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In this issue, we conclude the presentation on Digital Filtering - the Basic Elements of Digital
Signal Processing. Next issue we expect to move on to sampling. In the analog corner this
issue, we consider the compensation of a second-order network for inherent gain.

Analog Signal Processing Corner

Reducing the Accumulating Gain - via Thévenin -by Bernie Hutchins

As an instructor of electrical engineering, | often wonder at what point in our instructional program
we manage to drive at least some good students away from the field. | suspect it is often when we
present them with formal methods and apply them to highly contrived and exceptionally dull examples.
Students come with some basic knowledge of electronics and computers, and often substantial
knowledge of specific applications and products. They want to know about CD players, about image
processing, about artificial intelligence, and that sort of exciting things Instead we give them
complicated networks of many resistors and ask them to set up loop and/or node equations and solve
them. Perhaps the goal is to show that the whole mess is equivalent to just one or two resistors.
(Thévenin and Norton equivalents, etc.) Not too hard, but it sure doesn't look like anything
real. In consequence, when in later courses (if they haven't left) when we actually show that
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something real and practical can be understood by "dropping the name" of something formal, they
seem shocked. They had hoped to never hear the term again, and had supposed it only applied to
something theoretical.

tn analog filter design, it is frequenitly the case that the filter employed has a gain that is not what

we want, and may even be intolerably high or low. In EN#192 (8) which is part of Chapter 3 of Analog
Signal Processing we have one of our "see problems at end of chapter” for which we do not give the
actual problem, and which we have been attacking individually in this Analog Signal Processing
Corner in recent issues. There and in some examples [EN#192 (25)] we want to replace a resistor in
the network with two resistors in order to reduce the gain. Generally when [ discuss this in class, 1 can
just say "This is just the same thing as the Thévenin equivalent - which you remember" and get away
with it In the general case, the students remember just enough about Thévenin equivalents to
immediately grasp what we are doing (they seem amused that we have reached a practical example).
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Fig. 1c A cumbersome way of I
reducing gain

Fig. 1d A convenient network for
reducing gain

Fig. 1a shows a conventional Sallen-Key low-pass which has a dc¢ gain of K, where we expect that
K is between 1 and 3 in practical cases. Particularly in cascade arrangements, these section gains
can multiply to an overall gain that is so large we may be "clipping" against the power supply by the
time we reach the output. To avoid this, we might think of arranging for the input to be of a
compensating lower level. But this may result in problems with signal-to-noise (signal level
decreased against a constant noise level) or with offset and drift (an offset of 1 mV is not much with a
signal of 1V amplitude, but would likely be a problem if the signal were say, 3 mV).

{continues on page 32)
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5. SPECIAL TOPICS IN FILTER DESIGN

5a. TYPE TRANSFORMATIONS

5a-1 Introduction

For the most part, the examples we have used above have involved low-pass
frequency responses. In fact, low-pass filters are likely the most used in practical
applications, and there is a tradition in filter studies to derive other types of filters from
low-pass "prototypes." On the other hand, for most of the design methods we have
looked at, it is not at all difficult to modify the input specifications so that high-pass,
band-pass, and other desired responses are obtained directly. [Some responses are
prohibited: for example, we can't have an 1V digital filter design that does not begin
with an analog prototype that does not go to zero at infinity. Shortly we shall see that
even length FIR filters that do not go to zero at half the sampling frequency should be
avoided.] :

Because we often prefer to just plug in the actual specifications, our interest in
transforming one type of digital filter to another is more limited. For one thing,
considerable insight into filters can be obtained by studying the relationships between
different types. For another, it may be possible to easily or trivially implement a second
needed response once one filter is in place.

5a-2 Methods of Type Transformation

When we consider the ways in which a low-pass filter might be converted to a band-
pass or a high-pass, a number of possibilities come to mind. First, it might seem trivial
to obtain a high-pass by subtracting a low-pass response from a constant. (When we
consider the issue of phase however, the picture may become much more
complicated.) Another simple idea would be to flip the response about half the
sampling frequency somehow . (If the high-pass cutoff does not end up where we
wanted it, we would likely be able to just choose a different "prototype" low-pass
cutoff) A third method (a generalization of this flip actually), would be a rotation of the
response in the frequency domain, often thought of as a "modulation,” usually obtained
through the time-domain muitiplication of the impulse response by a sinusoidal
sequence.

Fig. 44 and Fig 45 illustrate a good number of the ideas that are most important
here. The filters of Fig. 44 are length 25 (odd) while those of Fig 45 are length 26
(even). Fig. 44a shows the impulse response and the magnitude of the frequency
response for a length 25 low-pass with a cutoff at 0.15 (relative to a sampling
frequency of 1). Here we have used a least squared error method - any similar
method would illustrate our points here. Glancing over at Fig. 45a, we see a very
similar-looking length 26 filter.
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Fig 44b and Fig. 44c show the two notions of a "corresponding” high-pass. Fig.
44b can be thought of as a compliment (its cutoff is also 0.15) while Fig. 44¢ is the
"flipped" version (its cutoff is 0.35). These two modifications were obtained simply by
changing the input specifications to the design program. Results identical to Fig 44b
and Fig. 44c are seen in Fig 44e and Fig. 44f, respectively. These two re-derivations
illustrate methods of conversion of the Fig. 44a low-pass into these high-pass results.

With some lack of caution, we might suppose that we could write:
Hi(€”) = 1- Hu(e®) (812)

This is perfectly correct, but we must be careful not to suppose that understanding this
is merely a matter of considering the magnitude plots shown. In particular, we have
seen that it is necessary when specifying a filter's frequency response to consider the
phase as well as the magnitude. What this means is that there is a phase associated
with H ("} and we must choose the same phase for the "1" in equation (81a), and will
end up with the same phase for Hy(e’®). This need not be difficult in all cases. In the
FIR examples here, the "1" has the same linear phase as the low-pass. This is merely
the delay at the center of the impulse response. Accordingly we design the all-pass
filter of Fig. 44d: just a delay of 12 units (the magnitude response is of course just 1).
Corresponding to equation (81a) we have the time-domain equation.

hu(n) = 8(n-12) - hy(n) | (81b)

This we see by study of Fig. 44a, Fig. 44d, and Fig. 44e.

Fig. 44f was obtained from Fig. 44a simply by changing the sign of every other term-
of the impulse response (with the timing set here, the center tap is not inverted). One
simple way to look at this is as a modulation. The time-domain sequence is muitiplied
by the sequence (-1)", which is a sequence corresponding to the sampling of a cosine
of half the sampling frequency. Accordingly, the low-pass response {centered at 0
frequency ) is convolved with a "spike” at half the sampling frequency, shifting it to be
centered at half the sampling frequency, resulting in the high-pass.

