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This issue covers the final Chapters: 8, 9, and 10 of Analog Signal
Processing. These chapters go into some of the more unusual areas of
analog signal processing, voltage-controlled filters (unusual, but not
to readers of this newsletter), delay line filters (related to digital
filters), and analog adaptive filters.

In going over this analog material one more time after so many
years, I have been surprised just how much material there was - much of
it I had forgotten. Another annoying thing was how many "problems left
to the reader" I had left hanging! In many cases, as previously stated,
the actual problem statements were fairly obvious. Yet in some others,
as I went through, I did not remember exactly what I intended to ask,
and in still more, I had forgotten just how the problems worked out. On
the happy side, I did however stumble across a fair number of the
problems which I had actually typed up, but forgotten.

' Looking at the whole thing now, I think it may prove useful if,
from time to time, we work out and publish some of these problems, so we
can perhaps have an "analog signal processing corner" as a repeating
department. This is the current plan. Just below, in this spirit,
although not in response to any particular text problem, a follow-up on
the passive sensitivity discussion from Chapter 7 is offered.
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TUNING EQUATIONS DERIVED FROM
PASSIVE SENSITIVITIES

_ Passive sensitivity as discussed in Chapter 7 of Analog Signal
Processing (EN#195) is important first of all in helping with our choice
of one circuit configuration as compared to an alternative configuration
that is nominally also capable of realizing a désired response. All.
other things equal (and this is itself a comparison that must be done
very carefully), we choose the configuration with the lower sensitivity
values. This use of passive sensitivity numbers is essentially "global"
with respect to actual particular instances during production. '

A second way to use passive sensitivity calculations relates to_ the
actual "fine tuning” of individual instances (i.e., a particular circuit
board off the production line). Suppose for example that we design a
filter, choose a configuration, and construct 10 examples. Perhaps it
is a low-pass with a nominal cutoff of 1000 Hz. Our global
consideration of passive sensitivities assures us that we expect,
perhaps, actual cutoff frequencies between 200 and 1100 Hz, and our
tests indeed show measured cutoff frequencies well within this range.
(In fact, we might well expect a balance between overvalued and
undervalued components to keep us away from worst—-case examples). So

nothing is unexpected or wrong.
{continues on pg. 37)
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8-1 THE NEED FOR VOLTAGE-CONTROLLED FILT

The filters that we have discussed so far, and with which we are
likely otherwise already familiar, are fixed filters, and we have in
mind that they would be constructed by taking the correct parts off the
shelf and soldering together the correct circuit. Such filters find
wide application in cases where the specification parameters of the job
the filter is to do are well established and expected to remain
constant.

If we think a bit, it is clear that we can make variable filters
rather than fixed filters by making some of the filter's components
variable. In particular, we wish to make the filter's time constants
vary to change the characteristic frequencies of the filter. To do
this, we need to have variable resistors, variable capacitors, or both.
If we look at the range of component values we usually encounter, it is
clear that we can easily find suitable variable resistors, but that
suitable variable capacitors are unlikely. (Consider that a standard
radio-tuning variable capacitor is already fairly large, and is only in
the hundreds of picofarad range.) We can easily find potentiometers in
the range of a few ohms up to several megohms.

This opens up the idea that we can have variable or tunable
filters. However if we restrict ourselves to potentiometers as the
variable resistors, we are talking about manual tuning. Typically, a
potentiometer is what we find used as a radio volume control, and it has
a knob to be turned up or down. In this view, tunability is a step in
the right direction, but there are still many things that we can't do.

For example, we might have a tenth-order filter needing a ten-way
ganged potentiometer to tune all ten of its frequency controlling
resistors. We might need quite an enclosure to house this control, and
it would probably be somewhat difficult to turn the control shaft with
the usual type knob. Secondly, manual tuning implies that we have to
have someone close by to turn the knob, so we could not expect to tune
the filter remotely {on a space satellite for example). In addition,
computers can conveniently handle numbers and even voltages, but not
turn knobs. Still additional problems with manual tuning come up when
we need to adiust a filter faster, or with more precision, than can be
done manually.

All of these additional jobs can be done with voltage-control ox
other electronic tuning. We can control almest unlimited controlling
elements in parallel, control remotely, control by computer, control
with rapidly changing voltage waveforms, and set parameters to an
accuracy far greater than is possible with a manual knob. Thus we see a
step up from simple tunability as being voltage tunablllty or Voltage—
~aontrol as—it has come to be called. e

Most of the quality work in Voltage-Controlled Filters (VCF's) has
come through the efforts of engineers working on the design of
electronic music synthesizers. In their desire to achieve a dynamically
changing spectrum, on a time scale compared with the shortest of
individual notes expected, VCF's became one of the few possible
approaches. It was found that excellent VCF's could be obtained if one
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went about it in the right way. This "right way" seems to have been to
first consider the control elements and structures that were possible,
and then see what sort of filter could be made tunable with these
controls. In general, simply taking vour favorite active filter and
trying to put in voltage-variable resistors is not a productive
approach.

What was found was that one particular control element, the
so-called transconductance multiplier was a key control element, and
that this was most useful in certain key structures, Fortunately, one of
these structures was the first-order low-pass section, and another was
the state-variable filter.

8.2 THE IPLI S A FILTER-CO O _EL :

A few devices (such as some configurations of FET's, and
photoresistors) are useful as variable resistors, but only over a fairly
limited range (no more than 10:1). A device that is more generally
useful is some form of electronic analog multiplier. To see why this
is, consider that a multiplier takes two input voltages (Vin and V.)} and
produces an output voltage V. as:

Vrn = KV;‘;,ﬂVg: (8-1)

where K is some constant of the multiplier. Normally we expect that if
a voltage V.~ is properly applied across a resistor R that a current
Vin/R flows through it. If instead the voltage Vin is multiplied
according to equation (8-1), and V. is applied to R, then current
KV:nV=/R flows, which is equivalent to applying the voltage V.nn to a
different resistor of wvalue R/KV-. This is the general idea - that by
scaling a voltage, we can make things look as though a resistor has a
different value. This is not always the way things turn out in
practice, however. '

Fig. 8-1a Successful VC Integrator Fig. 8-1b -
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Fig. 8-1 shows four cases that serve as examples. Fig. 8-la is a
voltage-controlled integrator that does work. Fig. 8-1b and Fig, 8-14
represent an unsuccessful attempt, and then a successful attempt,
respectively, at achieving a first-order voltage-controlled low-pass
filter. Fig. B-1la works by virtue of the fact that the lower end of
the resistor R is at ground potential (a constant}, so the only voltage
that determines the current through R is V.. (for any fixed value of
V-). Thus a changing voltage looks the same as a changing resistance,
considering the current that flows into the capacitor.

It is important to understand why the first-order low-pass of Fig.
8-1b does not work, since it at first sight seems so similar to Fig.
8-1a. 1In fact, the multiplier of Fig. 8-1b only changes the gain factor
of the filter from 1 to KV., but does not change the time constant.

This is obvious from just loocking at the network as being composed of
two parts: the multiplier to the left, and the very familiar first-order
(fixed) low-pass to the right. In order to understand what is wrong,
and how to fix it, consider that in the fixed first-order low-pass (Fig.
g8-1¢) the current through the resistor is not just a function of the
input voltage V.., but also of the output voltage Veus as I =
(Virn-Vause } /R, That is, the output gets to "fight back", and this is
what is missing from Fig. 8-1b. Fig. 8-1d adds the missing feature.
Here we first take the difference (Vin-Voue), and it is this voltage
that is scaled by the multiplier before it is applied to the resistor.
In addition, the first-order low-pass is now made an integrator so that
the lower end of the resistor R is always grounded.

In fact, it is best to analyze Fig. 8-1d directly. The output of
the multiplier is:

Vi = KV (VintVouse) (8-2)
and we have studied the inverting integrator and know it to give:

Voue = ~Vm/8CR ' (8-3}
which are solved for the transfer function T(s) as:

T(s) = Vour/Van = -1/(1 + scR/KVc) (8-4&)

From this, we have a-resistor that is effectively scaled by 1/KV., which
is the same as scaling the cutoff frequency by KVe.

Accordingly we now know how to approach voltage-controlled filters
with two powerful weapons in our arsenal - the voltage-controlled
integrator (making possible the state-variable approach), and the
voltage-controlled first-order low-pass section. We will continue by
" looking at some possibilities for practical multipliers. -

8-3 THE _TRANSCONDUCTANCE MULTIPLIER:

We have seen above that the key element in our VCF approach will be
the analog multiplier. Most all analog multipliers of practical
interest will be based on some transconductance principle. For
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practical multiplier integrated circuits, transconductance multipliers
are available in several forms. These we will separate into the full
four-quadrant multipliers, and the two-quadrant multipliers or OTA s
(for Operational Transconductance Amplifiers).

To understand the difference in these devices, we can start with
the idea that a multiplier should perform the operation:

Z = XY (8-5)

where X and Y are the inputs and Z is the output. In the case of a
four-quadrant multiplier, both X and Y may take on negative and positive
values. Also, Z is usually also a voltage in this case, and since we
work with voltages in a convenient range such as *10, the multipliers
usually have a scale factor to bring the product into a usual range.

