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When Analog Signal Processing was written more than 10 years ago, I
did not suppose that Chapter 7, the chapter on sensitivity would be the
longest (by far) in the text. In fact, if one thinks of a chapter on
passive sensitivity followed by one on active sensitivity, we could
avoid the long chapter, but as stated then (and true now} we want the
reader to think in terms of both, simultanecusly, asgs they often trade
off against each other. All and all, this is an important chapter.

In keeping with our past few issues that included chapters of ASP,
we are adding some additional analog material. In this issue, it was a
simple choice as to what we needed to do. This was the matter of
clearing up a loose end omitted from Chapter 7. If you wish, think of
it as an extension of Chapter 7 - read Chapter 7 first, and then the new
discussion.

ASP will conclude next ilssue, with Chapters 8, 2, and 10, to
include voltage-controlled filters, delay line filters (in a sense, an
introduction to digital filters), and analog adaptive filters.
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ACTIVE SENSITIVITY IN A
COMPENSATED STATE-VARIABLE FILTER

~by Bernie Hutchins

INTRODUCTION

The installment of &nalog Signal Processing in this issue is Chapter 7,
which deals with passive and active sensitivicy. There is a good deal of
practical information in this chapter, but in another sense, we have left
something out from a theoretical viewpoint, largely as a conseguence of
algebraphobia. This we will try to remedy here.

Specifically, two approaches to active sensitivity problems have been used.
In the first approach, we solve for the transfer function of a particular
network using a model of a real {(rather than an ideal) op-amp The "G/s" model
for an op-amp has proven useful:
Vout = {G/s){(V, - V.) (1}

In this approach, a standaxd, ideal, one op-amp, second-order network {e.g.,
Sallen-Key or M.F.I1.G.), becomes third-order. Typically we find one extra pole
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7-1 INTRODUCTION:

The area of active filtering, like many others we encounter in engineering, is
one where adequate attention must be paid to the differences between theory and
practice. Here we are concerned with how well an actual realization of an active
filter will match its theoretical counterpart. There are several aspects to this
problem that should be considered. First, there are considerations of "passive
sensitivity." Any actual construction of an active fiiter will differ in
performance from the ideal calculated response because the R and C component values
will not be exact, but will have a "tolerance” associated with their nominal value.
Secondly, the op-amps used in actual construction will be non-ideal, and this has
an effect on performance which can be particularly important at high frequencies
and/or for high Q sections.

Passive sensitivity is basicaily a measure of how much a variation in a circuit
R or C will change a performance parameter such as the cutoff frequency or the Q
of the filter. In general, we lJook for passive sensitivity values that are zero
or small constants, and d1sl1ke values that increase with Q, or worse as Q%. Since

we do not know ahead of time exactly what the components will be, but only know

them statistically, sensitivity calculations are used to tell us basically how good
or how bad things might be. In any one case, variations of performance from
nominal might be very small, or component variations might have offsetting effects
that would leave the performance near nominal. On the other hand, the individual
component variations might "conspire" to make things very bad. Passive sensitivity
calculations are thus often used as an overall guide to the relative merits of
different configurations. They may also be used, however, in cases where individual
components in separate filters need to be "tweaked" in order to tune the particular
filter unit. In such cases, the necessary adjustment to a particular component's
value, so as to adjust the performance parameter, can be obtained from the passive
sensitivity value for that component.

Passive sensitivity calculations may require some recalculation of the filter's
transfer function and design equations. This is because, nominally, we may have
set two resistors equal, for example, and we now need to assume that they have (at
least slightly) different values, R1 and R2, say. This is necessary because even
nominaliy equal resistors or capacitors are found in different positions in the
network, and their effects on performance may differ. We need to identify which of
the two resistors, Rl or R2, which are nominally both equal to R, we are talking
about. In general, we try to express sensitivities as functions of the Q of the
filter.  Accordingiy, calculations of passive sensitivity are somewhat of an “art”
and not just a matter of taking partial derivatives. Proper attention should be
paid to the way things are done.