Alternatively, and more generally, we observe that through the use of the z-
transform relationship, we can find a "flipped” version of a transfer function, H(-2) as:

Hiz)= Z h(ny(2" = X (1)°hmn)z" (82)
n=-co n=-0o

which equates alternating the signs in an impulse response with a flipping of the
features (poles and zeros) in the z-plane, about the imaginary axis, relative to the usual
notion of frequency as one goes around the unit circle.
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So far, we only considered Fig 45a, the successful length 26 low-pass it might
seem that the same findings from Fig. 44 would again appear. However, the even
length case makes a difference. In particular, any even length, even symmetry, FIR
filter must have a zero at z=-1.  One easy way to see this is that any sequence
representing half the sampling frequency, of which (-1)" is a good example, when
weighted by filter taps of this symmetry, will always have a +1 on one tap anda-1on
the symmetric tap: in pairs, and collectively summing to zero output of the FIR
summation.

Accordingly, we see a failure when trying to form high-pass filters in Fig. 45b and
Fig. 45¢c In these direct designs, the specifications are asking for a response value of
1 at frequency 0.5, while the resulting filter must have a response of 0 at frequency 05
in addition to this local error around 0.5, relatively more error overall is clearly evident,
We are therefore strongly warned against trying even length even symmetry for high-
pass filters. And, as is also clear, the all-pass, Fig. 45d, does not work, defeating the
subtraction method, Fig. 45e, which is nonetheless, equivalent to the direct design
attempt of Fig. 45b.

Perhaps surprisingly now, we find that the modulation method seems to work - the
magnitude response of Fig. 45a being flipped in Fig. 45f. To understand this, we must
note that the impulse response in Fig. 45f now had odd rather than even symmetry,
with the center of symmetry being 12.5. This adds a phase of n/2 to the phase
response, which may or may not be of any consequence depending on the application.

Foliowing up on the observation of Fig. 45f, we suppose that we might be able to
get the subtraction method to work for cases of even length if we were to make
adjustments to the phase response. Clearly for example, we get a perfectly flat all-
pass for length 26 if we were to set the delay for 13 rather than for 12.5. In this case,
the impulse response would look like Fig. 44d, except the tap that is non-zero (equal to
1 in fact) would be at 13 rather than at 12. At the same time, if we adjust the phase of
the length 26 low-pass for an additional half unit of delay, we will find the subtraction
method to work.

5a-3 Modulation Methods and Bandpass

Above we saw that a special case of modulation, multiplication by the sequence
(-1)", shifted a frequency response by a frequency equal to half the sampling rate,
which was the same as a flip of the z-plane. In @ more general case, we could consider
multiplying the impulse response of a filter, hs(n) by cos(nwo) to give ha(n):

ha(n} = cos(nwo)h(n) (83)
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The DTFT of hy(n) is thus:

o0
Hoe®)= £ cos(nag)hs(nye?™
n=-co

«©
(12) T (& + e 9)hy(n)e™

n=-co

(1/2) Hy( @9 + (1/2) (&™) (84)

This indicates that the multiplication (modulation) resuits in two copies of the low-pass,
one shifted up, and the other shifted down. This is a method we can easily use to
produce a band-pass response, for example.

Fig. 46 shows an example where a low-pass of length 29 with cutoff 0.1 is
moduiated to a center frequency of 0.3. Here we need to keep in mind that the low-
pass response is centered about zero frequency, so the plot only shows half of it, which
is one and a half ripples. Shifting this response so that it is centered about 0.3 now
shows a full three ripples. We note here, as in the case of Fig. 45f, the symmetry of
the impulse response is upset by the modulation.  In some special cases, a simpler
result is found. Fig. 47 shows the case similar to Fig. 46, except here the response is.
shifted to 0.25 Here the symmetry is maintained, and note also that half the taps are .

set to zero; This is the consequence of the modulating signal being cos(nn/2).

5a-4 Flipping the Response of an lIR Filter

Above we saw that it is possible to flip a frequency response by looking at H(-z),
which we associated with a multiplication of the impulse response by (-1)", equation
(82). In the case where H(z) is in fact an FIR filter, the filter coefficients are the same
as the impulse response h(n) themseives. inthe case of an lIR filter, the filter
coefficients of course determine the impulse response, but they are not the same thing.
Typically we would write an IIR filter's transfer function as:

H@Z) = (bo+ b1z + boz? + bz + .. )/ (o + iz + 3z + 22" + ) (852)
= N(z) / D(2) (85b)

From this we observe two things. First, if we are looking for H(-z), we find this by
changing the signs of every other term in the numerator, and in the denominator The
second thing is that we could, if we wished, flip just N(z) or D(z) individually, just to see
what happens, if nothing else. In the case of the FIR, we thought of a flipping of the
z-plane about the imaginary axis In the case of flipping N(z), only the zeros are
flipped. In the case of flipping D(z), only the poles are flipped.
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Low-pass (a, b) modulated by cos(2re 0.3en) resuits in band-pass (c,d)
centered about 0 3. This is a typical general case where the symmetry
of the impulse response is upset It may be a fine filter in many

applications however.

low-pass low-pass
025
12
02 a) b)
015 '
01 08
o605 08
0 % 04
005 02
01 0 .
0 10 20 30 0 [+h] 02 03 04 05
band-pass band-pass

— 086

0s di
04
03
02
Q1
0

0 10 20 30 [t} 01 02 03 04 05

EN#199 (8)

w-pass (a, b) modulated by cos(2re 0.25en) results in band-pass (c,d)
centered about 0.25. This case preserves the linear-phase symmetry,
and note that every other tap becomes zero.
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Fig. 48a shows an interesting example of a 10th-order Butterworth low-pass
designed by Bilinear z-transform method. In Fig. 48b, we have flipped the numerator
N(z), making it N(-z). In this case, the 10 zeros which are at z=-1 in the low-pass filter
move to z=+1, while the poles are not moved. Here we get a high-pass with the cutoff
the same as the low-pass (the complimentary high-pass). We can think of the cutoff
remaining in the same range as being a consequence of the poles not moving, and the
poles being the major infiuence on the cutoff.