For example, Z = XY/10 is common (Fig. 8-2a). True four-quadrant
multipliers are alsoc characterized by a cost in the range of $10 to $50
and/or a need for considerable individual trimming. In general, they
are components that many engineers will avoid whenever possible.

As unpopular as the four-quadrant multiplier is, a two-gquadrant
multiplier in the form of an OTA has found wide application. This chip
is available for about $1 or less, and is fairly easy to use. Being a
two-quadrant multiplier, only one of the inputs can take on positive and\ _
negative polarity, while the other must be unipolar. The OTA chip :
happens to have a bipolar voltage input, while the second or unipolar
input is a current rather than a voltage. In addition, unlike the usual
four-quadrant multiplier, the output is a current. It turns out that
all of these are things that the designer can exploit. The most popular
and well known OTA for many vears has been the RCA type CA3080, after
which the OTA may be called a "3080" as often as it is an "OTA". The
3080 has been second-sourced by National as the LM3080, and new
generations of OTA's have appeared, including dual versions such as the
CA3280 and the LM13600. Other improvements have involved the use of a
linearizing input stage (Gilbert input), to help with a linearity
problem that will be described below.

Fig. 8-2b shows the conventional symbol for the OTA, which
superficially resembles the op-amp. The most notable difference is the
additional pin, the control pin for the control current I.. This pin is
pin 5 on the CA3080, and it is common for designers to refer to the
control pin as "pin 5", even on OTA's with a different pin-out
arrangement. The next difference to observe is that the output is a
current source, and not a voltage as it is for op-amps. Finally,
although it is not indicated in the diagrams, the input differential
voltage should be limited to something like 10 millivolts fox

linearity.

The point should be emphasized that the OTR is quite a different
device from the op-amp. However, it is no more difficult to learn to
use - the "rules" are just different. In order to understand betterxr
how the OTA functions, the structure should be understood (see Fig.
8-2c). The OTA consists of four "current mirrors" and a standard
two-transistor differential inputs stage as shown. The current mirrors
are configurations of transistors arranged so that when a certain
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F{g] 8-7a Four-Quadrant Multiplier

The 0TA, CA3080, or
_two~quadrant multiplier

Figf 8-2d .
= Standard use of
attenuator with the OTA

reduces Vi”_tQ_E+n.

Structure of the OTA
(em = current mirror)

current is pulled from one branch, an identical current is sourced by
the other branch:; both currents being sourced or sunk by a connection to
a power supply rail. One of these current mirrors receives the control
current I. and mirrors it, drawing this same current I- from the tied
emitters of the differential pair. Study of the remaining three current
mirrors shows that they just "decouple" the two collector currents of
the differential pair, so that the output is a current source that
represents the difference between the two collector currents. When the
two inputs are at the same potential, their collector currents are equal
(to I./2, in fact), and the output current is zero. When there is a
non-zero differential input voltage, the currents are out of balance,
and the difference becomes the output current.

We do not want to go deeply into transistor theory, but the
two-transistor differential input stage is well understood, and it is
known that the difference between the collector currents is a hyperbolic
tangent function, which can be considered approximately linear around
2ero for differential input voltages of no more than 110 millivolts or
s0. In such a case, the output current is:

Iau": = 19-2 I Esn (8-6)

which we will consider the fundamental equation of the OTA. It is well
to keep in mind that if we go all the way back to this equation for a
start, we are unlikely to go wrong. Note that E.. is the actual
voltage between the + and the - inputs. Clearly equation (8-6) implies
a multiplication relationship between two electrical parameters, I-. and
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Eiv. From our study of the structure (Fig. g8-2¢), it is clear that E..
can be bipolar, while I- must be only positive (into the lower mirror).
Thus the OTA is basically a two-quadrant multipliex here.

Since the input stage must be limited to about +10 millivolts foxr
linearity, and since we still want significantly larger voltages in the
rest of our circuits, it is common to find an attenuator stage on OTA
inputs, as seen in Fig. 8-2d4. (Incidentally, the attenuation to this
low level does imply problems with signal-to-noise ratio. One help is
the "prewarping! or "Gilbert" input stage found in newer OTA's which
permits input voltages of several volts.) With the addition of this
attenunator, egquation (8-6) becomes:

Toue = 19.2 I (22/10022)Vin (8-7)
or we can write an "equivalent resistance" as:

Req = Vin/Ioue = 23.7/1c (8-8)
which amounts to 23.7 kQ when I. = 1 milliamp, and so on.

The concept of equivalent resistance and equation (8-8) should be
used with considerable caution. As we have cautioned above, it is often
better to go all the way back to equation (8-6). The problem comes up
in assuming that Req implies that the OTA looks just like a "real”
resistor. As we saw from our discussion of Fig. 8-1, we must be careful
to look at voltage on both sides of resistors. Accordingly, it is best
to think of Req as a notational convenience, and not as suggesting that
the OTA can be treated as a resistor Req in all cases.

We have noted that the output of the OTA is a current rather than a
voltage. In some OTA applications, we will drop this current through a
resistor and then use an op-amp follower to buffer this voltage drop and
to serve as a voltage source. In many VCF applications however, it is.
both possible and advantageous to just use the current directly.

Before going on to some actual circuits, it will be useful to
discuss how the control current I- is obtained. Note that the control
pin is an input to a current mirror, and accordingly, its voltage will
always be about one diode drop above the negative supply (about -14.3
with a -15 volt supply). I. can be supplied with a number of current
source arrangements. One simple way is to connect the control pin to a
voltage source more positive than -14.3, through a suitable current
limiting resistor. In such a case, for a control voltage Ve (see Fig.

g-2d), the control current is:

Te = (Ve + 14.3)/Re (8-9)

As a practical matter, I- should be limited to no more than 2 milliamps
with 1 milliamp being a good design maximum. This means that on a
standard *15 volt supply, where the control voltage V. might range up to
+15, that if R- is 30k or so, we are absolutely safe on control current.
Note however that the control pin is a very sensitive part of the chip.
If this pin is shorted to anything, +here is a danger that the chip may
blow. Shorting this pin to ground, or to the output of an op-amp, ¢an
blow the chip. : o
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Vout
Fig. 8-3a VC Low-Pass ~ Fig. 8-3b VC High-Pass
8-4 FIRST-ORDER VOLTAGE-CONTROLLED FILTERS:

There are a large number of ways of achieving useful first-order
voltage-controlled structures, which can then be combined into higher-
order structures if desired. BAll of these involve some form of feedback
from the output to the OTA input, for the same basic reason as was
required in the development of Fig. 8-1d. Fig. 8-3a shows a form that
is first-order low-pass. The analysis begins with equation (8-6) as:

Tows = 19.2 Iz Eun = 19.2 I=(22/10022){(Vin-Vouse) (8-10)

It is alsc clear that the ocutput current flows through the capacitor C
to ground, generating the voltage Voue, ox!

cht = Iaut/sc (8-11)
These two equations can be solved for the transfer function as:
T(s) = Vous/Varn = 1/(1 + 38CReq) {8-12)

where we have also used equation (8-7) for Reg. Note that Req falls
exactly into a position in the transfer function where we recognize its
effect on the cutoff frequency. In fact, since the cutoff is at:

foew = 1/2MReql = I</(2m 23.7 C) (8-13)

we have a cutoff frequency that is proportional to the control current.
Note that we did not try to begin with the idea of Req for the OTA and
then treat the OTA as a normal type resistor. Instead we started with
the basic equation for the OTA, equation (8-6), and put in the notation
Req when it appeared naturally. Then we found that it fell exactly

where it was most convenient for our being able to interpret the
_results.

Fig. 8-3b shows a corresponding high-pass network. BAgain we start
with equation (8-6):

I@uu = 19.2 Ia Elﬁ = Vaut/Req‘ (8"14)

We also observe that I.us now flows out through the capacitor C,
generating Veous, relative to V.~ as:
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Vout = Vin = Iowe/sC {8-15}
and these equations result in the high-pass T{s) as:

T(s) = scReq/(1 + SCReq } (8-16)
These are only two of the possibilities with this general idea.

The control current I. is often supplied by some form of curxrent.
source, which may be a linear voltage-to-current converter, or even an
exponential voltage-to-current converter in the case of electronic music
circuits. However, for simple demonstrations and lab work, it is often
sufficient to connect a pot between the + and - supplies, and feed the
wiper voltage to the control pin through a 30k resistor (Fig. 8-&),
using equation (8-8) to find the current.

o . Fig. 8-5 Two forms of
Fig. 8-4 A simple the VC Integrator
method of supplying _
the control current

Fig. 8-5 shows two forms of an OTA controlled integrator. It is
tempting to call the first a non-inverting integrator and the second an
inverting integrator. However, because either the (+) or the (-) inputs
of the OTA can be used in either case, we have free choice. In the case
of Fig. 8-5a, the output voltage is:

VQu.t = Iaub/sc (8"17)

while Fig. 8-5b has:
Vour = _Iout/sc (8—18)

both lead to transfer functions which have a denominator sCReq, which

are integrators, and in this case, voltage-controlled integrators. With
the voltage-controlled integrator available, we can aclieve voltage= =~ = = ~
controlled versions of all our integrator based filters (Chaptexr 6).

