discarded samples here, the apparent appearance of sampling
replicas may be confusing, and consequently, the true mechanism of their origin should be kept
in mind.
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4d COMPARING THE PHYSICAL AND NORMALIZED VIEWS

. Two drawings, which we shall see will lead to essentially equivalent analysis and
design conclusions, are seen in Fig. 14a (Normalized Viewpoint) and Fig. 14b (Physical
Viewpoint). The normalized viewpoint relates to the mathematics above, while
the physical viewpoint perhaps relates better to engineering intuitions and practical
implementations. The only real difference will be seen to be that we require the time
samples to be defined only on integers in the normalized view, while in the physical
view, sample positions are defined in terms of actual time intervals, and in terms of
multiples and fractions of these intervals.

The most interesting structures in these diagrams are included in an "Interpolation
Path" that runs from bottom to top. We wiil however begin with a quick discussion of the
downsampling path on the left of each diagram. We need to note three further things
about these diagrams. We have included a series of letters inside parenthesis so that
we can refer to a particular object or region without excessive description. Also, note
that the diagrams are drawn for a factor of 2 difference in sample sets. The extension
to other factors should be obvious. The final point relates to the Fourier transforms
suggested. Fig. 14a is thought of as the ordinary DTFT, equation (4a) while Fig. 14b
refers to the physical DTFT, equation (6a)

4d-1 The Downsampling Path

In regard to the downsampling paths, we will find it useful and essentially sufficient to
employ the "what if* approach suggested above. We can think of the denser sets of
samples (A) and (J) as being changed to half-sized sets (H) and (P) by keeping samples
a, ¢, e, ... only, We can then ask what would happen if it were not the full sets
(a,b,c,d,e,...) that were obtained by ordinary sampling, but instead, the half sized sets
that were obtained by ordinary sampling. This tells us, for example, that we are not
going to be able to throw out half the samples unless either (1) the original bandwidth is
no greater than 1/4 the original sampling rate, or (2) we first reduce the bandwidth to no
more than that value with a low-pass filter, prior to discarding samples. In the case
shown here, where we already have taken samples, this reduction of bandwidth, if
necessary, would be a matter of employing a digital filter rather than an analog filter (we
would use analog if sampling had not yet occurred). Such a digital filter is called a
"pre-decimation” filter and would appear in the path from (A) to (C), and from (J) to (P).
These are not indicated in the drawings, so at this point, let's assume that we have
determined that we are able to cast out half the samples without any resulting spectral
overlap. That is, the bandwidth of the original signal was such that less than half (1/3
actually) of the original frequency region was taken up. This is suggested by the
sketched spectra, (B) and (K). .

This leaves us to consider if the spectra () and (Q) following downsampling are
correct, and in fact equivalent. Both (H) and (P) show only the samples a, ¢, e, ... and
the corresponding spectra, (I) and (Q), now show 2/3 rather than 1/3 of the total
frequency range being occupied. Again, thinking in terms of what happens with
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ordinary sampling, we expect discarding half the samples to double the number of images.
This is what we do see in the physical interpretation by comparing (K) to (Q). We see replicas
about multiples of (2/T) in (K) and about multiples of (1/T) in (Q). This seems to be exactly
right.

So what has happened in (I)? We don't see any extra sampling images. What has
happened is that in the supposed implementation of the compressor (C), not only are samples
discarded, but the kept samples are repositioned on the integers. This is the renormalization -
understanding the current sampling rate to always be 2z. This makes 2z in (I) the same as =
in (B). Note that it appears that the original spectrum in (B) is simply expanded by a factor of
2, from 0 and 2=, toward = in (). While this sort of "rule” is sometimes put fourth, it hides what
actually is going on, and just gives the wrong answer in other cases (see Section 4e). In line
with equation (48), what actually happened was that the replicas were inserted, as expected,
but then the whole frequency axis was expanded by a factor of two.

If the reader supposes that the physical picture is more direct and more intuitive, this is
reasonable. Further, the actual idea of the compressor as a real-time physical device is
clearly impossible since samples would have to appear at its output even before they arrived

at the input.