Active sensitivity is somewhat less statistical, and somewhat more subtle. In
~going from ideal op-amps to real op-amps, we need to start all over in our
- calculations. Instead of assuming that the op-amp gain is infinite (that V=V- 3,
we assume that the gain is approximately G/s, where G is the "ga1n -bandwidth product"
in rad/sec. 1In general, the factor of 1/s increases the filter's order by one. A
__second=order filter thus becomes a. (rather annoying) third order.. While_the _extra_ . ...
pole, introduced by the op-amp, may be relatively far away, there is usually an
associated perturbation of the nominal poles which can be very important. At times
we can allow for this change of performance by "overdesigning" the filter in the
first place, and then allowing it to "drop back" to something close to nominal. At
other times, the individual circuit blocks can be individually compensated. Note that
it is not usually the finite value of G that is the problem, but rather the fact that
the gain is frequency dependent as G/s. Note that there is also a “"passive
sensitivity" associated with G as it varies among individual op-amps, and we
sometimes need to be aware of this.
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Any design must be considered for both its passive and its active sensitivities.
Both must be satisfactory. Because Tow levels of passive sensitivity are often related
to extensive negative feedback, requiring large gains from the active elements, Tow
passive sensitivity may be associated with high active sensitivity. Choice of a
usefql configuration may thus well be a question of finding the correct balance between
passive and active sensitivity, also considering matters of design ease and tuning.
In addition, a complete design should also consider the extra cost of components with
more favorable tolerance values, and of higher G op-amps, if these are needed.

While active sensitivity is generally concerned with the non-ideal, non-infinite,
nqn—frequency—independent:gain of the op-amp, most of the other non-ideal parameters
of real op-amps are of less concern. One exception may be the finite slew rate of an
op-amp. This slew limiting may result in a particular phencmenon known as "Jjump
?esoqance” which is particularly noticable at higher frequencies and high output levels
in high-Q filters. This phenomenon, due to the effective non-Tinearity due to slew rate
Timiting, manifests itself in terms of instantaneous jumps in output Tevel, and an
associated double valued frequency response curve.  Such a situation must be avoided
by getting a faster op-amp or by cutting the amplitude Tevels.

In this chapter, we will Took at passive sensitivity first. Then we wiil look at
the feal op-amp, and the way the finite gain-bandwidth product affects the design of
amplifiers. This op-amp model is then applied to second-order filters, and the poles
of the resulting third-order filters can be determined. Finally, compensation methods
for op-amp amplifiers and integrators will be studied.

/-2 PASSIVE SENSITIVITY

Active filters employ passive components, resistors and capacitors, in addition
to active elements such as op-amps. Both the passive and the active elements may be
non-ideal to a degree, and be non-nominal to a degree; in the case of a practical
realization. For a complete study of an active filter design, both the passive and
the active variations must be considered. Here we will be looking at passive
sensitivity, considering the resistors and the capacitors to be ideal, but not
nominal in value. Associated with actual "off the shelf" examples of passive
components is a degree of uncertainty about the actual value as compared to the
nominal value stamped on the component. When we look for an active filter structure
with low passive sinsitivity, we are Tooking for a design where these expected
variations from nominal (known as "tolerances") are of relatively minor importance.

When we compliete the design of a filter, we generally have the components
determined by calculator or computer to more decimal places than we could expect
to make use of. For example, a resistor might be calculated to 21.145692 k .
We don't expect to obtain this value when building our circuit, but would rather 1ook
to see what close values a manufacturer offers. In this case, a value of perhaps 22k
would be available with 5% tolerance. However-this tolerance value alerts us to the
fact that even though we calculated a value of 21.145692k, and have agreed to settle
for 22k, we will get yet a third value that is within 5% of 22k, perhaps 22.337576k,
which we will not even know unless we accurately measure each and every individual

Note that if we did measure each and every component in a filter to be built,
we could then plug these values back into our design equations and find out how much
the performance varies from nominal. For example, we might be designing a bandpass
for a center frequency of 1000 Hz and a Q of 100. If we then measure the values of
the components that are actually to be used, we could calculate back and perhaps find
a center frequency of 980 Hz and a Q of 78 would be achieved. This might or might
not be satisfactory, depending on the application. Alternatively, the filter could
simply be built and tested. At times, a combiration of these sort of individual
measurments and evaluations can be useful, but in general we can not justify the-
efforts. Instead, we Took for structures that are already insensitive to component
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varjation, so that off-the-shelf components will almost always result in a
satisfactory realization which is under our control. This is where passive
sensitivity calculations come in..