For example, Fig. 8-6 shows a voltage-controlled state-variable filtex
based on the ideas we have just discussed.

Fig. 8-6 shows one of the advantages of having both the (+) and the
(-) inputs of the OTA available in our integrator designs. Here we have
used the (-) input along with the inverting integrator structure,
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. Fig. 8-6
"Voltége—Controlled
State-Variable

achieving a non-inverting integrator. This permits the feedback of the
bandpass to the inverting input of the summer (through Rq), and the
simple result that @ = Rq/100k (compare Fig. 6-6).

This VCF and the others we discuss are of course subject to the
active sensitivity problems that we have seen with all our fixed
filters. However, the problem may be even more complicated in the case
of a variable filter. This is because the active sensitivity error is a
function of the characteristic frequency of the filter, and in the case
of a variable filter, this frequency changes. Thus we can not simply
£ix the filter by overdesign, for example. We must more or less
"repair"” the various blocks, much as we discussed in Chapter 7, being
always aware that here the resistors may have changing values. The
problem is not at all simple.

bl D
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i
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Fig. 8:7 Q- -
ifiijis, enhancement of. -
. Fig..'8-6, and:=:." 0 ¢
F' -compensation
i C*=0,30pf,60pf - - i
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Fig. 8-7 shows how the Q of the VCF of Fig. 8-6 changes with
frequency, showing an enhancement with frequency. This can be sc severe
that the filter will break into oscillation when it is set to its upper
frequency range. Traditionally, the “cure" for this has been to place
amall shunt capacitors across the OTR attenuator resistors (the 10k
resistors marked with a * in Fig. 8-6). Capacitors in the range of a few
picofarads to up to 50 picofarads were usually sufficient to level off
the Q vs. frequency curve. In fact, this does seem to work, but a more
exacting analysis (B. Hutchins, "Some New Results Concerning
@-Enhancement in OTA-Based VCF's," Electronotes, Vol. 14, No. 141,
September 1982, pp 3-18) indicates that it is the summer of the state-
variable rather than the integrators that is the real problem. A rather
careful modeling of the whole network, and appropriate compensation
methods on a block-by-block basis, can yield a very flat @ vs. frequency
curve. Another unexpected result is that the integrator in the form of
Fig. 8-5a is somewhat preferred over the integrator of Fig. 8-5b. In
might have been thought that it would have been better to have the OTA
driving into a constant ground potential (8-5b) than to have it drive
into the variable output potential (8-5a). However, when stray
capacitance effects are taken into consideration, the advantage goes to
Fig. 8-5a.
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CHAPTER 9

FiLTeERING WiTH ANALOG DELAY LINES

9-1 Introduction to Delay Line Filtering

"9-2 The Ideal Analog Delay and
Some Realizations

9-3 First-Order Non-Recursive Comb Filters
~Four Methods of Analysis

9-4 The First-Order Recursive Network
9-5 Notch and All1-Pass Responses

9.6 Second-Order Networks
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9-1 INTRODUCTION TO DELAY LINE FITL.TERING:

In this chapter, we will look at various types of comb filters that
can be realized using analog delay lines. The subject matter here is
very closely related to digital filtering in that the essence of the
filtering is time delay, and in that many of the same design and
analysis techniques are employed. The main differences is that we work
with a pure analog delay, and in a first approximation, no sampling is
involved. This permits us to take advantage of the periodic frequency
response in the case of analog delay line filters, while in the case of
digital filters, only the first half of the unit circle in the z-plane
is used, since the sampling theorem must be obeyed.

Comb filters find applications in cases where a numbexr of
harmonically related components must be filtered in a similar manner.
For example, we might have a complex waveform, containing a fundamental
and harmonics, which is to be notched out. We could envision a set of
second-order notceh filters in series, each responsible for its own

harmonic. The comb filter however has a built-in pexriodic response
(for example, Fig. 9-1) and thus one filter can takes out multiple
harmonics. Moreover, once the filter is tuned to notch out any one

harmonic, the others are automatically tuned. We are not restricted,
however, to taking out harmonics with notch-like responses shapes - we
can also enhance all harmonics with bandpass-like response shapes, and

SO on.
Freq. . o .
Resp. (\/Y\/ m, —
!
t
1
i
‘ freq
fo 2fg 3fo 4ty
ig. 9-1 A Typical Comb Filter
9-2 IDEAL LOG DELAY AND SOME IZATIONS @

The ideal analog delay line is shown in Fig. 9-2. A signal that is
at the input of the delay at time t emerges after a delay of time T, at
time t+T. Here T is not to be considered a sampling time, since we are
not necessarily assuming that any sampling is taking place. However,
the signal is only available to us at the input and at the output of the
delay ~ at two discrete times separated by the interval T.

flt) f(t-T)

F(s) i efSTF(s)

Fig., 9-2 Ideal Time Delay
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Analog delays can be realized {(or occur naturally) in a variety of
cases. Transmission lines may be used for an analog delay (usually only
for very short nanosecond delays), or we may need to deal with the
analog delay of a transmisson line that we are working with. For
delays from 100 milliseconds up to several seconds, magnetic tape
recording can be used, with a delay corresponding to the tape speed and
the distance between record and playback heads. Active filter all-pass
or phase shift networks also can look like a pure delay over a limited
range of frequency (see problems at end of chapter). Surface acoustic
wave (SAW) devices may also be considered.

Probably the delay lines of most interest and most practical wvalue
are those which do involve sampling. These include digital delay lines
(DDL.), and charge-coupled device (CCD) delay lines. While these devices
do involve sampling, specifically the sampling frequency fs is not 1/T,
but rather some significantly higher frequency, usually an integer
multiple of 1/T. This means that there are, at any one time, not only a
sample at the input, and another sample at the output, but also many
samples in between, that are held internally. These are clocked along
at the rate fs. Thus if there are N samples between the input and the

output of the delay line, T = N/fg.

At this point, there are two notions of time interval that are of
interest. The first of these, 1/fg5, is the actual "sampling interval",
and as with any sampled data system, we must not input frequencies in
excess of f5/2 or else we violate the sampling theorem, and aliasing can
occur. The second time interval is T, and the frequency 1/T corresponds
to a full trip around the unit circle in the z-plane. Not only can we
input frequencies exceeding 1/2T, but we can continue around the unit
circle many times, until the frequency starts to approach £s/2.

In the limit of a perfect analog delay, equivalent to fg5 becoming
infinite, we can continue indefinitely to higher and higher frequencies,
taking advantage of the repeating frequency response.

We will want to be able to write down networks involving analog
delay lines, and to solve for transfer functions much as we have been
doing. We need to know how a delay affects the Laplace transform of a
signal. We can show, using equation (1-3) for the Laplace transform,
that if F(s) is the Laplace transform of f{t), then e 5'F(s) is the
Laplace transform of £(t-T). Thus when a signal passes through a delay
T, it is equivalent in the Laplace domain to a multiplication by e~5",
which is also often written as z—*. We will in general assume that we
are using perfect analog delays in the sections that follow, with the
idea that various realizations of the delay may present individual
problems to consider.

9-3  FIRST-O ON-RECURSIVE COMB FILTER -
UR. oDS O YSIS:

Fig. 3-3a shows a simple use of a delay line and a summer to form a
non-recursive (no feedback) network. This network has the frequency
response as shown in Fig. 3-3b. We will look at four ways to analyze

this network.
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For the first method, we will begin with the idea that the
frequency response is the ratio of the amplitude of a sinusoidal at the
output to the amplitude of the sinusoidal at the input. We can take the
input sinusoidal to be Sin(wt) in which case the sinusoidal at the
ocutput of the delay is Sin{wt - wT). Therefore, at the output of the

summer, the voltage is:

Vewe = Sin(wt - T) - Sin(wt)

~28in{eT/2)Coswt - WT/2) (9-1)

which is the result of the trig identity for the sum of two sines.

Note that the Cos(wt - wT/2) term is the output "sinusoidal™, having
frequency w and phase -wT'/2. The term 25in{wT/2) does not vary with
time, and determines the amplitude of the ocutput sinusoidal, and is
accordingly the frequency response, which we will denote by the digital
filter frequency response notation:

|H(z)| = |2 Sin(wI/2) (9-2)
This is the function plotted in Fig. 9-3b.

In the second method, we will loock at the transfer function H(z),
where, using the z~* notation, for the Laplace transform of a delay, we

have:

Vous(2) = =Vinlz) + Vialz)z"-? (9-3)

H(Z) = cht‘/Vin = zm* - 1 (9"4)

We have seen that the frequency response can be obtained from a transfer
function using equation (1-18), and this can be applied here, giving:

L}

H(z)| [H(z=ese™ )H(z=e—seT)]"

]:(e---aw'r _1) (etwT-1) ]5/2

It

[2 - 2CoswT)]?

it

[28in(wT/2} (9-5)
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which is the same result we got with trigonometry.