4d-2 The Interpolation Path

As suggested above, our main study here will concern the interpolation paths, starting at
the bottom with the sparser set of samples (a, ¢, e, ..) and obtaining the denser set
(a,b,c,d,e,...) at the top. This is of course exactly what we studied as "oversampling” in
Section 2e above. Thus we do hot have to reintroduce the general ideas, and can concentrate
here in comparing and contrasting the normalized and physical descriptions. The one thing
we note is that the return paths (H) to (A) and (P) to (J) are not a simple reversal of the '
downsampling. We have easily thrown information away, and it will likely be more complicated
getting it back. These two interpolation paths are seen to cross domains, since it is easiest to
think of the setup (inserting zeros) as something that happens in the time domain, while the
actual interpolation occurs through use of the interpolation filters to remove sampling images
in the frequency domain.

In the normalized view, we begin with an expander (E). Like the compressor (C), this is
impossible in real time. What it is supposed to do is to insert zeros between all samples at its
input. Mathematically it compresses the frequency scale, (i) to (G). What it _appears todo is
compress the spectra from = in (1) back toward 0 and 2z, and then insert a similarly reduced
replica at «t in (G). This sort of "rule” is sometimes heard, but it is misleading at best as faras a
complete understanding is concerned. We certainly do not expect additional spectra replicas
when no information is discarded.

In the physical view, something astounding happens when we insert zeros midway
between the existing samples (P) to (M). Nothing happens to the spectra, (Q) and (N) are the
same. This is less surprising when we consider that every spectral analysis tool we know of
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adds or integrates exponentiais that are weighed by the time domain signal. if we add
only time-domain zeros, we can't change the physical spectrum. The difference between
(Q) and (N) is that in (Q) the sampling frequency is 1/T, while in (N} itis 2/T. Thatis, in
putting zeros in-between existing samples (at least as place-holders for the moment) we
are doubling the sampling rate. This makes perfect sense.

The remaining step, in either view, is to low-pass the zero-padded sequences to
remove half the sampling replicas: [ (G) to (B) using filter (D), or (N) to (K) using filter (L)].
It is the interpolation filter that does the works of generating (perhaps recovering) the
missing samples to replace the inserted zeros. We would hope that regardiess of the
view used, we might end up with the same filter design requirements.

Above we took some trouble to criticize the use of normalized frequencies, although
acknowledging that we have to learn to use them. At that time we also mentioned that
normalized frequencies in digital filter design make a lot of sense. Thus we note that the
interpolation filters (D) and (L) have the same specification. The filter (D) has a low-pass
cutoff of /2 for a sampling frequency of 2r. The filter (L) has a low-pass cutoff of 1/2T for
a sampling frequency of 2/T. So in both cases, we are looking for a filter that has a cutoff
of 1/4 the sampling rate. The considerations for the detailed specifications of this filter is a
matter very similar to the oversampling case (Fig. 8).

4e. STUDIES WITH AID OF THE FFT

4e-1 Downsampling Using the FFT

It is probably clear from the discussion just above that efforts directed toward
understanding rate changing can be maddening At some point, it may be necessary to
sit down and run some simulations, and it is likely the FFT (DFT) will be the toot of choice
for comparing spectra. Aside from the fact that this adds yet another frequency
convention, it is not a bad idea. Here we will apply the DFT (FFT) tool and first look at
downsampling, as this is the case that causes the most difficulty.