Fig. 48c shows the case of retaining N(z) while replacing D(z) with D(-z), flipping the
poles while leaving the zeros alone. Now the poles move to the negative side of the
unit circle, and the cutoff moves with them, while the zeros remain at z=-1, so the
response remains low-pass. Finally, in Fig. 48d we have H{-z)=N(-z)/D(-z), so both
the poles and zeros flip, and both the cutoff frequency and the type change. Notall
other examples will be as clean as this Butterworth, Bilinear z-Transform example, but
the general ideas will still be seen.

This example illustrates an advantage of implementation that comes from the type-
transformation point of view. Suppose we want to separate a signal into high- and
low-frequency bands using Fig. 48a and Fig. 48b. We would only need to implement
the low-pass, and obtaining the high-pass would then only be a matter of forming a
separate feed-forward sum - the feedback (poles) would be common to both. This
simple soultion is obvious once we have studied the type-transformation idea.
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Fig. 48 Additional useful IIR filters can be obtaining by flipping every other
sign in the numerator, denominator, or both.
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5b. HILBERT TRANSFORMS

5b-1 Introduction

In our filter designs, we have paid primary attention to magnitude response, and
when we have worried about phase, we have been primarily concerned with linear
phase (although often, it was handed to us automatically in our design procedures). In
addition, while we certainly have interest in such filters as high-pass, band-pass, and
notch filters (in addition to the popular low-pass types), we often have to make up
excuses for looking at all-pass filters. Clearly, since all-pass filters have a flat
magnitude response, it is only their phase properties that are of interest. Typically, we
are often concerned with adjusting or "equalizing" an existing phase response, without
effecting the magnitude response, by cascading a compensating all-pass.

in one special case, we have a particular phase response in mind. This is the so-
called "Hilbert Transformer" which offers a 90 degree phase shift (phase difference,
actually) over a wide bandwidth. In essence, we would like to input a signal that
contains a number of frequencies inside an allowed bandwidth, and have at the output,
these same frequencies, at their original amplitudes, but with 90 degrees of phase
added to each one. In simplest terms, we would input a sine and get out a cosine. Our
purpose is to employ both the sine and the cosine (so-called "quadrature" components)
to do something useful. For example, such networks are useful for shifting
frequencies, and are extensively used in communications applications.
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Fig. 49 Hilbert transformer structure (2) has odd symmetric taps resulting in a 90°
phase difference (b).

-~

b) '~.  phase of center tap
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5b-2 Standard Design of Hilbert Transformers

In practice, realistically, we look for a Hilbert transformer to take a single input, and
to produce two outputs which differ in phase by 90 degrees (Fig. 49a). Typically one
of the outputs is the center tap of an FIR delay line In consequence, it is a linear
phase all-pass with phase (N-1)w/2. The other ocutput is a more usual sum of many
taps, similar to other FIR filters except for the odd symmetry of the taps (Fig 50a).

-Note that the center tap must be zero for this sum, due to the odd symmetry.

Fig. 49b shows the general effect of even or odd symmetry on phase response.
Suppose that the phase at the center tap is along the axis shown Now consider the
tap h(1) to be one tap to the right of center, which has an amplitude shown, and a
phase delay relative to the center of T, where T is the delay between taps  With even
symmetry, the tap h(-1) will have the same ampilitude but an opposite phase (the
“deiay" is -T), relative to h(1). Completing the paraltelogram of the vector (phasor) sum
we see that the resulting phase is the same as the phase at the center Now we
suppose that the symmetry is odd such that h'(-1) is -h(-1), and here the vector sum is
at 90 degrees relative to the center tap phase. It is easy to see that the phase results
for either the even symmetry (linear phase) or odd symmetry (Hilbert transformer) are
general for any set of symmetric taps, and to sums of symmetric taps.  Accordingly, the
80 degree phase shift is perfect and automatic. Accordingly the interesting part of the
design is not in the phase shift, but in obtaining a flat amplitude response. The output
of the center tap is of course perfectly flat, but the sum is not

There are many ways of designing Hilbert transformers  (In fact, we can easily
design for phase differences other than 90 degrees.) Instead of taking a more general:
view, we will restrict our example to the use of inverse DTFT, equation (4), with
windowing. In specifying H(e'*) we will set the magnitude to 1, so we have only to enter:
the phase. This we do by specifying the 90 degree phase as €™, which is justj. On
the frequency interval -z to +x, we integrate with H(e*)=j from -r to 0 and H(e"*)=-j from
0 to +x. So using the inverse DTFT we get:

0 i/
h(n)=(‘1l21:)j j€“de - (112n) [ je™ do = (1nm)1- cos(nm)] ( 86)
0

-

These taps turn out to be (2/nz) for odd values of n, zero for even n. (These are the
same as the values of Fourier series coefficients for a square wave - the mathematics
is the same.) Note that this is a non-causal filter, and that in most realizations, there
will be some overall delay (Fig. 49a). But relative to the center tap, the result is what

we want.

Fig 50 shows an example using the resuit of using equation (86). Fig. 50a shows
the impulse response of a length 35 Hilbert transformer, while Fig. 50b shows the
magnitude response. We note that this magnitude response approximates a value of
1, showing the usual Gibbs phenomenon  In most applications, the success of a
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system employing a Hilbert transformer depends on having both the phase and the
amplitude within certain error bounds. Here the phase is perfect, but we probably have
to do better with keeping the in-band ampiitude flatter. [For example, in a frequency
shifter (single sideband modulator), either amplitude or phase errors can result in
unsatisfactory suppression of the unwanted sideband ]

Fig. 50¢ shows the Hilbert transformer taps of Fig. 50a windowed with a Hamming
window Very much like our other applications of windowing, we see from the
magnitude response of Fig 50d that the in-band response (say from about 0.05 to
0.45) is much flatter. At the same time, the bandwidth is probably slightly reduced
relative to Fig. 50b, but the net improvement is extremely useful. In cases where there
is still insufficient bandwidth, longer filters and/or more sophisticated design methods
are available.

It is worth emphasizing again that it is the phase difference of 90 degrees between
the two outputs that is exploited. We are not generally concerned with phase relative
to the input. And, the phase relative to the input is a function of frequency Thus if the
phase of a particular component of frequency « at the input is ¢o(w), the phase at the
center tap will be $o(w)+(N-1)a/2, and at the Hilbert transformer output, ¢o(w)
+(N-1)o/2+xn/2. Only the phase difference n/2 is independent of .