First we should be clear that although a passive component may be within 5% of
a nominal value, it is not the case that a performance parameter which depends on this
component, will also be within 5%. It might be significantly less, and it could well
be much much worse. The reasons for this will be more apparent when we look at the
mathematics of sensitivity, but for now, note that it is true.

We might know for example that the characteristic frequency of a filter depends
on a particular resistor R*. Heuristically we might then take the formula for
center frequency and see how much a 1% change in R* above, and then below nominal
would change the center frequency. If it is significantly less than 1%, we would
be pleased so far. If it is significantly larger than 1%, we would be worried. In
fact, sensitivity is a measure of a percentage change of a performance parameter
to a percentage change in a component, as will be seen in the mathematical
formulation. Passive sensitivities will be used as a comparative means for
evaluating active filter networks, and in a few cases for precise tuning methods.
Note that this is somewhat different from what we call a "worst case” ~analysis.

Low (or high) sensitivity is a figure of merit that serves as a basis for further
considerations. _

Mathematically we can look at sensitivity by starting with a performance parameter
X (such-as characteristic frequency of filter "Q") that depends on some passive
component y (such as resistors and capacitors) by some design equation of the form:

| X = X(Yorvneen) S (7=
where y,...., etc. are additional passive components not under consideration yet.
Note that this design equation depends on the particular active filter configuration
used. The passive sensitivity is then defined as: '

BN ALY
N

where SX is "the sensitivity of X with respect to y ', and note that a partiai
-derivative is taken, thus concentrating on the dependence of X on y, effectively
- holding the other components constant.

o whi]éequation(7§2)-is exactly what we use to calculate sensitivity, note that
(7-2) can be writtenapproximately as: '

X oy X AX/X (7-3)

Sy X by byly " {7-3) .
which indicates that we are talking about a fractional {or percentage) variation in
the parameter, relative to a fractional (percentage) change in a component.

An obvious "benchmark" for sensitivity is therefore a value of magnitude 1.
Sensitivities of magnitude less than 1 indicate that the performance parameter
varies "slower" than the component itself, which is a generally good situation.
Sensitivities of magnitude greater than 1 indicate that the parameter wvaries faster
" “than the comporent 1tself, which is génerally bad. Note that for most useful filter
structures, we would expect to see most or all the sensitivities significantly Tess
than magnitude 1. S
The sensitivity often depends simply on an exponent in equation (7-1}.. If-for

-éxample X depends on y as ym: ‘ , ,

(7-2)

X = kyM : - (7-4)
where k is a constant representing the other components, then: _ _ L
= 7-5
Sy =m | | (7-5) K
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So it is often possible to write sensitivities by inspection. Note that it is common
to find a characteristic frequency that depends on 1//y so Sif = -1/2 is commonly seen.

| It is certainly not the case that all sensitivities come out as constants, as
some may well depend on other passive components in the network. In such a case, a
numerical value can be obtained by putting in the nominal values of these components.
Note that these components usually come in as the "(y/X)" normalization of the
sensitivity calculation inegquation (7-2), and will generally appear when the design
equations include sums and/or differences.

In cases where the sensitivities are not constants, it is often instructive to
group the various passive components so. that performance parameters are obtained.
In this way, it is often the case that sensitivities can be written in terms of
filter Q. Since we often expect few if any sensitivity problems when the filter Q
is low, having a sensitivity in terms of Q is very useful. For example, if a filter
sensitivity is proportional to Q, we know that this sensitivity will be 10 times worse
at a Q of 10 than it is at a Q of 1. Such results would suggest that that particular
filter might be unsatisfactory in many applications. Note that high-Q filters occur
not just as bandpass fTilters, but as individual second-order sections of filters that
are as innocent looking as high-order Butterworth.