Fig. 15a shows the general procedure. Here we have generated a length 64 spectrum
which has a triangular shape This can be done as a sum of triangularly weighted
cosines, or by simply typing in the triangular FFT and taking the inverse FFT to get the
time sequence. In either case, we want to then downsample this time sequence. In the
mathematics of compression (Section 4¢-3), we found it aimost essential to do the
downsampling with an infermediate resampling step. Thus we take the time sequence
belonging to the original ("orig") spectrum, multiply every other sample by zero, and then
again take the FFT. This we see as "resampled," and as expected, we see an extra
spectral image. The final step is to remove the zeros from the resampled waveform,
making it length 32, and taking its length 32 FFT. This is indicated as "downsampled.”
Now, recall that the FFT represents samples of the DTFT. That is, we look at the shape
represented by the FFT spikes and not at the spikes as such. This understood, we see
that the three lines of Fig. 15a correspond to (B), (G), and (I} of Fig. 14a
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. The reason why we are leery of "rules" for describing how the spectrum changes
following downsampling is that there are too many individual cases. Instead we prefer the
procedure: first resample, and then stretch. Thus for example in Fig. 15b we .
have a high-pass spectrum instead of the low-pass spectrum of Fig. 15a. When we
resample this, we get an extra image, right in the middie as we expect. Then we stretch.
Another way to fook at this stretch is to say that we just keep the bottom half of the FFT.
Perhaps to our surprise, the downsampled spectrum is low-pass (identical to Fig. 15a at
the "resampled” and "downsampled" levels). If we were writing rules, we would have two
Now.

Onward to downsampling by 3. Here, in Fig. 15¢, starting with a length 81
sequence that has a triangular spectrum we first resample, and we find, as expected, two
new images. Note that the resampied images are always equally spaced. Resampling by
N gives us N-1 additional images, N images total. Then we stretch, here looking at the
lowest 27 points of the FFT. We get a low-pass resuit.

Fig 15d shows a high-pass spectrum downsampled by 3. When we downsampled by
2, we got a low-pass result. What happens here? As usual, we resample, getting two
additional images (again, all equally spaced when we consider the periodicity of the FFT).
When we stretch, we get high-pass. Time for another rule!

Fig. 15e and Fig. 15f are shown for additional amusement. Here we combine low-pass
and high-pass spectra, and use downsampling by 2 in Fig. 15e, and downsampling by 3
in Fig 15f. Note that in Fig. 15e, the low-pass and high-pass overlap and combine. We
might expect downsampling by 3 to be worse in this regard, not better Yet Fig. 15f
shows that because of the way we have chosen the original spectrum, the replicas all
avoid each other.
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4e-2 Upsampling Using the FFT

Having now employed the FFT to look at resampling and downsampling, we can look at
upsampling. We recall that upsampling involves placing zeros between existing samples taken
in pairs. Fig. 16a shows the case where we again start with a triangular, low-pass spectral
shape (here 32 points in frequency). We then get 32 time points using the inverse FFT and
insert 32 zeros between these samples. Then when we take the FFT, we get 64 frequency
points in the FFT.

Perhaps to our surprise, we get a result in Fig. 16a that strongly resembles the resampled
case of Fig. 15a That they should have similarities is not so surprising once we remember that
both correspond to cases where zeros appear between (generally) non-zero samples. [n
resampling, these zeros are the result of multiplying non-zero samples by zeros In
upsampling, the zeros are simply inserted. The one difference is that upsampling results in a
doubling of the number of frequency points. Fig. 16¢ shows a similar result for low-pass
upsampling by three (compare to Fig. 15¢).

Fig. 16b shows an upsampled high-pass case. We immediately understand this in terms of
the compression of the frequency axis which we have discussed earlier. But this case differs
from the corresponding resampling case (Fig. 15b). (Fig. 15a and 15b, the low-pass and high-
pass spectra resulted in the same downsampling.) To understand this a bit better consider that
a low-pass signal has, typically, consecutive samples of the same sign, while a high-pass
signal tends to have samples alternating in sign. Taking every other sample, in either the low-
pass or high-pass case, thus tends to favor samples of the same polarity for significant periods
of time (i.e., low frequencies). But when we insert zeros, keeping all the samples, the
alternating polarities of the high-frequency signal are preserved. Fig. 16d shows a high-pass
signal upsampled by three. This has the same shape as the resampled by three high-pass. By
an argument similar to that just used, resampling by three would tend to preserve alternating
polarities (every other sample and thus every third sample tend to alternate). The high-pass
nature of the spectrum (alternating signs in time) is of course preserved with the zero insertion
of upsampling. :

All this discussion, along with the myriad of ways for understanding the resuits, is of course
helpful. However, one often should not resort to round-about ways of understanding as a
primary means of getting the right answer Neither is it very productive to try to establish and
maintain categories, with their associated rules. What one is advised to do is work out each
case presented as an individual sampling problem.  Usually a sketch is most effective.