Finally, our Hilbert transformers are used for broad-band phase differencing. As
noted, Fig. 50d would be useful for frequencies from about 0.05 to about 0 45. That s,
we expect frequency to vary but to be limited to some range. If on the other hand it
were the case that we only needed quadrature components at a singie known
frequency, we would not need to go to the trouble of constructing a Hilbert transformer.
Instead, if we have the original signal, and any other phase of the same signal
(meaning in simplest terms, perhaps just a single delay of this signal), we can form an
appropriate linear combination of the two available phases to form a 90 degree version
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5c. MINIMUM PHASE

5¢c-1 Introduction

Linear phase filters are extremely popular and useful, offering a constant time delay
at all frequencies and thereby minimizing phase distortlon Also, many (perhaps most)
FIR filter design procedures automatically provide linear phase (or zero phase - simply
converted to linear phase by using a delay) The delay of a linear phase filter
corresponds to approximately half its length. In some sense, this is a fairly large delay,
but any delay, within limits, is often irrelevant. For example, a delay of tens to '
hundreds of milliseconds in a CD player are of no importance, considering that the
actual music was recorded in the past, and as long as music comes out within a few
seconds of pushing a button. Delays may be important in other systems however,
such as in control loops where delays may slow damping (potential instability).

5¢-2 Properties of Reciprocal Zeros

Linear phase filters have zeros that come in reciprocals, and at the same time,
complex conjugate pairs By this we mean that if there is a zero at angle 6 and
radius r, there must be three other zeros that have also been determined The four
zeros are at angles 16 for the angle and at r and 1/r for the radii. This is the most
general case - zeros coming in quads. There are additional cases: the zeros may be
on the unit circle (pairs - conjugates that are "self reciprocal"), may be real atrand 1/r
(pairs that are reciprocal, with no conjugation), or we may have one or more zeros at
z=-1and at z=+1

5c¢-3 Effect on Magnitude Response

We are interested in the effects of reciprocal zeros, on the magnitude response, and
on the phase response. Fig. 51 shows a typical reciprocal pair. We know that an FIR
transfer function can be represented (factored) in terms of its zeros (z4, z3, z3, ..) as:

H(z) = (z-z1)(z-Zz2)(z-23).. (87a)

If we seek the magnitude of the transfer function (the magnitude of the frequency
response), we can place magnitude bars on each factor:

IH@)]| = [(z-z)ll(z-z2ll(z-23)| .. (87b)

BEoDSP - Filters (95) EN#199 (13)



Fig. 52 Phase diagrams used to understand

minimum phase as zeros inside
the unit circle.
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Accordingly, we recognize that the magnitude of the frequency response is proportional
to the product of the distances from any point z of interest (in this case, a point on the
unit circle corresponding to a frequency o) to the zero. Thatis, an actual distance in
the complex plane. If we seek to determine (or compare) the effect of any one zero, we
need to see how this distance varies with frequency.

In Fig. 51 we show the pair of reciprocal zeros and a typical frequency point e,
The distances from this typical point to the zeros are ry and r; as shown. These
distanced ry and r, are easily calculated in terms of the angle ¢ using the "Law of
Cosines.”

r2=12+r2- 2.1.rcos(¢) (88a)

2 = 12 + (1/)2 - 2.1-(1/r)-cos(d) (88b)

From these, it is clear that ry = ror. What this means is that the effects of a reciprocal
zero outside the unit circle, as compared to one inside the unit circle, differ only by a
constant (r) as far as the magnitude response is concermned. Put another way, if we
take a particular FIR filter and flip one or more zeros to reciprocal positions, we expect
to change the overall gain of the filter, but not the shape of the magnitude in any way.
Most simply, we anticipate a choice of reciprocal positions if we can make use of it.

It is well to mention here that we are accustomed to linear phase filters, so when we:
think of flipping a particutar zero, we probably expect to find the new position already
occupied. In such a case, we would end up with a second-order zero. There is nothing:
wrong with this, but likely we could better use the zero by putting it somewhere else.

As we shall see, the practical design of minimum phase filters involve a "prototype"
linear phase filter. Below we will also need to look carefully at linear phase in order to
see how minimum phase might work. So while we are intimately involved with linear
phase even here, we must keep in mind our minimum phase goal.

5c-4 Effect on Phase Response

In order to see the effect of the choice of reciprocal positions on phase response,
we need to recognize that FIR filters, as we generally consider them, have poles at the
origin of the unit circle. These we tend to ignore because they have no effect on the
magnitude response, being at unit distance for all frequencies. Perhaps we can
see this best by considering the simplest possible linear phase fiiter:

Hz) =z = (1/2) (89)
This is a filter with unity gain and a linear phase equal to a unit delay. It's just a delay!
Writing it as (1/z) makes the point that in the z-plane (not the z* plane) we have a pole

at z=0. This zero is responsible for the linear phase, as is seen in Fig. 52a. Here we
will find it sufficient to examine phase as the angle spanned by a region of frequency
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as seen from the singularity. The phase of a pole is the negative of that of a zerd.
Equivalently we can span angles for poles from low to high frequency, and for zeros
from high to low frequencies.

Fig. 52b expands the view to a length three linear phase filter. This filter has two
poles at z=0 and zeros at r and 1/r. The phase angles associated with the singularities
are as shown by the arrows. The phase due to the two poles totals twice that of Fig.
52a. The phase of the zero inside the unit circle (clockwise) opposes that of the poles
(counter-clockwise), while the phase due to the zero outside the unit circle (counter-
clockwise) adds to that of the poles. Note that Fig. 52a is a special case of Fig. 52b
where r=0 so that one zero cancels one pole, leaving one net pole (Fig. 52a} with a
zero at infinity.

Fig. 52¢ considers the case of a reciprocal pair of zeros which we can consider a
component of a larger linear phase filter. We can think of this as Fig. 52b rotated, and
the basic geometry of the angles is the same. Since we know this is a linear phase
filter, it must be true that the phase of the inside zero, minus the phase of the outside
zero, cancels the phase of one of the poles, leaving the linear phase term of the single
pole. While this can be shown mathematically, it is aiso convincing to draw a variety of
cases (arbitrary angle, r, and circle arc length) with compass and ruler, and to measure
the angles with a protractor.

5¢c-5 Choice for Minimum Phase

While our study of reciprocal placement of zeros, and the poles at z=0 reveals much -
about linear phase, here we are concerning ourselves with minimum phase. So when
we make a choice about placing a zero at r or at 1/r for a particular case, we expect not
to effect the shape of the frequency response (only the gain) but to have a major effect
on the phase response. Thus we compare the choice of a zero outside (Fig. 52d) and
a zero inside (Fig. 52e). It is thus clear that when the zero is outside, the phases add
(maximal phase) while when the zero is inside, the phases oppose. Another simple
way to understand this is that when the zero is inside, it is closer to the pole, and the
pole and zero have a tendency to "sheild" each other. From Fig 52e we see that there
is a net phase in favor of the zero.