In theory, the calculation of passive sensitivities is a simple matter. One
first ontains the expression for a filter's performance parameter in terms of the
passive elements that determine that particular parameter. For example, the
parameter X may depend on passive elements y,....... for which we write X =
X(Yy.......). One then calculates the sensitivities by the use of equation (7-2).
Typically we are looking at the sensitivity of the characteristic frequency wo and the
Q to each and every R and C in the network, and to various gain factors. In order to
take the partial derivatives, any passive elements that are nominally the same value,
must be separately identified., This may require the rederivation of the transfer
function and the "design equations" for we and for Q, depending at the point where
nominally equal components were given the same identifying symbol. For example, we
may have derived T(s) and equations for wp and for Q by carrying three resistors
separately as R1, R2, R3, and then simplified these equations for the special case
where the resistors are equal, setting R1=Rp=R3=R. If so, the partial derivatives
needed for equation (1) can be obtained from the original unsimplified equations.

If however we had set Ri=Rp=R3=R before deriving T(s) and the design equations, then
asking for a partial derivative such as 3Q/3R s meaningless, as we don't know which
of the resistors "R" we are talking about, and it usually matters. In such a case,

we would have to find the more general derivation, before any special case was selected

On the other hand, once the derivative is taken, it is useful, and the usual
practice, to simplify the resulting expression in terms of the special case. In this
way, we get a sensitivity expression that relates easily to the case we are really
interested in, It is usually possible to simplify the expressions down to constants,
or as expressions in terms of the nominal § of the network.

In taking partial derivatives, it is wise not to multiply out any terms until
necessary, as often major blocks of algebra will cancel right out. Thus while a
partial derivative may look messy, the multipTication of this derivative by y/X in

that: Q

1/Q -
S TS

. = -S - . . -,—.l -
y y > y (7-6)
so that if we have a complicated expression for the damping D, it is not necessary

to invert it for Q = 1/D, if we don't want to. We just take the sensitivities of D,
and add a minus sign.

As an example, consider the multiple-feedback infinite-gain low-pass circuit
which has a transfer function:
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~equation (7-2) can leave something very simple. Another very useful tip is to realize ~ =



-(R3/R1) (1/R2R3C1C2)

T(s)= ) . ' (7-7)
24— VTS [/Rg/R:; + /R3/Rz + /R2R3/R1] + 1/R2R3C1C2
2R3C1Cz © v S N
e b=1/¢ o’
O

where T(s) has been put in a form where the design equations are easily identified.

‘We will consider the case where R1=R2=R3, in which case the damping D = 3/C271Cy. _
Instead of taking sensitivities of Q, we will use the suggestion of equation (7-6) and
~work from D.

As a first example, consider the sensitivity of wy t0 resistor R2. According to
equation (7-2) we. have:

dw
Wo _ Rz "o _ d_rp ~%n "Es ~Ee %
Sp,, = Bo ORo (RZ/wo) 3R, [RZ Ry "Cy "Gy ]
2 2 2
-%

(Ry/g) (R, ™ 2Ry, ™80, 5 (R /1) (1720, IR, ¥Ry e, e, )
-1/2 | -

Notice the advantage of writing the square roots as exponents of +1/2 or _1/2, and note
how the result cancels down to a very simple result,

%

As a second example, consider S%H which we will find as _S%n = (C]/D)%%T" In a

way very similar to the first example, this comes out to -1/2, and the corresponding
sensitivity of Q to Cy is thus +1/2. This further illustrates the very useful idea
of using symmetry. In the case of sensitivities of wg, each of R2, R3, C1, and C2
occupies an equivalent or symmetric position in the design equation. We could carry
out the equivalent calculations of equation (7-8) for' Rz, C1, and C2, but this would be
a waste of time, as they would clearly also be -1/2, as in the first example. To
expand the idea of symmetry even further, in this second example we looked at the
sensitivity of D to C, C1 having an exponent of -1/2 in the equation for D, and the
sensitivity therefore being -1/2, as was the corresponding case of wy sensitivity.
In general, when a passive component appears only once, we may well be able to
~write down the sensitivity from a symmetric case, or just by inspection. The case
of sensitivities of +1/2 and -1/2 resulting from square root terms is very common.