The third method is to use a geometric interpretation of frequency
response, which is very similar to that used for the s-plane filters,
except here we are locking for the response on the unit circle in the
z-plane. This we can understand in terms of the jw-axis in the s-plane

becoming the unit cirecle in the z-plane, since:

2 = ST = @@ *39T = = T[Cos(wWT) + 38in(wT)]  (9-6)
Now the geometrical interpretation follows as seen in Fig. 9-4. From
eguation (9-4), we see that H(z) has no poles, but does have a zero at
z=+1, The frequency response is proportional to the distance f£rom this
zero, which is the distance r shown in Fig. 9-4. From simple trig:

r = 2 8in{(®&/2) {9-7)

Furthexr, once around the unit circle corresponds to a frequency of 1/7T,
so here the frequency is:

f = (&/2n){1/T) {9-8)
or w = 2uf = ©/T, and:
|H(z)| « r = 28in(wT/2) (9-9)

which is again the same result.

Fig. S9-4 Geometric Method

The fourth method invelves inversion of the impulse response of the
network as an alternative way of obtaining H(z). Clearly if we put in
an impulse, it comes out inverted immediately and then right side up
after a time T. From this we have for the inverse Laplace transform

EN#196 (16) ASP 9-4



the result -1 + e~ 57, which is the transfer function, the same result as
we got from equations (9-3) and (9-4). From this, the frequency
response can be obtained as before.

We see from the frequency response that it consists of sinusoidal
lobes, with equally spaced notches at frequency intervals of 1/T.
Accordingly, it is capable of cancelling all frequencies that are
harmonics of 1/T. In the case of a periodic waveform with fundamental
1/T, that means that all harmonics are cancelled. Thus the entire
waveform is cancelled. This result is at first impressive, but less so
if we simply consider Fig. 9-3a in the time domain. For a periodic
waveform of period T, we always have exactly the same voltage at the
input and the output of the delay line. Subtracting these of course
results in zero output at all times.

Other forms of non-recursive comb filters are sometimes found. The
form shown in Fig. 9-5a sums rather than subtracts the two signals.
This results in a different frequency response, as seen in Fig. 9-5b.
This form is sometimes called the "delay-add" type (or Cosine type) of
comb filter, as opposed to the "delay-subtract" tvpe (or Sine type) of
Fig. 9-3a. The spacing of nulls is the same (1/T) in both cases, but
they are displaced by 1/2T relative to each other. The delay-add type
here can be seen to remove a fundamental at 1/2T, and all odd harmonics
of 1/2T. It is easy to remember which type is which, simply by
considering what happens at dc. At de, the time delay of the delay line
"expires™ and the input and output of the delay line are both the same
de voltage. If we subtract these, we get zero (Sine type frequency
response) while if we add them, we get 2 (Cosine type frequency
response). et

T 2/T

Fig. 9-5a "Nelay-AddY Fig. 9-5Db Freq. Resp.

Another variation would be to make an unequal weighting of input
and output, which moves the zero off the unit circle. This can result
in attenuation in certain frequency regions (valleys of the response),
but not a complete null. Since the summation is usually a matter of
op-amp summers with summing resistors, the incomplete null is actually
what we have in practice, although trimming of resistors can be used to
get very good xreijection.

EN#196 (17) ASP 9-5



94 FIRST- ER RE I TWORK :

The non-recursive networks above have resulted in notch-like
responses since they are based on zeros, and no poles. We can use a
recursive structure (with feedback) to give poles, and corresponding
responses that are more bandpass in nature. (Eventually, or course, we
consider both together). Fig. 9-6a shows the first-order recursive
network, while Fig. 9-6b shows the position of its pole, and Fig.9%9-6c¢c
its frequency response.

2 ]
+ )
/ + out
\/‘v\—x
T g
R S B
g
Fig. 9-63 Fig. 9-6b Fig. 9-éc¢
Recursive Structure Pole Plot Freq. Resp.

The transfer function of the recursive filter is given by:
Hi{z) = 1/{(1 - gz—*) {9-10)

which has a pole at z = g. For stability, g| must be less than 1 so
that the poles is inside the unit circle. or positive values of g, the
pole is approximately as shown in Fig. 9-6b, and the response peaks at
de and at multiples of 1/T, as shown in Fig. 9-6c¢. For negative values
of g, the pole is on the left side, and the response peaks at 1/2T and
at odd harmonics of 1/2T. Clearly the recursive filter is suited to
cases where frequency components are to be enhanced. It is easy to
obtain the frequency response by any of the methods suggested above for
the non-recursive network, and the result is:

|H(z)| = 1/J(1 - 2gCoswT) + g=) (9-11)

From this, or from a geometric interpretation evaluated at z=+1 and
z=-1, we can see that the "peak-to-valley" ratio in the response is
given by:

|H(2) | mar/|H(2) | man = (1+g)/(1-g) (9-12)

which is valid for positive g (and is the "valley-to-peak" ratio for
negative g).
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9-5 NOTCH AND ALL-PASS RESPONSES:

Fig. 9-7a shows a first-order delay line notch filter, while Fig.
9-7b shows the pole/zero plot, and PFig. 9-7¢ the frequency response.
Here the response is reminiscent of the non-recursive comb filter of
Fig. 9-3 in being notch-like, due to the zero on the unit circle.
However, as in the case of active filtexr notch circuits, the pole that
appears here is useful in sharpening the notch and in flattening the
passbands, relative to the sinuscidal lobes of Fig. 9-3b. This is
because the pole, being brought up close to the zero here, tends to
"hide" the zero until frequencies get very close to the zexo. 7 .

> ;
N
a

YT 2T

Fig. 9-73 Notch Network Fig. $-7b Pole/Zexo Fig. 9-7¢ Freq Resp.

Fig. 9-8a shows a delay line all-pass network, while Fig. 9-8b
shows the pole/zeroc plot, and Fig. 9-8c the (completely flat) frequency
response. Here the poles is at a position a, within the unit circle
for stability, while the zero is outside the unit circle, and at a
radius 1/a that is reciprocal to that of the pole. It can be shown (see
problems at end of chapter) that any point on the unit circle is at
relative distances toc the pole and to the zero that are always
proportional, hence the all-pass magnitude response.

It is probably evident how the transfer functions and pole/zero
plots are derived for these networks, and we have left this out, since
it is really a combination of the derivations found above. It should
‘also be recognized that there are a number of variations on these
circuits that are sometimes seen.

freq.

Fig. 9-8a All-Pass Fig. 9-8b Pole/Zero Fig. 9-8¢ Freq. Resp.
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9-6 SECOND ORDER NETWORKS:

In the case of first-order analog networks, there was relatively
1ittle of interest that could be achieved, and we had to go to somewhat
higher order networks to achieve interesting results. In this delay
line case, things are somewhat different in that the first-order
networks already have the interesting and useful property of a periodic
frequency response already built in. Nonetheless, second-order and
higher order delay line networks can be of interest to us. 1In going
over to these second-order designs, we will need to make use of some
digital filter design methods, and in particular, the "Bilinear-2
Transform" method is useful.

o
z-plane \
" a b ]
30 |
) 0
Fig. 9-9a 2nd-Order Network Fig. 9-9b Pole/Zexo

Fig. 9-9a shows a second-order delay line network (note the two
delay lines), while Fig. 9-9b shows a typical pole/zero plot, by way of
showing that it is capable of producing two poles and two zeros. It is
easy to derive the transfer function be noting that the voltage E' is

given by:

E! = Viw - a1E'2™t - acE'z™® {9-13)

The output is given by:
Vous = beE' + b.E'27* + boE'z"% {9-14)

£vom which the transfer function Voue/Vin is given as:

H(z) = (baz® + b1z + bo)}/{(2® + 213 + 8o} (9-18)
The values for the coefficients can be determined by starting with

an analog prototype transfer function and plugging into the RS
bilinear~z transform. That is, we start with T(s) and make the

substitution:

s é—— F(z-1)/(z+l) (9-16)
For example if we substitute into a normalized low-pass transfer
function T(s) = 1/{(s® + Ds + 1), we arrive at H(z) given by:

H(z) = A(2® + 2z + 1)/(2® + Bz + C) {(9-17)
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where:

A= 1/(F + DF + 1) (9-18)
B = A(2 - 2F=) ' (9-19)
C = B{F® -~ DF + 1) (9-20)

In terms of the network of Fig. 9-9a, we have:

ba = 1 (9-21)
b, = 2 (9-22)
bo = 1 (9-23)
a. = B (9-24)
as = C (9-25)

which completes the network.

As with the second-order active network, relating the network
parameters to a transfer function was only one step in moving toward a
useful network. Here we need to find how to choose T, D, and F in
order to achieve the frequency response that we want. Two of these we
can deal with easily. First, 1/T remains the spacing between periodic
repetitions of the response. 8Secondly, it is the property of the
Bilineax-z transform that the response shape is carried over from the
analog to the discrete time case. This means that if we choose a value
of D that gives, say, 2db passband ripple in the case of T(s), this same
value of D will give 2db ripple in H(z).

This leaves us with the parameter F to manipulate to our. advantage
if possible. In addition, we should keep in mind that we could also
have used other second-order T(s) instead of just the low-pass we
actually chose. For the low-pass, we get two zeros at z=-1, which can
be seen from equation (9~17). 1If we instead choose a high-pass T(s), we
get two zeros at z=+1 . (Incidentally, a bandpass T(s) gives one zero
at z=-1 and the other at z=+1.)