5¢c-6 A Strategy for Minimum Phase

We might well thus suppose that a viable strategy for obtaining a minimum phase
filter would be to first design a FIR filter that has the magnitude property we want
Then we would find the zeros, and any zeros that are outside the unit circle will be
replaced with zeros inside. Zeros on the unit circle will be kept. If we do this, we in fact
find an impulse response that is weighted toward the input side, consistent with the

notion of less delay.
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If we actually do the suggested experiment, we will likely need to get an initial test
filter by placing zeros in random (conjugate) pairs. As mentioned, if we instead start
with standard FIR design programs, we likely get linear phase filters. To make these
into minimum phase filters, we merely flip outside zeros to reciprocal zeros inside,
placing them on top of existing reciprocal zeros. This is correct - just not that useful.
Another way to look at this undesirable restriction is that in giving up linear phase
(asking for minimum phase) we release the symmetry constraints on the impulse
response, giving us potentially about twice the degrees of freedoni; which then become
available to help tailor the magnitude response to a better shape. To get minimum
phase for this improved shape, we only have the lesser constraint of keeping all zeros
inside or on the unit circle.

5¢-7 From Equiripple to Minimum Phase

Given that we should be able to get about twice the degrees of freedom through the
use of minimum phase, we might consider an approach where we start with an
oversized linear phase design with the expectation of cutting it down. One popular
scheme is based on an equiripple linear-phase filter

The first step is to start with an odd length linear phase filter of about twice the final
size desired (Fig. 53). One then adds the stopband error (ripple amplitude) to the
response (Fig. 54a). This is just a matter of adding the error to the center tap of the
impulse response. The symmetry about the center remains, so we still have linear
phase and reciprocal zeros. At the same time, the stopband zeros have been drawn
together in pairs, becoming second-order {Fig. 54b). The entire response is now
positive (or zero) and the zeros of the response are accordingly rounded as seen in Fig.
54.

We then reflect all the zeros that are outside the unit circle inside. This makes all
these second-order as well. The magnitude response is the same as it was when the
error was added (except for an overall multiplier). Since all zeros are second order, this
response is the squared magnitude of same other filter of about half the length. This
other filter is clearly equiripple. It is found by making all zeros first order.

In practical terms, once the error is added to the center of the impulse response, it is
necessary to recompute the zeros from the modified h(n), all of which move at least a
little. When these are found, it should be the case that some will be double zeros on
the unit circle, while others will be in reciprocal pairs. It is then usually possible to just
keep the zeros with magnitude less than one. This is first because this is what we want
for the reciprocal pairs. Curiously, this likely even works for the unit circle pairs.
Because of small errors and the second-order nature of these zeros, with the usual root
finders, one of each pair seems to end up ever so slightly outside the unit circle while
the other ends up ever so slightly inside, so a sorting with reference to one works.

Fig. 55 and Fig. 56 show the final minimum phase filter. We note from Fig. 55b that
the response is equiripple. (Because this filter is only half the length of the original
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equiripple (Fig. 53b) its performance is far less impressive. The example here was
chosen to most clearly illustrate the ideas involved, not for the final filter achieved.)
From the impulse response (Fig. 55a) we see that the larger tap weights are skewed
toward the input (low index) end, which helps us to understand how it is that the overall
delay of the minimum phase filter is less. We are of course interested in looking at
the phase of the minumum phase filter, and this we see in Fig. 56. For comparison, the
phase response of a linear-phase filter of the same length is plotted. Our main-region
of interest is the passband, from O to about 0.15. In this region, we see that the
minimum phase fiiter has reached about =/2 total phase. Note that this phase
response is not a straight line, but wiggles slightly. In contrast, the linear phase filter
has cycled through =, and continued to almost 3= total phase.

equiripple impulse response
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frequency response

Fig. 53 Minimum phase design begins with an equiripple filter of about twice
the final length desired. Note that (c) shows the actual frequency response

{non-causal).
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Fig. 54a By adding the magnitude of the stopband ripple to the center tap of the
equiripple prototype, a filter with purely non-negative frequency response results.
Here we show the original response (lower dotted line) and a case where only half
the ripple magnitude has been added (middle dotted line).
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Fig. 54b Here we have a detail of Fig. 54a. As the response is raised, the zeros come
. together in pairs, forming a second-order zero
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Fig. 55 In (&) we have the impulse response of the final minimum phase filter. Note
that the taps are weighted toward the input end. The magnitude response (b) is

equiripple.
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Fig. 56 The all-important phase response of the minimum phase filter (solid line) is

not straight, but in the passband (0 to 0 15) it is far less than that of the comparable

linear phase filter (dotted line).
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5d INTEGRATOR SIMULATION

In Section 2d we looked at the Bilinear z-Transform (BZT) method of lIR filter design, which
we there approached by just giving a substitution to be made. There we had a function of z to
be substituted for the analog frequency variable s. Here we will recast equation (24a) as:

/s « (T/2)(z+1)/(z-1) (90)

where, by flipping the equation over, we hope to thereby establish the point of view that we are
substituting for an analog integrator. s the right side of equation (90) in any sense a discrete
version of an analog integrator? Here we will show that the Bilinear z-Transform is equivalent
to a trapezoidal approximation to an analog integration. The BZT works extremely well (having
several favorable properties which we had no right to expect.) To put this all in perspective, we
will consider, in addition to the BZT, two forms of discrete rectangular integration, and an
integrator approximated by cubics. All these are methods that are simple and fairly well
understood in terms of numerical integration.