4e-3 Relationship Between the FFT and the DTFT Views

The reader has likely noted the strong similarity between the FFT studies and the
normalized case where spectra were obtained using the DTFT. Indeed, the FFT (the DFT) is
just a sampling of the DTFT. |If we have a very dense set of FFT samples, we can usually infer
the corresponding continuous DTFT  Alternatively, if the DTFT is sufficiently smooth or
piecewise continuous (composed of straight-line segments, as is the case with our assumed
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triangle shapes for example) we can "connect the dots" of the FFT and suppose we are locking
at the DTFT. The other thing we must do is stop indexing frequencies by the FFT index which
runs from 0 to N-1, and consider a normalized sampling frequency of one. In an actual
program, this means just dividing the frequency indices by N, and using a continuous plot rather
than a discrete ("lollypop" or stem) plots. Alternatively, we just do this display mentally based
on the FFT calculations.

Fig. 17a is a repeat of Fig. 15a, the low-pass spectrum resampled and then downsampled by
two. These correspond to sketches G and |, coming from B, of Fig. 14a  Fig. 17b is a repeat
of Fig. 16a, the upsampling of a low-pass spectrum. This corresponds to sketch G, coming from
[, in Fig. 14a. '
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ADVENTURES - Continued from page 4

located a rare book for me which he shipped to me by priority. The empty envelope arrived! At
about the same time, two very large boxes of books ended up in front of our garage. They were
addressed to our neighbors, and | reasoned that they were likely a collection of good physics
books. We like the neighbors, so | wheelbarrowed them over.

| have seen posted comments suggesting that we do not always deliver. Sometimes they
say that we do not give prompt service. These comments are justified_if you suppose that
delivering 99% of an order promptly is not enough, and that, with over 500 items to stock, some
items need not be back ordered for 40 days or more (as stated in our literature). Frequently
these sort of postings are followed up by comments from people who mention that their orders
arrived promptly. If you read the archives, | think it is more than fair to say that the critics are
people who have not ordered from us but who "have heard that" service is poor. (Almost
without exception, we do not send materials to persons who do not send us an order.) And
there are almost certainly items that are lost or miss-delivered. As always with this sort of thing,
successes are seldom news. A few cases where things go wrong stand out. We all know the
phenomenon.

| have also seen a couple of even more disturbing items that seem to suggest, although they
are not specific (innuendo), that we keep money sent us and do not send anything. | don't
recall seeing any real name associated with these remarks. Let me be very definite about this.
Without going into details more than | want to, | believe that our deposit records and our
shipping records are "interlocked” in a way that makes it impossible for us to deposit a check
without also actually shipping. If anyone knows of a case that would even suggest otherwise,
let's hear the details, and we can check our shipping records and returned items files. Did it
happen to you? Did you contact us? If not, who did it happen to? Did they contact us? If you
don't know the details, then you may not know anything you should be posting, as someone
may well get around to asking you to produce the details! If any person insists on posting this
sort of accusation without giving specifics, please do so giving your full, true name and your
postal address.

And, this needs to be said as well: more than 99% of customers can be trusted. But not all.
Indeed, the newsgroups often feature battles resulting from "bad trading" notices and these are
often not convincing, or even counter-indicating. Mail order is a two-way street both literally
and figuratively. Over the years, we have had significant losses due to payments that did not
"stick." In one instance, we had to "fire" a customer and we returned his payment via the
Postal Inspector, with the stipulation that he return the materials he admitted he had received.
He kept the refund and the newsletters. Later, he posted a short item saying that he too had
paid for something and not received it.

(3) In a couple of places | am accused of "snooping around" and even "hacking” in a search for
questionable schematics. I thought materials were posted on the web to make them public. Is
there a rule that you aren't supposed to look for something if the site owner doesn’t want you
(specifically you) to see it? | guess so. But that's beside the point.