A somewhat more complicated case will better illustrate a more general case.
Consider the sensitivity of Q to R3. We will Took at the sensitivity of D to R3 and
add a minus sign to the result for the Q sensitivity.

x
D _ R33  _ 3 [ Co% 0 %y, by ko B0 By 1y ]
QS = = =1 \ . . 2 2 Y
SR3 T T aRg. \Ra/Piggg | C]%{Rz "3 Ry R HRRSR )
= (R4/D) E%%{Rz%('%)Rs 32 4 (¥R, %RZ_% + RyR, Ic%jRB %} (7-9)
.- 1 RIS . . . . . . - - - [ - - . J— ——

This we can simplify about our special case where R1=Ro=R3 as:

DR TCE 0 1 17 R %,
R 1,1 (7214
=55 3 D= 1/6 (7-10)

where we have used the specfa] case, nomihaT value bf D = 3/C2/C1.  The sensitivity of
Q to Rz is thus -~1/6. ‘

EN#195 (7) ASP 7-5




Not all sensitivities will come out as constants, although constants are certainly
welcome results, representing favorable sensitivities.if their magnitudes are 1 or
smaller. For example, in the Sallen-Key Tow-pass with equal resistors and equal
~ capacitors, the damping term is:

_TQ-k) .0 1 ] ] L (7-17
-From this we can get the sensitivity of D to K as: :
| D_ KaD C(7-12)

K
Sk = 3 = T (-1/ReC2) /wg
However,, niominally R1=Ro=R, €1=C5=C,we=1/RC, and D=3-K so that Q=1/D and K = (3Q-1)/Q.

Thus: Q (77]3)

Sy =30 -1
K
where sensitivity has been written in terms of the nominal value of Q.

- Fig. 7-1 shows the common single-amplifier low-pass configurations which we have
tooked at, along with their nominal component choices, and their passive sensitivities.
We note some general differences between these cases which are essentially typical of
- the particular configuration approach. Note for reference the M.F.I.G. low-pass,
which has sensitivities that are generally fovorable - all coming out as small
fractions. In contrast, Sallen-Key has less favorable sensitivities in general,
with the Q sensitivities having terms that increase with Q. [Note that this is
basically due to the D = 3-K equation, where K can approach 3, with the difference
being very sensitive.] Negative gain VCVS has sensitivities that are in general
better than M.F.I1.G., being somewhat smaller fractions, and containing additional
terms, if any, that go as 1/Q or as 1/Q2 (which is a minor adjustment). Based on
these findings, negative gain VCVS would seem the best, and Sallen-Key the worse,
with M.F.I.G. in the middle. [The state-variable approach has sensitivities that
are comparable with M.F.1.G. (see probiems at end of chapter).] A final judgement,
however, must also consider the active sensitivity, and the design and tuning ease.

In addition to getting general overall ideas about the relative sensitivities of
different configurations, we can use sensitivity calculations to see how a performance
parameter can be trimmed by adjusting different passive components. This, and a
number of other matters discussed above, will be illustrated in the example below: _

EXAMPLE 7-1  Find the passive sensitivities of the M.F.I.G. bandpass and consider a
scheme for adjusting the frequency and Q independently, if possible.

The M.F.1.G. bandpass was first discussed in Section 2-4. However, the analysis
given there is not entirely suitable for sensitivity calculations, since we had set
two capacitors equal initially. Accordingly, this is a case where we have to go back
for a more generai case. Fig. 7-2 shows the M.F.I1.G. bandpass with the capacitors
separately identified. Equations (2-15), (2-16), and (2-17) now become:

T'(s) = -sCiR, - (7-14)
V_in—.vi . V’ —Vout + VI - O , (7.’]5)
Ry 1/sC, 1/s¢,
T(s) = B N  (7-16)
| TRy GGRR,

and the design equations (2—22) and (2-24) become:
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Salien-Key Low-Pass