5d-1 Rectangular and Trapezoidal Integration

Fig 57a shows a sequence of samples. |f we want to integrate this sequence, we might
want the new value of the integration to be the old value plus the current update. (Again,
these methods originate from cases where we are trying to approximate the integral-of a
continuous-time signal by using.samples of the continuous-time signal.) For example, take
y(n) to be the current value of the integration. We then want:

y(n+1) = y(n) + x(n)T ' (91a)

Here we have what is really rectangular integration, since the update term x(n)T is really a
rectangular area. If we z-Transform this equation we get:

Y(2)z = Y(2) +TX(z) (91b)

or:
Y@X(EZ)= T/(z-1)=Tz"/(1-27) (91¢c)

This is a simple integrator (Fig. 58a) or "accumulator." Clearly however (see Fig. 57b), a
slightly different interpretation of a discrete-time integrator could be:

y(n+1) = y(n) + x{(n+1)T (92a)
Where here we again have an update term x(n+1)T. [Indeed, we really have no preference
between these two possibilities, and this will eventually lead us to look at trapezoidal
integration.] Continuing as above we have:

Y(2)z = Y(z) +TX(2)z (92b)
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Fig. 57 Numerical integration.
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Integrations

(92¢)

and we see that equation (91c) is just a delayed version of (92¢), which obviously had to be the

case. This leads to the integrator of Fig. 58b).

using the trapezoidal area instead. Thus:

Without further delay, lets look at trapezoidal integration, which is shown in Fig. 57c. We
resolve the ambiguity between choice of rectangular areas (forward or backward fooking) by

y(n+1) = y(n) + T[x(n) + x(n+1 2

which has a transfer function:

Since this integration corresponds
(90) [or of equation ( 24a)], as trap

Y(z)/X(z) = (T/2) {z+1] / [2-1]

58c.

corresponding cases of differentiation are: as the

(93a)

(93b)

to 1/s, we can understand the BZT substitution of equation
ezoidal integration. The BZT integrator is shown in Fig.

Traditionally the two case of rectangular integration are not emphasized, although the -

“torward difference" and the "backward

difference.” Both of these are used in control theory and {rarely) for filter design. 1t is natural
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()

y(n) = y(n-1) + Tx(n-1)

or: y(n+1) = y(n} + Tx(n)

) T ( 5 ) y()
| - I y(n) = y(n-1) + Tx(n)

or: y(n+1) = y(n) + Tx(n+1)

x(n)
L
y(n) = y(n-1} + (T/2){x(n) + x(n-1)]
Z or: y(n+1) = y(n) + (T/2)[x(n) + x(n+1)]
x(n-1)

Fig. 58 Discrete time integrators, rectangular (a), (b); trapezoidal (c)

to approximate a derivative by a difference. [As with numerical integration, these things are
much more believable if we suppose the sampling frequency is much larger than that required
by the sampling theorem. That is, the discrete-time approximation is more likely valid when we
have a dense set of samples.]

5d-2 Differentiating

We differentiate a function to obtain its "slope" and in the case of a discrete-time sequence,
we take differences (between consecutive samples usually). If our discrete-time sequence
consists of samples of a continuous-time function, the differences may approximate the
derivative as: -
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dp(n) = (1/T) [ x(n) - x(n-1) ] (94a)
called the "backward difference” or as:
din} = (1/T) [ x(n+1) - x(n) ] (94b)

called the "forward difference.” Looking at the z-transform we have

Do(z) / X(z) = (V/T)[1-2-1] (94c¢)
and
Di(z)/X(z) = (VT)[z-1] (94d)

Since these represent derivatives, we seek to use the z-transforms of equations (94¢) and
(94d) as substitutions for the analog variable s. For the backward difference we would have:

s « (1-z0/7 (95a)
for a mapping of:

z =1/(1-sT) {95b)
while for the forward difference we would have:

s « (z-1)/T ‘ (95¢)
for a mapping:

z=1+sT (95d)

It is easy to show [12] that neither of these mappings is as attractive as BZT. As is obvious
from equation (95d), forward difference merely scales and shifts the s-plane by 1. This is good
as s=0 should be mapped into z=1, but clearly there are stable regions of the s-plane (any and
all with negative real values) that are not mapped into the interior of the unit circle. Neither is
the jQ-axis mapped into the unit circle (Fig. 59a). The mapping of equation (95bj is less
obvious, but the jQ-axis is mapped inside the unit circle but not into the unit circle (Fig. 59b).
Thus stable analog filters are mapped into stable digital filters, but restricting poles to the much
smaller circle generally results in a restricted set of responses which are often just too "wimpy"
to consider. With BZT, the jQ-axis is mapped into the unit circle and the entire left half of the
s-plane becomes the interior of the unit circle in the z-plane.

Note that the mapping of equation (95c), forward difference, is the same as that of one case
of rectangular integration, equation (81c) while the mapping of equation (95a), backward
difference is the other rectangular integration case, equation (92¢). BZT is the average of
{91c) and (92c). ;
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Fig. 59 Forward difference mapping (a) and backward difference mapping (‘b)” Neither is as
good as the BZT mapping (Fig. 15)

5d-3 Cubic Integration

As mentioned, BZT corresponds to trapezoidal integration, only a first-order formulation,
and yet its mapping properties are near ideal (there is the frequency warping). What happens
if we try a higher-order integrator approximation. While second-order would seem to be a
logical next step, here we are going to try third-order (cubic). We do this because we expect
that skipping to third-order might better indicate any improvements, and as we shall see, a
cubic fit has a less ambiguous region of relevance relative to parabolic.

Here is what we will do: First we will choose four points of the sequence. For
convenience, we will choose these points at times -1, 0, 1, and 2. The choice is arbitrary, and
this one simplifies our math. We will then fit a (continuous time) cubic polynomial to these
four points (Fig. 60a). How well do we expect this to work? Well, exactly as was the case with
cubic interpolation (Section 4b-3), we feel pretty confident with the approximation near the
middle (between 0 and 1), less so on the sides (-1 to 0, and 1 to 2), and don't trust the
polynomial at all outside these regions. [Indeed, a polynomial runs off to infinity outside the
points specified (it is a "vertical feature") while we think of signals as staying in range
horizontally. See Fig. 60b.] Accordingly, if we were interpolating extra points, we might well
want to stay in the range of 0 to 1. For our integration, we want to take the new contribution to
the integral to be the area under the cubic polynomial from 0 to 1, not the trapezoid used with
BZT (Fig. 60c). :

So it is a simple matter of assuming a polynomial:
x(t) = at® + bt? +ct +d _ (986)

and we want it to fit the four given points x{-1), x(0), X(1), and x(2). Thus:
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Fig. 60c First- and third-order estimates of area under the curve.

x(-1)= -a+b-c+d (97a)
x(0) = d (97b)
x(1) = a+b+c+d (97¢)
x(2) = 8a+4b+2c+d (97d)

which are easily solved for a, b, ¢, and d:

a=(1/6)[- x(1) +3x(0) - 3x(1) + x(2) ] (98a)

b= (1/2) [ x(-1) - 2x(0) + x(1)] (98b)
¢ = (1/6) [ - 2x(-1) - 3x(0) + 6x(1) - x(2) ] (980)
d = X(0) (98d)
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We now know x(t) in terms of a, b, ¢, and d, which are determined by the given points x(-1),
x(0), x(1) and x(2). The area under the cubic from t=0 to t=1 is a simple matter of integrating
X(t} and we obtain:

A=a/4+b/3+c/2+d (99)
Putting in the results of equation (98) we obtain:
A =-x(-1)/24 + 13x(0)/24 + 13x(1)/24 - x(2)/24 (100)
We now want our integration to be:
y(n+1) = y(n) + A{n) (101a)
=y(n) - x(n-1)/24 + 13x(n)/24 + 13x(n+1)/24 - x(n+2)/24 (101b)

where we have generalized equation (100) to an arbitrary n. When we z-transform equation
(101b) we arrive at our integrator as:

Y(z)/ X(z) =[- 2" + 13 +13z - 2% / 24(z-1) (102)
This gives us our new substitution:
s ¢ 24(z-1)/[-Z"' +13 +13z - 2% (103)

Notice that this result is not all that much different from the BZT. if we can justify throwing out
the first and last terms of the denominator (1 is small compared to 13) and if 24/13 is a good
enough approximation to 2, we get BZT from equation (103). Thus equation (103) can be
thought of, as we would hope, as a refinement on the trapezoidal integration.

5d-4 Using Cubic Integration

Having arrived at the substitution of equation (103) we might suppose we should pursue a
development paralleling that which followed the BZT substitution. What are our prospects in
this regard? One immediate thing to note from equation (103), taken to be a mapping, is that
each analog pole results in three digital poles (not just the one we get with BZT), along with
three zeros. Further, it is easy to show, by example if in no other way, that stable analog poles
can be mapped into unstable digital poles. In addition, because zeros at analog infinity are
mapped into zeros at z=-1, we understand that there is apparently a frequency warping similar
to that with the BZT [which resulted in equation (24d)]. But it is not clear if the corresponding
warping equation can be developed (it is surely much harder than BZT), or if perhaps, the
warping might be so severe as to rule out the cubic integration approach. The prospects do
not look especially promising. _

However we would be prepared to argue that because we are using a superior integration
method, somehow the difficuities with the cubic integration (Cl) method must be resolvable,
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and the resulting digital filter should be a better approximation to the analog filter. Another way
to look at this is to mention that we now have three poles to manipulate to try to get a better
approximation to the analog filter. (In fact, we shall see that the extra two poles provide minor
adjustments contributing to a better approximation.) Accordingly we can here set aside the
issue of obtaining an analytic warping equation, and instead try to determine the warping
empirically after we complete the initial steps of a design. The only seemingly insurmountable
problem is that of the unstable poles we are likely to encounter. This we will get around by
noting that an unstable pole can always be “reflected" inside to a reciprocal positian, giving the
same effect on the shape of the frequency response magnitude. This important result was
worked out in detail for the case of zeros in Section 5¢-3. The same mathematics applies to
the case of reciprocal poles. This is a convenient and often overlooked way to achieve

stability.

(a)

So at this point we are prepared to just try an example. Of course, the algebraic complexity
we saw with BZT [in actually plugging the function of z into a high order T(s}], will be even
worse with Cl. We will accordingly try to see how much we can learn from just a first-order
example. Once we have what appears to be a correct filter, we will back-calcuiate the
frequency warping from the magnitude response of the first-order example. To help show that
this is valid, we will apply the same back-calculation to BZT where we know the tangential

warping well.

Consider the first-order analog low-pass:

T(s)=1/(s+ )
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Fig. 61 BZT design (a) and Ci design (b)
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Fig. 63 Analog, BZT, and Cl designs for a first-order low-pass with cutoff at 0.5 rad/sec.
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where Q. is the 3db cutoff frequency. Making the BZT substitution of equation (21) with T=1,
we obtain a first-order transfer function:

Hezr(z) = (2+1) /[ 2(Qe +2) + (e -2)] (105)

which has a zero at z=-1 and a pole at z = (2-Q.)/(2+Q,). For the case Q. =1, the pole is at
z=1/3 (Fig 61a). The Cl substitution of equation (103) yields a third-order transfer function:

Hol2) = (-2 + 18 #1832 -2% )}/ [-Qc 2" + (13Q, -24) + (13Q +24)z - Q; 2°] (1086)
Because this is third order, finding the poles and zeros must be done numerically. For Q; =1

we find real zeros at 13.9282, -1, and 0.0718 and real poles at -13.7051, 2.6778, and 0.0272.
The only actual concern here are the two poles outside the unit circle. We can however reflect
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Fig. 64 Warping curves for analog (no warping), Cl, and BZT (curve for BZT shows
theoretical as well as "experimental” plot.
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the zeros as well as the poles inside the unit circle. Once this is done, we have zeros at
0.0718, 0.0718, and -1 while the poles are at -0.0730, 0.3734, and 0.0272 (Fig. 61b). Note that
two of the zeros and two of the poles are relatively weak (close to z=0). What remains is the
zero at z=-1 (same as BZT) and the pole at 0.3734 (close to the pole at 1/3 from BZT).

The actual test is of course to compare the frequency responses of BZT and of Cl to each
other, and both to the analog response, and this is shown for Q¢=1in Fig. 62. (Appropriate
gain normalizations have been made.) True enough, the CI result matches the analog result
better; clinging to it up until a frequency of about 0.15 while BZT gives up at a frequency of
about 0.08. Both BZT and Cl depart and head for zero response at haif the sampling
frequency. [Note that the analog cutoff is Q, /2r = 1/2r = 0.159 Hz here.] Fig. 63 shows a
second exampie where the cutoff is lowered to Q.=0.5.

From the plots of Fig. 62 and Fig. 63 it is clear that a frequency warping occurs both in BZT
(which we knew about) and in cubic integration (which we suspected). It can also be seen that
the warping with Cl is less severe, relative to BZT, in the low-frequency region, for example,
around the cutoff frequency. (Both warp severely as frequencies approach 0.5). In order to
get a fuller picture of the warping, we can back-calculate from the response curves. To do this,
we choose a series of response values, and search the magnitude curves for these levels and
then note their corresponding frequencies. For example, if we used Fig. 62 and a level of 0.4,
we would have an analog frequency of about 0.365 while Cl has a frequency of about 0.3 and
BZT a frequency of about 0.27. A computer program can then fairly easily sweep a wide
range of response levels, and plot the BZT and Cl frequencies as a function of the analog
frequency. [Note that we could not use levels less than 0.3 with Fig. 62 or 0.16 with Fig. 63,
and would not be able to scan digital frequencies of much more than 0.3 or 0.4. Instead we
must choose a much lower analog cutoff, perhaps 0.01. This gives a very narrow plot (not
shown), but is perfectly valid.] Fig. 64 shows the warping curves. While we have chosen first-
order and a very low-cutoff (seemingly a special case), the result is general (simple first order,
monotonic, is perhaps the ideal choice). We are able to verify that the warping with Cl is
noticeably less than with BZT, as we supposed should be the consequence of using a better
integrator approximation. Fig. 64 also shows a plot for the theoretical value [eguation (24d)] for
BZT, in close agreement with "experiment." The theoretical warping for Cl was not
established.