For myself, there are three and only three ways | could end up looking at a web page. First,
I could end up there by following links from a known page (ordinary surfing). Second, | often
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use a search engine as indeed most everyone does | believe. Third, someone may email me a
link to look at. That's it. | have absolutely no idea how to hack into anyone's website. | don't
recall the incident that prompted the supposed hacking, but if | found one of our schematics
posted, it must actually have been public in some sense. In a way, it is flattering that anyone
might suppose that | could hack (one of my TA's eyes rolled when | told him someone thought |
could hack!), and | guess that if anyone still thinks so after my denial, so much the better.

(4) One very positive finding A couple of people were worried about my health or that of my
wife. When | read that, an involuntary giggle emerged. But it was certainly not a derisive
giggle, but rather, an smile that accidentally overfiowed. Lurking somewhere in the general
diatribe was this incongruous, sincere human feeling. | was genuinely touched. In a world
permeated with daily inconsequential "Howareyou-fine-andyourself-fine" here were some
people who really wanted to know. Bravo - there is hope for our species

We are well, thank you. And yourseives?

Troubleshooting: Always a Connection

Things always seem to break and go wrong. Some people are exceptionally gifted at doing
repair. By this | am not necessarily referring to a highly trained service rep who knows every
detail of his or her associated products, but rather to the person who routinely just knows how to
fix things: fix a car, fix a garbage disposer, debug a computer program, or even diagnose an
illness. | think part of this is a matter of recognizing the interconnectivity of systems, and
associating trouble in one part of the system with causes that may seem remote. Not remotely

possible, just not close by in the system.

This association of a particular problem with a cause that is seemingly quite remote is
something we have previously noted [1]. And the clues are usually there!

Some years back, | purchased an inexpensive AM/FM receiver, and was quite satisfied with
it, and purchased several more Right out of the box, one of them did not work When you
turned it-on, the front panel was a solid yellow - no letters or numbers, and there was no sound.
Of course | returned it for a working unit. Some time later, one of my receivers developed an
intermittent. 1t would sputter and eventually the yellow screen would go blank and ali sound
would stop. Like most of these, it could be "repaired” with a gentle tap, or a slight twist Clearly,
there was a poor connection somewhere. It would work for a while: perhaps 10 days, or
perhaps 10 minutes. But these things don't get better. Eventually you have to get around to
fixing it or throwing it out. | took the cover off. '

Poking around inside with a pencil eraser, | found that pressing the circuit board just about
anywhere could activate/deactivate the intermittent. | wasn't getting any new information, and
actually exposing the bottom of the board (not just removing the cover) looked daunting But
then | saw a red wire that did not belong there. It was soldered between a resistor lead on the
top of the board and a power transistor pin. It was an after-manufacture repair! But it was also

evidently well repaired.
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Now | am motivated to get the board exposed, and while this is seldom easy, | do get it
apart What | find is that one of the screws that holds the board down used a hole in the heat
- sink as an anchor. The heat sink is attached to the power transistor in question. If, during
manufacture, you don't get the heat sink completely flush before wave soldering, when you now
tighten the screw, it pulls down the heat sink and thereby forces the power transistors leads
further through the board, sometimes breaking the pc traces. Possibly this was a known failure
mode, and since exposing the board is a lot of trouble, quite likely the manufacturer (or service)
just fixed the bad one with the top-of-the-board wire. This is not unreasonable. Apparently,
also at times, one trace broke and was repaired, while the next trace along the line was not
completely separated, but broke later.

The point is that this took me longer than it should have. | had information that | did not use.
| knew that original units could be bad in exactly the way mine eventually went bad, and | knew
that this failure was apparently not uncommon (I had now seen two).

Now, recently | had a troubleshooting experience that was non-electronic but which involved
our shipping system. A customer notified me that he had received his order but he thought
perhaps that a couple of items were missing. Since the order was recent, | had my shipping
checkoff forms readily available, and it seemed that the items he was missing were circled as
sent. Further, | had packaged two "everything" orders at that time. Rarely (never before) do
we get two full orders on the same day, but it did happen this time. Note that this is my first clue
of something unigue happening. Another different thing | thought of was that | had just revised -
the shipping form and was using the new version for the first time. Looking at the forms for the
two customers, | saw that the missing volumes were circled for both customers, but with a
different color for the two cases, indicating that they were in different boxes and shipped on
different days OK! Did | put them in the wrong box? So | check the postal receipts, expecting
the total weight for the packages to one customer to be much greater than for the other. The
" individual boxes and the totals were almost identical. The totals added up to within a few
ounces of each other - about 28 pounds total.