In considering our options, it is perhaps well to keep in mind that
we are generally after only one or twe types of response. This is
because we are taking advantage of the built-in periodicity to handle a
fundamental and all its harmonics. In general, we either want to
enhance this complex waveform, or we want to reject it, so we are
interested in one of the two responses shown in Fig. 9-10. (Here we are
~-assuming -that the -damping D is Butterworth or larger, since nd Tipple is -
seen in the responses.) The pole/zero positions corresponding to these
two responses are also seen. Thus we see that the enhancement case
will result from a low-pass prototype while the rejection case will
result from a high-pass prototype. In both cases, we are looking for
poles that are inside the circle, and relatively close to z=+1. Some
- additional case of interest are covered in the problems at the end of
the chapter.
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Fig. 9-10a Enhancement Fig. 5-10b Rejection
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Fig. 9-10c Pole/zero Fig. 9-104 Pole/zero

for enhancement for rejection

We are now left to consider the parameter F. This is needed in
equation (9-17) to put in the units, if for nothing else. When used
with digital filters, it is common practice to fix F at 2fs, but that is
often a matter of convenience, or in considering of sampling problems,
which we are not considering here. F can be seen as a design parameter
+that moves the poles to the right (larger F) or to the left (smallexr F),
but always along a curve such that a ripple corresponding to the
selected value of D is achieved. If F = 1, the poles are on the
imaginary axis. Values of F greater than 1 place poles to the right,
while values of F less than 1 place the poles to the left.

ASP 9-10

CHAPTER 10

Analoc ApAPTIVE FILTERING

10-1 The Need for Adaptive or
ce Self-Adjusting Filters.. L

10-2 Basics of Adaptive Filtering
10-3  The Side-Tracking Filter (STF)
10-4 Correlation-Cancellation Loops (CCL's)

10-5 A Comparison-of the CCL and the
EMS Algorithm
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10-1 THE NEED FOR ADAPTIVE OR SELF-ADJUSTING FILTERS:

We are familiar with the theory and design of filters which have
fixed parameters (certainly by this chapter we know about fixed analog
filters, and probably know about fixed digital filters as well). Such
filters find wide application in cases where the filtering task to be
performed is known ahead of time, and is expected to remain unchanged
during use. Such filters have fixed parameters by virtue of the fact
that they are constructed with fixed resistors and capacitors (analog
filters) or with fixed multiplier coefficients and clock rate (if we
also consider digital filters).

Since it is the fixed nature of certain of the filter's elements
that make the filter itself fixed, we can obtain variable filters by
arranging for these elements to vary. In the case of analog filtering,
this is usually accomplished with variable resistors to contxrol the
filter's time constants. (Variable capacitors, while theoretically as
useful as resistors for this purpose, are usually not practical.) The
variable resistors may be manually controlled: potentiometers oxr
manually controlled switches for combinations of fixed resistors.
However, electronically-controlled resistors, such as those obtained
with a transconductance multiplier (or similar), as we saw in Chapter 8,
offer filters that can be controlled remotely, with great speed and
accuracy, by computer or other control mechanism rather than by hand,
and in an arbitrary number or with an arbitrary number of control
elements involved.

Another point about wvariable filters should be made, and that is
that these filters are, pretty much by definition, not time-invariant.
Linear time-invariance is often one of our assumptions, leading to our
most useful procedures. Obviously, a filter that is manually set (thus
variable) and put in fixed service is pretty much the same in status as
a filter that is "soldered-in'" fixed, and this is basically a case of a
programmable filter. In such a case, the time variability is not a
consideration. At the other extreme, a voltage-controlled filter being
controlled by a waveform of frequency comparable to its characteristic
frequency is perfectly capable of producing detectable, non-harmonic,
modulation sidebands. In such a case, our usual ideas about frequency
response and the like, which we find so useful in the case of fixed
filters, are not applicable.

Between these cases of filters which are programmable, but
otherwise relatively fixed, and those with variaticns producing
modulation effects of significance, we can sometimes find a useful
"quasi-stationarvy" region where, from a theoretical and performance
standpoint, fixed filter techniques are still useful. 1As a guide, a
time constant rule-of-thumb can be applied: we want the change in
“ehHardoteristic frequency to take place on a time scale that is long ~ ~ -
compared with one cycle of that characteristic frequency.

Such slow frequency adjustments are what is found in many cases.
Manually adjustable filters where the frequency is reset for different
prarts of an experiment would be an obvious example. Another example
would be an automatic but sufficiently slow sweep found in some bandpass
frequency analvzers. We also have cases where a filter should change

EN#196 (23) ASP 10-1




its performance on a slow time scale in response to some slowly changing
external condition.

For example, we might be trving to filter out some frequency that is
nominally 400 Hz, which appears as noise on an aircraft's communication
system. However, due to changes of engine load, this frequency,
determined by onbocard generators, is subject to some variation. In such
a case, a noteh filter might be trimmed manually when the interference
becomes a problem. In a corresponding ground-based case, the 60 Hz
power lines might be more precisely regulated in frequency, but an
analog notch filter might still be subject to drift due to external
temperature variations or other such changes, and this would need to be
trimmed up from time to time as well.

These and other similar situations indicate the peed for a wvariable
or tunable filter, but they also indicate the desirabilitv of a
self-tuning or adaptive filter. That is, we would like to pnot have to
adjust the filter manually, but rather have it control and adjust
itself, according to some desired performance criterion. This automatic
change could be in response to changing input conditions, which could be
detected, or it might be in response to the filter's own evaluation of
its own performance level at its output, or to both. This leads us to
the topic of adaptive or self-adiusting filters.

10-2 BASICS OF ADAPTIVE FILTERING:

We will be using the term "adaptive filter" in a fairly genexral
sense to include all variable filters that are capable of adjusting
their own parameters, in response to signal conditions, so as to better
perform their intended functions. However, at the same time it should
be realized that by tradition, the term Yadaptive filter!" has been used
in a more restricted sense to describe only an adaptive filter of the
linear combiner type (an FIR digital filter), or its operating mode
called the "LMS algorithm!, or only the linear combinexr portion of the
structure. (At the same time, the almost identical analog counterpart
to this digital FIR one, the so-called "Correlation Cancellation Loop™,
or CCL, had been largely ignored.) While this particular adaptive
filter and the surrounding theory of this digital point of view are
extremely interesting and useful, we prefer to use the term more openly,
and correspondingly, to suggest a broader range of possible solutions to
self-tuning problems in signal processing. The specific approach chosen
will then depend on the application and the available resources.

In the examples suggested above - that of cancelling power supply

"hum" - we could take a variety of approaches. Some sort of tunable
notch filter comes to mind first, and we need to consider how we would
recognize that the notch were not correctly positioned. Obviously this
would be the recognition that the unwanted signal were coming through,
but this only tells us that the notch is not properly trimmed; it in
itself does not tell us which way to move the notch position (up or
down) to reduce the level of the undesired signal.

One simple approach to self-tuning would be to have a Phased-Locked
Loop (PLL), with properly determined capture and hold properties, lock
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on to the undesired signal, and the feedback voltage in the PLL could in
turn be used to tune a voltage-controlled filtexr {VCF), as seen in Fig.
10-1. A second approach would be to use a Side-Tracking Filter (STF),
which is a generalization of a comb-filter technique. As discussed
above, we often do not know if a filter's frequency should be increased
or decreased in order to perform better in a given case. The idea of
the STF is to have two filters, in addition to the main one, above and
below (on the sides) which are evaluating the possibilities of changes
in the respective directions. A feedback mechanism than adjusts the
center or main filter in response to these findings. We will lock at
STF's in more detail a bit later.

The PLL approach, and the STF approach offer two useful analog
techniques for self-tuning filters. The third analog technigque that we
want to have in our "bag of tricks" is the CCL (Correlation-Cancellation
Loop}, which is the analog counterpart to the digital adaptive filterxr
(or LMS algorithm). We will later spend a good deal of time on the CCL
structure. First however we will take a brief look at +the digital
adaptive filter, in order to better relate to the CCL when it come up,
and for a better understanding of how adaptive filters work.