M.F.1.G. Low-Pass

MAM
V

Fig. 7-1

(-} Gain VCVS Low-Pass

{ . RVM‘.I‘I
e Ry Ry (R, 3 ke
R R 1 S NWA—4 AN~ —ANAN A= g AMMAIA-
! T
T L L4
Nominal Point: Nominal Point: Nominal Point:
Ry =R, € =¢, Ry=R,=R, Ry=Ry=Rg=R,  C.=C,
Q = Q = . Q = : Q = _]_ - 2
SR1 sR2 1/2 + Q sR] 1/3 SR] z - 1/250
Q _ Q . Q0 _ 0 __ Q _ _1 2
Q . a2 . Q _ 0 . Q . .3 .. 2
SK 3 - 1 SC} SC2 1/2 SRB 10 + 3/50Q
1
Wo _ Wy _ Q = = - 3/5002
R1sRpsC1,Cp = 71/ gy 70 R
SK =0 SRQ,R3,C],C2 =-1/2 SC] - -SC2 1710
sy = 1 - 171007
.0 = _1/25 5.0 - 1, 1/250Q 5.0 1, 3/50Q2
SEEE R, ~ 72 Ry - 2T
W, ’ w w W
0 _ 0_ 0 _ _ o_1._ 2
SR4 = -3/50Q SC] sc2 1/2 S =% - 17100
‘Fig. 7-2
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wo = 1V LRk, | (7-17)

p= RUT e, [z B (7-18)
_RZ C2 C]

From equation (7-17) and (7-18), we can ta1cu]ate some typical sensitivities -
- 3 » - i : 0 Y
just write them down by inspection, as discussed above), such as: : (

Yo

S = -1/2 _ _
RysRy5C15C, (7-19)
D D - :

S, =-S5, =1/2 (7-20)
R] R2 _

This leaves us to calculate the sensitivity of D to C] and to C3:
D _ jZL_ R1 { ~1/2,1y~ -1/2 1/2, 1 -3/2]

Some simplification of equation (7-21) is possible, but not necessary. [Note that

ng is the same as 521 as can be seen by symmetry. ] We can just evaluate equation
(7-21) at the nominal point, C1=C2, in which case: |

D _ D _ _

sC] = sC2 =0 (7-22)

This interesting result does not mean that D does not depend on Cy or on C2, as
clearly from equation (7-18), it does. Rather it means that about the nominal case
of C1=Co, a small change of either C] or C2 will have only a very smail effect. This
is a result of the fact that D depends on the sum of two numbers, both of which are
very close to 1, and which are reciprocals. In fact, we can show directly, using
equation (7-18), that a 50% change in either C1 or C2 causes only a 2% change in D,
which is a truly impressive insensitivity. Of course, this 50% change does not
leave the filter unchanged. From equation (7-19), the center frequency would change
by 25%. [Contrast this zero sensitivity with the two cases of.zero sensitivity in
Fig. 7-1. TIn these cases, the sensitivity was zero because the parameter simply

did not depend on the component in question - ever. In equation (7-21), the
sensitivity is only zero at the nominally equal point, but is still small for a
normal spread of nominally equal capacitor values. ]

The result of our study suggests that we can in fact adjust the frequency of
the bandpass, independent of the Q, simply by making adjustments to one or both of
the capacitors. In fact, equation (7-19) tells us that we need to adjust Cj or
. C2 by.1/2 the percentage by which the_ frequency is_in. error, and in_a_direction _ _ _
opposite to that frequency error. '

7-3 REAL OPERATIONAL AMPLIFIERS:

The usual ideal op-amp assumptions include the idea that the gain is infinite at all
frequencies. The single most important design consideration that arises from this
assumption 1s that the differential input is forced to zero through the operation of
negative feedback, or in the absence of working negative feedback, that the output is
pinned at one of the supply rails. In practical terms, the gain is of course
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not infinite, nor is it independent of frequency. In fact, the so-called "open Toop"
gain curve of a typical op-amp is . as shown in Fig. 7-3. There are a number of
important points about this curve that should be understood.