REFERENCES (Sections 1-3 of Filter Element)

[1] T.W. Parks and C.S. Burrus, Digital Filter Design, pp 63-67, Wiley (1987)

[2] B. Hutchins, "Subtle Design Considerations for Hamming Windows," Electronotes
Application Note No. AN-319, March 1992

[3] T.W. Parks and C.S. Burrus, Digital Filter Design, pp 69-71, Wiley (1987)

'BEODSP - Filters (113)  EN#199 (31)



[4] B. Hutchins, "Least-Squared Error Filter Design,” Electronotes Application Note No.
AN-315, November 1991

[5] B. Hutchins, "Weighted, Integrated, Least-Squared Error for FIR Filter Design,”
Electronotes Application Note No. 332, August 1995

[6] B. Hutchins, "A General Review of Frequency Sampling Design," Electronotes
Application Note No. AN-337, March 1996

[7] T.W. Parks and J.H. McClellan, "Chebyshev Approximation for Nonrecursive Digital
Filters with Linear Phase," IEEE Trans. Circuit Theory, Vol. CT-19, pp 189-194, March

1971

[8] T.W. Parks and J.H. McClellan, "A Program for the Design of Linear Phase Finite
Impulse Response Filters," IEEE Trans. Audio and Electroacoustics, Vol. AU-20,

No. 3, pp 195-199, August 1972

[9] B. Hutchins, "Extensions of Equiripple FIR Filter Design," Electronotes Application
Note No. AN-311, Nov. 1990 '

[10] B. Hutchins, "Mathematical Considerations Relating to Equiripple Filters,"
Electronotes Application Notes No. AN-342, Feb. 15, 1997

[11] B. Hutchins, "A Simple Equiripple Filter Obtained by Iterating by Hand,"
Electronotes Application Note No. AN-343, Feb. 28, 1997

[12] L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
pp 212-2186, Prentice-Hall (1975)

(End of Filter Element)
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(Thévenin - continued from page 2)

Accordingly we often desire to effectively turn down the input level, for convenience, or on a stage-
by-stage basis for a cascade arrangement {out of necessity). Fig. 1b shows the idea of reducing the
input level by a factor of K so as to end up with unity gain overall. Here we denote this reduced input
voltage as Vr, and named the input resistor Ry, but insist that it be equal to the original R (so as not to
change filter cutoff and/or characteristic). The "T" stands for Thévenin.

There are a number of cumbersome ways to achieve a reduction of input level; for example, a

voltage-divider followed by a buffer (Fig. 1c). We want to just use the approach of replacing the input
resistors with two resistors R* and R** (Fig. 1d). Consider the sub-network of Fig. 1d, which is
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Fig. 2a Gain-reducing sub-network Fig- 26 Thévenin Equivalent

shown in Fig. 2a. We seek a Thévenin equivalent of this, as suggested in Fig. 2b. Thévenin's
theorem tells us that we find the voltage Vr by finding the open circuit voitage of Fig. 2a. That s, find
the voltage V' in Fig. 2a for the case where nothing else is connected to the junction point of R* and
R**. This is just a voltage divider:

Vr= Vin R*™/(R*+R") (M

and the Thévenin resistance Ry is found by shorting all voltage sources and determining the
resistance looking back in from the V' junction. This is just the parallel combination of R* and
R**:

Ry = R*"R™/(R* + R™) 2)
We want Vr to be the reduced voltage:

Vr = ViBR*™/(R* + R*) =V, /K ‘ (3)
and we want to maintain the input impedance at R:

Rr = R'R™/(R* + R*) =R | @)
We easily solve equations (3) and (4):

R*=KR (5)

R** = KR/(K-1) (6)

While we have used Thévenin's theorem, all that we really needed to remember was that
the voitage divider should resuit in 1/K and the parallel combination of R* and R** must
maintain R. (This seems quite reasonable, but is not exactly obvious.) If we remain
unconvinced, we can always just solve out the network of Fig. 1d directly, and calculate its
design equations. We would find that the transfer function would be the same, except the
gain would now be unity.

However, let's do a simpler problem. What usually bothers people is that they know it is
perfectly all right to suppose that a voltage divider is "valid" as long as there is nothing adding
or subtracting current from the output node. (That is, the divider is not "loaded.”) True. And if
there is something attached to the node (other than a high-impedance buffer), the divider is
pushed or pulled about, at least to some degree. In one senses, this can be thought of as a
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Fig. 3a Gain reduction divider Fig. 3b Two "Fighting.Thévenins"
with Thévenin on right '
representing "the rest" of
the network.,

failure to achieve an exact division. Sometimes we want this well-defined division, and we
must resort to keeping the resistors in the divider very small (having a large standing current)
or use a buffer. But this is not always necessary or even what we want. In many cases, the
actual non-zero impedance represents a desirabie flexibility at the node. We want it. That's
what the non-zero Thévenin resistance takes care of.  Fig. 3a shows our gain reducing
resistors connected to a impedance Z and a voltage-source V,. That is, we are assuming
Thévenin's theorem is correct (at least for the right side) and representing "the rest" of the
circuit by a Thévenin equivalent. Note that we are assuming the Thévenin impedance is Z, and
it need not be purely resistive. This would in fact be the case if we were solving the complete
low-pass filter. From Fig. 3a, we sum currents at V"

Vy- V! V' V-V,
R* R Z

This we solve for V' as:
V'= [ViR™Z + V;R™R']/ [R¥Z + R'Z + R'R™] ()

Is this the same result we get by assuming a Thevenin equivalent of the left side (Fig. 3b). Fig.
3b is simple to solve for V'. We could set up one current, but it is convenient to see the result
as the superposition of two voltage dividers:

V= (VTZ + VgRT) / (RT + Z) (9)

Finally substitute for Vr and Ry the expressions of equations (1) and (2). This gives us back
equation (8).

This method of reducing gain is fairly general. However, keep in mind that the technique is
most useful when applied in a distributed manner (correcting each stage) rather than frying to
do it all in one stage. The price to be paid for this distribution effort is just one additional
resistor (3 cents!) per stage.
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