Fig. 10-2 shows an adaptive filter structure of the digital or LMS
type. We can just think of the z-* boxes as delay lines, in which case
it is clear that each of the taps available on the line represent only
different phases of the reference signal that is shown. We assume that
the input is an information-bearing signal such as speech or music, and
that added to it is a large "hum" component due to the AC power lines.
Such a signal can result from poor groundin practices, foxr example.
the figure, the hum is the larger sinusoidal-like component while the
speech or music is the smaller random-like component. The approach seen
in Fig. 10-2 is to take advantage of a reference signal. In this case,
we assume that the hum is caused by the power supply lines, and that we
_have“separate“acceSSWtO"the“power"supply“liﬁééj'faf'féféiéﬁéé“?ﬁf§6§égf"_“
We can think of the reference as a signal that gives us some information
on the hum component - at least the correct frequency, and possibly
more. In the example, we are further assuming that the waveforms of the
reference and of the hum component are both sinusoidal.

r

LT}

The basic idea hexre is to take the reference and subtract it off,
cancelling the hum. This would be easy if the waveform, the frequency,
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+he amplitude, and the phase were all the same. Clearly this is more
than we can expect. However, it is the purpose of the adaptive filtex
to adaptively find the correct phase and amplitude (and possibly even
more) to achieve the correct cancellation. With our assumption that it
is only the phase and the amplitude that are unknown, we can see that we
can choose from the variety of phases presented by the delay lines, and
adjust the tap weights W« for the amplitude. Moxeover, simple geometric
constructions convince us that all we need is two different phases, and
we can find amplitudes (tap weights) such that any amplitude and phase
condition can be met. Thus, for our example, we would really only need
two taps of the N taps shown.

of course, to have the necessary adiustment ability available is
important, but that is only part of the solution. We need to have an
automatic adjustment procedure in place, and this we have conveniently
ignored by hiding it in the box called "slgorithm". We can better
understand what is in the box, and how the adaptive filter can woxrk,
after we have studied the CCL. However, we can indicate here that it is
a matter of looking at the output (called the "arror" here - an
unfortunate but traditional nomenclature), and seeing if it is
correlated with a given tap's version of the reference signal. If it
is, then we know two things. First, we have not gotten rid of all the
_hum, since there is still some in the output. Secondly, the particular

tap in question is capable of providing a“contribution-to~improvingnthe_m_ o

situation. Further, we shall see that an algorithm can be chosen soO
that the correction is in the right direction at all times. We shall
return to this a bit later.

10-3 THE SIDE-TRACKING FILTER (STF) :

The Side-Tracking Filter (STF) is intended to be self-tracking
through the operation of two filtering channels on either side of a main
channel. Essentially we are looking for these channels to examine the
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possibility that the main channel should be moved in their direction.
The principle is most useful in the case where a change of output
amplitude level in the main channel is not in itself indicative of the
direction in which the filter should be retuned for better performance.
These cases are mainly those of bandpass and notch responses which have
equal amplitude points on either side of a center frequency. Foxr the
most part, we are looking to apply STF ideas to case where an
interference is relatively strong and relatively (but not absolutely)

stationaxy.

Fig 10-3a shows the STF principle applied to the handpass case.
This would be useful in cases where we have a single sinusoidal
component to be tracked and enhanced. The STF here is composed of three
voltage-controlled bandpass filters. The center filter is the main
processing channel. Above and below we have two side filters that are
tuned a bit above and a bit below the main channel. The outputs of the
two side filters are not used except that their amplitudes are detected

by the magnitude circuits (usually full-wave rectifiers). These
outputs are in turn fed to the inputs of a differential integrator, the
output of which is the control voltage for all three VCF's. (Here we

| | Fig. 10-3a A Bandpass type

v
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Fig..10-3b Side channels in balance Fig..10z3c If input moves upward as
used to hold center channel shown, side channels are no longer
in proper position. in balance, and differential

integrator ramps upward.
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are assuming that the frequency offset of the side channels has been set
by a voltage offset not shown, or perhaps by using slightly different

capacitors in the three channels.)

When the control voltage Ve

changes, all three filters shift, but maintain relative positions.

Fig. 10-3b shows the case which illustrate how the side channels

lock the center channel in place.

In this case, the amplitudes of the

+wo side channels are exactly the same, and the differential integratoxr
has a net input of zero, and thus its output V. stands still. Next

suppose that the input sinusoidal moves up in frequency slightly, as in
Fig. 10-3c. Now the two side channels will be out of balance, with more

amplitude in the upper on, and less in the lowexr one.

This will cause

the differential integrator to ramp upward, moving all three channels
upward until the center is on the new frequency, and the side channels

are balanced again, in a manner similar to Fig. 10-3b.
input frequency had drifted downwar

Note that if the

d instead of upward, exactly the

opposite thing would have happened, and balance would have been restored

at a lower V=.

The basic feedback operation here is not at all

unfamiliar, being like PLL's and other negative feedback devices.

We can see that the circuit is capable of capturing as well as

tracking.

If an input signal appears roughly within A of the current

center frequency, the filter can capture and lock in the same manner in

which it responded to a change of input frequency.

With this in mind,

we can see that in some cases there would be an advantage to keeping the

side filters of relatively low Q an
channel, if we desire a wider capture range.
center channel need not have this same lower Q.

d somewhat further from the center

At the same time, the
In fact, the centexr

filter need not even be bandpass, but could be notch, or even low-pass

or high-pass if the situation dictates this sort of need.

Fig. 10-3a -

thus is representative of a fairly general idea for tracking filters.
There is a wide flexibility with respect to the nature of the center
_ channel, and even a good deal with respect to the side channels which
could be bandpass, notch, or even a combination of high-pass and
low-pass, which can be illustrated by a simplification discussed

immediately below.

¥
VCF

.- >—> State-VYariable
In

HP LP
S\

. é%’ [ Notch
™ .

i "'vg""' il [fmag. magf| i

|+ =
‘Integrator

-Fig...10-4a A single VCF state
variable filter may be used to
do its own side-tracking under
certain circumstances,
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1g.-10-4b An out of balance condition that

would cause the frequency of the VCF )
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Fig 10-4a shows the side tracking idea extended and simplified so
that only one VCF is needed. Here we show a state-variable VCF (which
would probably have been our choice for a VCF above anyway) which has a
low-pass and a high-pass output as well as the bandpass. In Fig. 10-4a,
we show vet a third response - a notch, formed by summing the low-pass
and high-pass - as the output, but any of the output could be used.

Here the capture and locking mechanism is indicated in Fig. 10-4b, which
corresponds to Fig. 10-3¢ for the bandpass case. In the specific
instance shown, the input frequency is a bit above the center frequency
of the state-variable filter, and there is more amplitude in the
~high-pass than in the low-pass, This will cause the differential
integrator to ramp upward. Note that here we don't have quite the
freedom we did in the three VCF case in that the side filters must have
the same Q as the center, which in many cases is not a problem.

10-4 CORRELATION-CANCELLATION-T.OOPS (CCL'S)

A CCL is a configuration of two multipliers, an integrator, and a
summer as shown in Fig. 10-5a. The CCL in itself is a simple adaptive
filter, and it can also be used as an element in a more complex adaptive
filter structure, such as serving as the "algorithm" of Fig. 10-2.
Because it functions in close analogy with the so-called "LMS algorithm"
of the digital adaptive filter, once we understand how the CCL works we
can better appreciate the LMS algorithm.

Fig. 10-5a and Fig. 10-5b indicate how the CCL is used to cancel
the "hum" component from an input signal containing a mixture of speech
and hum. Note that we assume here that we have a reference to the hum
available, and we shall also assume in this case that the reference and
the hum are in phase with each other. Later we can look at a more
general case. :

In Fig. 10-5a, we are assuming that the integrator has been reset
so that its output is initially zero. This in turn blocks the reference
signal from the summer since there is a zero voltage on the right input
of the lower multiplier. Therefore, the output of the filter is the
same as the input, since nothing else is fed to the summer. However,
note that the output is being fed back and is being multiplied by the
reference at the top multiplier. Since the output is the same as the
input for the moment, and since the input is in phase with the
reference, and both are sinusoidals or close to being sinusoidal (the
"speech" being the smaller random-like component on the input), the
output of the upper multiplier is much like a Sin® function, which is
only positive, as shown. Next we consider releasing the integrator from
this reset condition.

The Sin® component at the input of the integratoxr causes the
- integrator-to -ramp-positive; which-in turn causes -the- lower-multiplier - -
to start passing some of the reference signal. Since the two are in
phase, this subtraction results in the sinusoidal component at the
output being reduced. Continuing back around the loop, we see that the
8in® component is now reduced, which in turn slows the ramping of the

- multiplier. Ewentually the steady-state of Fig. 10-5b is achieved.

. Here the integrator has ramped to some value V. such that an amount of
reference is passed through the lower multiplier which exactly cancels
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the sinusoidal component in the input. The output is now just the
"speech" as shown. Following back around the loop, we see that this is
multiplied by the reference, with the product still fed to the
integrator. However, the speech and the reference are not correlated
over any significant period of time, and in the product, the positive
and negative portions pretty much average to zero. The integrator
output may be fluctuating slightly, but as long as the integrator time
constant is long enough, the output stands still at Ve for all
practical purposes.

Note that the cancellation is now locked in by a negative feedback
mechanism of the type we have seen many times before. If for example,
the output of the integrator fluctuates up, then the sinusoidal at the
input is over-cancelled, and a small negative sinusocidal appears at the
output. This in turn leads to a negative Sin® term at the integrator
input, which causes the integrator to ramp back down. & similar
argument of course applies to a negative fluctuation of the integrator’s
output.

Fig. 10-5a
_ - CCL at-
Reference ) {}{3{5 [5 the moment when
Input . the integrator is
o > >< | ’ S reset , reset,

. integrator
[\ intégrator '

/ \ )y

:>><: Speech + "Hum"

AIAWANNAN

Speech + "Hum"
| Zero _ %q/ kw/ Wh/
M\ ,f\vf\vf\ -}—— () |

\/ \\T,/_ OutputA'
. +

Input
Fig. 10-5b
7 cCL after
Reference : convergence to
Input -*'|>< e — 5 cancel the "hum"
. ! . —V¢ |
integrator !