First, the curve is exactly that of a first-order low-pass filter, which is
probably the one filter that we understand better than any other. Note that the
3db "cutoff" occurs at a very low frequency of about 10 Hz. On the other hand, Ag
is very large - 105 to 108 or so. Why is the frequency response so bad? The
answer is that most op-amps are designed with built-in "unity gain compensation."
This means that the poor roll-off of Fig. 7-3 is entirely intentional. It is built-
in to assure stability under closed-Toop conditions, as will be discussed more
below. By "open loop" we mean that there is no feedback involved, and that the
test is being made by applying very very small signals to the input or inputs, in a
manner as suggested in Fig. 7-4. [In fact, the test is very difficult to make in
this way, and a number of tricks must be employed to get the curve. These will be
covered in a problem at the end of the chapter. None the less, the idea of Fig. 7-4
is the correct idea in theory.] 1In this view, the open-loop gain curve is exactly
a frequency response curve, which is no surprise, since we have noted above that the
op-amp is a first-order Tow-pass filter. One final point is that the open loop
gain curve is the way the op-amp always works, whether or not it is in fact being
used in a closed loop configuration.  This is logical if we consider that the -op-amp
merely produces an output voltage in response to input voltages. The op-amp has no.
way of "knowing" that it is in a closed Toop, and that its inputs are seeing voltages
that are at least in part, produced by its own output. Looked at as a three-terminal
device, it is always behaving according to the curve of Fig. 7-3. Of course, any
configuration using the op-amp, which involves additional components in general,
does not have the same response curve. :

Ia(s)]

N Agp/s = G/s | Fig. 7-4 Open-Loop Gain
N Fig. 7-3 Test (in theory)

Op-Amp Open Loop
".___T__._ e Gain Curve

p (60 rad/sec) \\\\

The need for compensation in the first place can be understood in terms of our

needing-to-employ op-amps “in- feedback structures.  Immost of-thecases studied —— -

here,_the feedback is supposed to be negative, and is estabiished as being negative
by using the (-) input of the op-amp. However, the monolithic op-amp is fabricated .
to be very small, and stray capacitances within the chip can be significant. In. -
such_a case, additional phase shifts can accumulate, and these get larger and larger
at higher and higher frequencies. Eventually a frequency can be found where the =
phase shift across the chip itself reaches 180°, At this frequency, the feedback
which was assumed to be negative (and which is still negative at Tower frequencies)
becomes positive. If the gain around the feedback loop is equal to or greater than
1, a condition of oscillation is expected. It is the purpose of compensation to
_ghape Ehe op-amp's frequency response so that the gain will always be less than 1

in such a case. : :
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Our general experience with amplifiers and similiar circuits may lead us to

associate oscillations with very high gain amplifiers, and this is correct. It may
~come as a surprise therefore to learn that the case where there is the most "danger"
or oscillation is the unity-gain voitage follower configuration of the op-amp, and
that in fact, configurations requiring higher gains may 'be much more stable. To
understand this it should be realized that it is the amount of feedback that matters.
If there is a 180° phase shifted signal at the op-amp output, this is not a problem
until it is fed back, and until it reaches the (-) input with a net gain of 1 or
greater. In this view, the voltage follower is 100% negative feedback. There is no
attenuation in the feedback loop, and the full "trouble-making" signal reaches the
(-) input. Op-amp amplifier circuits requiring gain will have attenuators in the
feedback Toop (this is how the configuration gets the gain), and the "trouble-making"
signal 1is attenuated. Accordingly it can be Targer at the op-amp output and still
not reach the (-) input with enough ampiitude to cause oscillation.

Thus unity gain with its 100% feedback is the worse possible case. This means
that op-amp designers and users have several compensation options. Each of these
involves giving the op-amp an intentional roll-off so that the gain is reduced at
high frequencies. If we knew that an op-amp was only going to be used for a gain
of 10 or more, we would require less compensating roill-off, and could expect
benefits of more bandwidth and faster slew rate. In such a case, a “custom
compensated" op-amp would make sense. With custom compensation, the user looks
at the gain situation in various configurations and supplies only as much compensation
as is needed. This 1is usually done by connecting a single capacitor between two pins
on the op-amp IC package. If a unity gain follower is being employed, the maximum
amount of compensation (largest capacitor - usually about 30 picofarads) is needed.
For higher gains, the capacitor can be decreased.