But checking other postage receipts, | saw that a full orders should have been about 32
pounds. Clearly | had messed up both orders - but how. Well, the revised form might have
played some minor role in that | was circling in new places as | gathered items. But what had
to be the main difficulty was doing two in paraliel. In preparing two orders, | used one of the
forms to gather the materials for both customers, and then | merely copied the form for the
second customer, But | made a mistake in copying, and drew around three extra items. The
first boxes then were shipped to both customers. The next day, in packaging the remainder, |
again used only one of the two forms, and this time apparently, it was the bogus copy.

So the procedure might be something like: (1) Wow - this is weird! (2) What is unigue (new,
just different) about this case? (3) By what round-about unlikely path did this happen?

Do we learn? | guess not - speaking for myself. After collecting examples for years and
writing about trouble-shooting, | still don't see it coming. Just a day ago my wife called me with
the welcome news that the washing machine was leaking. When | looked inside the tub, | saw
what was clearly not ordinary laundry. | saw it but it did not register as significant - as it should
have. Of course.l pulled the machine out and got the back off, and after a bit, It could be seen
that water had not leaked from any particular bad connection, etc., but rather, somewhat
generally over the whole tub. It came over the top. Why? Well, as far as we can tell it was
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because the unusual laundry was some sort of quilt material which apparently did not soak up
water as fast as other laundry does. Between quilt, trapped air, and the usual water input,
there was more than a tub's worth. That's all that was wrong. That which was different was
significant.

In years past, we have more or less marveled at the way a remote, supposedly unrelated
and unimportant change in one part of the system can cause a problem locally. The phrase
"only once in a million years" comes to mind. Today however, | think that this sort of
"interconnectedness” is much easier to accept. The world is more interconnected and more
complex of course, but the real credit for this revelation must go to the people who write those
diabolic operating systems for computers. in the good old days of DOS, when we installed a
new program it might tell us to change a config file entry, or something of that nature, and then if
something went wrong with an existing program, we had a fairly good idea where to look for the
interference. Today automatic install wizards do the whole thing. We just sort of expect
working programs to fail when we install something new. Yes - we know there is no possible
connection between the two, but we are never surprised when it does happen

Once again - something strange has happened! As | finish up this newsletter, there is some
extra space. Whatis unique Well, the body of the newsletter is the sampling material, and it
was done on an earlier version of Word, and every time | change a period, the whole document
seems to jump and transform. What to do? Well, why don't | just tell the original story. Years
ago | had a stereo system and my sophomore roommate had an FM radio and | want to make
his radio an FM tuner to play through my stereo amp. | had done this several times before - just
put in a jack, and tap the high side of the volume control | did this, and it worked as a tuner
But by itself, as a radio, the audio quality was highly distorted. This happened even when you
disconnected the amplifier. It was obvious that my tuner modifications should not affect the
radio, especially when the output cable was disconnected. What was wrong?

Well, in putting the radio back together, I noticed, but promptly forgot, that | was missing one
of the three lockwashers. Missing lockwashers are unimportant, except, where was it. Well, the
washer was steel and the radio had a speaker which has a strong magnet. The washer had
jumped into the speaker, and was causing the scratchy distorted sound. | have absolutely no
recollection how | found this - | do recall my roommate being impatient with my explanation that
| could not have done anything to hurt his radio - so | guess | was looking hard. But | am
absolutely sure it was not because | made the connection between the unique missing
lockwasher and the simultaneous poor sound. These things we notice after the fact.
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Note that the topic discussed in this issue is essentially "Golden Rule No. 1" from AN-132
There we mentioned a problem with a stray lockwasher and a speaker magnet.
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