VARV

Speech + "Hum"
NA AN AVAVIEY .
\u/ \u/ &b/ OQutput

j>x<: Speech
U

-
L4

Input S
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Sin(wt) | >< Ve 5 v ' Fig. 106
reference s—y— >< UADRATURE cCL'
sine Q $

Bfin(wt+¢) Qutput

reference ‘
cosine Vem .f Vo '
Cos (wt) [_J :

Input

Fig. 10-6 shows a case where we now have two CCL's instead of just
the one. This is significant first because it will show us how to -
handle the case of an arbitrary phase shift between the input sinusoidal
and the reference sinusoidal, and because it is the first step in going
from the CCL to a full adaptive filter. Note that the summer of the
CCL's is now a common summey, which we can compare to Fig. 10-2, where
the common summer is in cascade with the subtracting summer, for an
equivalent result.

Fig. 10-6 shows that we have available a Sine and a Cosine of the
frequency we wish to cancel. 1In general, to cancel any given sinusoidal
component we would expect to have to achieve a particular amplitude and
a particular phase. However, we can alwavs do this by a linear
combination of a 8ine component and a Cosine component, as is seen in
Fig. 10-7a, and it can also be seen (Fig. 10-7b) that we do not need to
have exactly Sine and Cosine components. In fact, any components with
relative phases of say 70° to 110° would probably work gquite well.
Theoretically, any two different phases, even 0° and 1° would work, but
this can put a very severe requirements on the amplitude range of the
maltipliers, as is shown in Fig. 10-7c¢. BAccordingly we would prefer to
have a pair of components involwved that have a phase difference of
. something close to 909, but we must keep in mind that this is a matter
of practical convenience, and not required by theory.

The convergence solution for the quadrature CCL can be demonstrated
as follows, with the single CCL being a special case with only a Sine
reference. According to Fig. 10-6, the output is:

- At the upper left multiplier, we have this ocutput multiplied by- Sin(wt)- -
which gives:

B Sin(wt+¢)Sin(wt)
- Vi Sin®(wt) - Vo Cos{wt)Sinlot) (10-2)

VS ™

(B/2)Cos{¢) - (B/2)Cos{2wt-¢) - Vi/2
~{V1/2)Cos(20t) - (V=a/2)8in{2wt) (10-3)
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Fig. 10-7 Case A is ideal, using perfect 90° reference, equations (5) and (7). Same
vector can be generated with non-90° angle in B and C.

This is the input to the integrator, and by assumption, the CCL has
converged, and therefore V., the output of the integrator, is a
constant. Therefore, any DC terms in the input, V:w must vanish. This
gives:

Vi = B Cos(¢} (10-&)

In a similar manner, it can be shown that:
V= = B S8in(¢) (10-5)

From the discussion above and from Fig. 10-7 it can be seen that
the CCL with two different phases, reasonably close to 909, is capable
of cancelling a sinusoidal component of arbitrary amplitude and phase.
If the frequency of the interfering sinusocidal is fairly well known (as
would be the case for power line hum, for example), a simple first-oxder
all-pass (phase shifter) set for a 90° frequency at the nominal
frequency, should be more than adequate. (Note however that even a
broad band 90° network will not cancel two different frequencies with
only the two tap case seen here - except in very special circumstances).

Fig 10-8 and Fig. 10-9 show some practical implementations of
OCL's. Fig 10-8 is the single loop, corresponding to Fig. 10-5, while
Fig. 10-9 is a double loop corresponding to the quadrature reference

system of Fig. 10-6. Both circuits use the inexpensive transconductance =

multiplier along with an op-amp to form a four-quadrant multiplier.
Parts cost for either circuit is very low, under %10 foxr Fig. 10-9.

In Fig. 10-8, the locations of the multipliers are indicated by
their X and Y inputs and their Z outputs. The multiplier is actually
configured as Z = -XY/5 as a matter of convenience here. The remainder
of the circuit is standard analog circuitry, with the summer and
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integrator as indicated. Just before the actual CCL summer, there is an
additional "test summer" shown, the output of which is the actual CCL
input. This permits a simple test and demonstration in which two
different sinusocidal signals are summed by the test summer, becoming the
CCL input, one of the signals being regarded as the "signal" while the
other is regarded as the "noise." Whichever of these we wish to cancel
is then connected to the reference input as well as to the test summer,
and it will disappear from the output. The multipliers may be trimmed

by conventional four—quadrant multiplier balancing techniques if
desired, but it is usually more productive to adjust the trimmers to

: optlmlze the rejection of the unwanted COmponent._ In general,.the
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X-trim will have more effect on the performance than the Y-trim. Also,
for demonstration purposes, it may be useful to greatly increase the
time constant of the integrator (e.g., make the capacitor 1 microfarad
instead of 0.1 microfarad). This makes the convergence time longexr, of
course, and the cancellation will take place gradually over several
seconds {this also depends on the amplitudes of the signals, with faster
convergence taking place for larger signals, as the integrator ramps
faster). This slower convergence during demonstrations is more
convinecing as it seems to be psychologically more impressive to see
something happen than it is to see that it has happened. Of course, in
actual use, the CCL's time constant would be set on a performance basis.

Fig. 10-9 is basically an extension of Fig. 10-8. Here we could
add a simple phase shifter to provide appropriate reference signals, and
another phase shifter to provide the arbitrary phase shift ¢ between the
input and the reference. This does work, and provides a demonstration
similar to that of Fig. 10-8. In general, Fig. 10-8 will provide the

.l : o ok e 50k X-trim o
50k$, 330k 270 trim
Ym b m S ANWA AN . —wa—:'f
= 10k 18k y-trim | 18k .
3 |
120k | —— |
o CA3080 _
&7 330
L | 120k 27
> - YV PTYR—
"Sine Reference” ot
100k 100k 100k MR <7
¢+ "Cosine Signat 1 100k
Reference" = cCL =
Input °
i f+ 4 Output
10k 2 Y-trim
10k
: - 18k 1-

Fig. 10-9° Realization of a Ouadrature CCL
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most useful approach to practical problems of single component
cancellation. In such a case, only one of Signal 1 or Signal 2 would be
used, or we would go directly into the CCL input point, feeding in the
signal to be cleaned up. The reference signal, and a phase shifter not
shown, would then be used to provide the sine and cosine references

indicated.

Another interesting demonstration that can be done with the double
loop of Fig. 10-9 is to use one sinusoidal signal generator and
appropriate 90 phase shifter for the reference, and to provide a second
sinusoidal generator to the CCL input, and monitor the output for
different input frequencies. That is, we test the CCL set up in this
way exactly as we would a filter, measuring its frequency response.

When the frequency of the input is exactly the same as the reference, we
know that we only have an arbitrary phase difference ¢, and the CCL
should be able to cancel this, according to our discussion above. More
interestingly, when the frequencies differ only slightly, we can still
get substantial cancellation. This we can understand as the CCL system
interpreting this small difference in frequency as a phase difference
that it is continually trying to correct (and which it is capable of
correcting). As this frequency difference gets larger, the CCL system
is less capable of making up the apparent phase error, and cancellation
is less complete. This is because of the integrator time constants that
determine how fast the weights can change. The longer the time
constants, the slower the correction, and the less complete the
cancellation. Thus the system configured as described looks somewhat
like a notch filter, with the notch position set by the reference
oscillator frequency, and with the Q determined by the RC time constant
of the integrator, getting higher for larger RC time constant. By the
same argument, it is possible to see that the Q@ also depends on the
inverse square of the reference amplitude, since the amplitude affects
the integrator charging rate through two multipliers.

A final interesting point can be made about the single loop of Fig.
10-5. As long as we assume that the interference signal and the
reference signal are exactly the same waveform, then the single loop is
capable of cancelling arbitrary waveforms, and is not restricted to
sinusoidals. This can be argued simply in a manner similar to that
surrounding Fig. 10-5a and Fig. 10-5b. This fact can be very useful in
cases where phase shift is very small, so that one loop can be used, or
where there is a fixed time delay instead of an actual phase shift. The
fixed time delay can be handled with an analog delay line, for example.
The more general case, of a general waveform with arbitrary phase shifts
in different components, requires a larger number of CCL's and a
. corresponding larger number of reference phases, typically obtained from

a tapped delay line.

Fig. 10-10a shows a general view of an adaptive filter, with Fig.
10-10b showing an LMS algorithm realization, and Fig. 10-10c¢ showing our
familiar CCL. The theory of adaptive filtering, not discussed here,
leads to the LMS algorithm equation, which is stated in the form of a
tap weight update equation as:

EN#196 (35) ASP 10-13



x:(n) xs:(t)
J
— ;"] ._ $ z"} — T
repeat T _ 4T ~ T - TT T T repeat |- T} T T T T 7 7 !
for each | i e(nj ] for eachi $oe(t) :
ta ! ' ta
p'&). >< ; pZ—»: >< !
. [ i |
i Y 2u | : |
| | ] |
' =1 ' A !
1 Z | | 1
, W.(n-1) ! , SCR !
1 /_J'—"' ) | |
t \ I ¢
' ‘IF '-?(n) { . ] !
X . J ' . i
{ { | . l
L 1 J
y(n) y(t)
™ Py a
2 e(n) Z * e(t):
| d(n) * 189 _ |
~Fig. T0-10b A realization of the LMS Fig.  10-10c Adjusting the tap weight
algorithm with a CCL

EN#196 (36) ASP 10-14




Ws{nt+tl) = W,(n) + 2ue{n)xsin) (10-6)

which says that the next tap weight, for time instant n+l, is the
current tap weight, plus a correction term. Note that this change of
tap weight is equivalent to a ramping of the integrator output in the
CCL case. What is of interest is the correction term. Hexre, the
parameter 1 or 2p is small (something like 0.001), so the correction
term at any one time is small. The only way the tap can change
substantially in one direction is foxr the product e(n)x,(n) to have the
same sign over many time instances. This is to say that e(n) and x;{(n)
. must be correlated over a substantial amount of time, otherwise the tap
- weight is not being called upon to contribute to convergence, but is
rather being just kicked up and down a bit. Of course, this reminds us
of what is happening with the CCL. In fact, it is possible to show that
the two systems can be related so that:

2n = T/RC ' (10-7)
ASP 10-15

END OF ANALOG SIGNAL PROCESSING TEXT

Tuning Equations Derived from Passive Sensitivity
- . (Continued from Page 2)

But, suppose we need to do somewhat better, or perhaps we take
great pride in our work and want this particular set (my set) of ten
filters to be better tuned. What sort of things can we do that may

- work well and not cost us too much in money or time?

The first thing is obviously to consider using variable resistors
("trim pots™") to adjust about a certain range. Xeep in mind that a good
guality trim pot costs several dollars, a cheap one perhaps 30 cents,
and a fixed resistor only 3 cents. So good guality trimmers may be out
of the question because of cost, and lesser quality ones may be subject
to drift and contamination. = Another problem with trimmers is that _
there is always a temptation to adjust them one more time; or -to worry — ———-
if perhaps we accidentally jarred one. B3All these considerations make a
suggestion of using a just-one-added-resistor-scldered-in tune-up quite
attractive. We just need to be able to determine what resistor to use
without undue trial and erxor. Let’s look at an exampie.

Suppose our cutoff frequency is determined by four passive
components as:

£ = 1/2m(RiRC,CHME (1)

as is typical of many configurations (e.g., Sallen-Key). We can easily
calculate: '
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f. _
S = (Ri/f.) 8f./8R; = -1/2 (2)
Ry

This is a particularly simple case, and makes a good example. By
replacing the partial derivatives with deltas, we obtain:

AR]_ = -2 (R.l/fc)ﬂfc {3)

Now suppose that we have intentionally set Ry slightly lower than
nominal, so we expect the frequency to be initially slightly high. At
the same time, we arrange on our circuit boards to make R; as a series
combination of two resistors, the second of which is initially just a
wire. Now we measure the cutoff frequency, and we find it to be, for
example, 1032 Hz. That is, Af, = +32 Hz. Suppose the initial value of
R; is nominally 10,000 (we don't know for sure what it is unless we
measure it, but expect it to be within advertised tolerances). 1In a
sense, by measuring the cutoff, we have made an overall measurement of
all four frequency-determlnlng components. (Any and all of them
contribute to the error in general.) But, if the error were totally
due to R,, what error in R; would account for the observed frequency
error? The answer is:

AR; = -2(10000/1000) 32 = -640 ohms (4)

- This means that the frequency error observed is as though R; were wrong
by -640 ohms. This means that R; is 640 ohms too small. Thus we_would
clip out the zero ohm wire and install a 640 ohm correction. Note that
-in equation (4) we have plugged in nominal values for R, and for £, but
things would be littlé changed if we tried other possibly better values.
The level of correction is at the 6% level of the component (640 ohms in
10000 ohms). If we had used the measured value of 1032 for £f., the
correction resistor would be 620 ohms. In either case here (640 or 620
ohms) we would have chosen the closest nominal 5% resistor, which would
have been 620 ohms. Not unreasonably, we expect this correction to put
us close to 5% of 6% or 0.3%, and the frequency to within half this
error because of the sengitivity having a magnitude of 1/2.

This can usually gi%e astoundingly gocd'results; Note that it
involves the use of two resistors, where a large one is effectively
measured, and a small correction thén chosen by formula, but not

-measured;- Obviously,-the process -is-easily-iterated if- we like .- — -But— — — -

after all, we are not using much more than the fact that a -3% frequency
-gorrection required a +6% change in a freguency determlnlng re31stox, as
1nd1cated by the sensitivity value of -1/2.
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This first example was falrly'sfialghthrward' We knew how to
calculate the sensitivity and: lnterpxet the result as a tuning formula.
More complicated cases may bé&*tas easy only. in. theory. Consider as a
second example the popular "Deliyannis" bandpass filter. [See details
in BApplication Note 145, "Analysis of the Deliyannis Filter," Sept. 4,
1979, This filter also appears as Fig. 5-8 of Chapter 5 of Analog
Signal Processing, pg 8 of EN#194.] This filter has a center frequency
given by .

fo = 1/2nVBRC ' (5)

where B is a ratio of two resistors. This is similar to the first
example, The filter's Q is given by:

Q = (1-a)VB / [2(1-a) -aB] o (6)
and the gain at the center frequency (the "peak gain') is given by:
g=18/[ 2(l-a) -aB] _ _ (7)

Here the ratio a is the fraction of the output fed back to the (+) input
of the op-amp, and is just the result of another resistor ratio.

It is evident that the manipulation of the center frequency is

. dependent on B but not on a. So we might consider adjusting the
frequency first. Further, it is difficult to accurately measure the Q,
since the Deliyannis filter is generally used for its ability to achieve
very high Q's. So we may;well'opt for adjusting the peak gain, with the
idea that when we get this right, the Q may well come along. Eguations
(6) and (7) suggest this. (Or, we may well be mainly concerned with
achieving the correct peak gain.) Thus, we suppose B is fixed and we
need to adjust a. What is the sensitivity of g to a? well, we could’
do this analytically by taking the usual partial derivative:

g
S = (a/g) 8g/8a = a(2+B) / [2 - a(2+B)] (8)
a

but we can alsoc cheat. We really need Ag/Aa for our tuning. All we
really need to do is put in our nominal value of B, wiggle the ratio a
ever so slightly, and see how much g changes. This we do not by a
c1xcu1t measurement, but 51mply by u51ng equatlon (7)"

Note that the ratioc a, for a positive, non-infinite Q, must be less
than 2/(B-2). 8o if B=16 for example, a would need to be less than
0.1429. And, we would already have a nominal value of a as part of our
design calculations. Perhaps, for example, a was supposed to be 0.1.
(Overall, this means we designed for Q=18.) So what is the sensitivity
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of g to a about the nominal design? Well, suppose we try two values of
a: a=0.1 and a=0.1001. We get g values of 80 and 80.726. So Aa is
0.0001 and Ag is 0.726. The sensitivity of g to a is right around
9.075. This is not good from the point of view of getting it right
without tuning, but not all that bad when we consider that we need for g
to depend on a or we would have no way of doing the tuning. Note that
while we got this without taking derivatives, plugging a=0.1 and B=16
into equation (7) (from taking derivatives) does give us exactly 9.

What does this really mean? Suppose g needs be 80 but is only 50,
as could well occur. Then a would have to be changed by (a/g) (Ag/9) or
about 0.004. Well, a would be determined by a ratioc of resistors and
the individual resistors would typically be on the order to 10k to 100k.
So making an adjustment of a on the order of 0.4% would involve an
additional resistor added to the lower leg of the divider on the order
of 40 to 400 ohms. This is something we can handle. It is worth noting
that if we actually do solder in such an adjustment, that while the
soldering heat does not change the small additional resistor much, the
heat can often wonder into the other resistor of the divider and throw
off the results for perhaps 10 seconds before the resistors all cool
down. It can be amusing to watch the performance converge — as we
encourage it by blowing on it. Because of our calculations, the
results can come around quite well, and with little or no additional
trial-and-error.

Finally, suppose that in a particular case we want a=0.1 and B=16.
We choose to use two standard 5% resistors, 10k and 91k, to achieve the
ratio a. Suppose the actual values we end up with are 10.1k and 82.1k,
so that a=10.1/(92.1+10.1)=0.0988. We do not know these actual values,
but according to equations (6) and (7) we exXpect to measure Q=16.3 and
g=72.4 (not g=80). The actual sensitivity, using equation (8), is s=8.0,
but we don't know this, and use the nominal $=9. Using equation (8) we
get:

Aa = (a/g) (Ag/9) = (0.1/72.4)(~7.6/9) = -0.001166 (9)

If we make this correction a = 0.0988+0.001166 = 0.09999., Using this
new value of a, we calculate that we would observe 0=17.99 and g=79.9,
very c¢lose to nominal. This we would achieve with a series correction
to the 10k resistor. This value, R,, would be R,/Aa = 10k/0.1 or right
around 117 ohms. Thus, from our easily measured Ag we calculate Aa
based on observed Ag, g, and nominal values for a and S. From Aa we
calculate Ry based on nominal values of a and one of the resistors. Note
——that-Q-as-well -as~¢g does come up near normal as a resilt. ) T

Electronotes, Vol. 20, No; 196, December 2000
Published by B. Hutchins, 1016 Hanshaw Rd., Ithaca, NY 14850
(607)-257-8010

EN#196 (40)