A second compensation option is to have the compensating capacitor built-in.
This means that the user need not bother with that extra capacitor, and in fact
can't get access to it at all. Accordingly, in nearly all cases, enough compensation
is built in that the op-amp is stable at unity gain. This means that it is over-
compensated at higher gains. This is the trade-off, and it is almost always
resolved by using an internally compensated op-amp. In part this can be understood
because the better op-amps available today, even with their internal compensation,
have much Targer bandwidths than even the best of the custom compensated op-amps of
a few years ago. could offer. Thus we are almost always dealing with internally
compensated op-amps, which is what we have described in Fig. 7-3.

The so-called "industry standard" of op-amps for many years has been the type
"741."  This was the first of the internally compensated op-amps, and it had a
1 MHz gain-bandwidth product (see below). People still use 741's in designs at times.
However, the newer "BiFET" type op-amps offer gain-bandwidth products of about 5 MHz -
and have much much Tower input bias currents (under 50 picoamps). Thus, in many
cases, the BiFETS types, of which the LM357 is typical, have become a new industry
standard. It is fair to warn however that it is sometimes wise not to go for this
extra bandwidth and speed unless it is needed, since the faster op-amps have a
greater tendency for high frequency instabilities. Some ideas as to what measure
_of gain-bandwidth product is needed will appear in our active sensitivity studies = _

below. :

The single-pole roll-off compensation curve needs to be fully characterized in
order to use it. The points of interest in Fig. 7-3, assumed to be a log-log plot,
are the DC gain (Ag), and the pole frequency wp. The curve of Fig. 7-3 is a single-pole..
low-pass, and can be writtenAas the equation:

:ﬂ . -...‘
A(s) 5+ wp (7 ?3)
In general, fp = wp/2r is around 10 Hz, so for frequencies much greater than 10 Hz,
the wp can be neglected in the denominator relative to s, and we have A(s) + Aguwp/s.
From equation (7-23) it is clear -that:
: - EN$195 (12) ASP 7-10




. %

M) = TAGG)-A(5T¥ = dowp| g (7-24)
which takes on the value Aqup/v2 , 3db down from Ag, when w = wp. If we look at the
limiting form for large frequency, A(s) - Agquwp/s, when w = w, here, |A(s)|>Ag, and we
can understand the intersection of the straiggt Tine Agup/s curve with the DC gain Ao
at wp (see Fig. 7-3). Setting Agwp = G, where G is called the Gain-Bandwidth Pfoduct of
the op-amp, we can end up with a convenient equation good for medium frequencies and
above (relative to 10 Hz).

Als) = G/s (7-25)

Now, the value of knowing A(s) is that we can write an equation relating the
input voltages of the op-amp to the output voltage as:

out = (Vg = VIA(S) = (¥, = V) < | - (7-26)

where V, and V_ are the voltages at the (+) and (-) inputs of the op-amp respectively.
Thus when we want to examine the first approximation to a real op-amp instead of an
ideal one, we useequation(7-26), and if we need to work at Tow frequencies, we use the
better approximation of equation (7-23) for A(s) in- equation (7-26)..  The most important
thing to note in going from an {deal op-amp to a non-ideal one is that now the )
‘differential input voltage is not assumed to be zero, but instead has some-value which
is related to the output voltage according to equation (7-26) . In all cases, once we
work out the new result, if we let G approach infinity, we should. get back our ideal
op-amp result, and this is a useful check. A

v

_ Note that the gain-bandwidth product G relates to the 45° downward slope of
the open-loop curve, and can be related to the first-order low-pass and integrator
curves of Fig. 6-3. In fact, when we use the “G/s model of the op-amp,” we are
specifically treating the op-amp as an integrator. The G/s roll-off curve is thus
a 6db/octave roll-off. When the frequency increases by a factor x, the response
decreases by 1/x. Consequently, any point on this curve is such that if we
multiply the gain by the frequency, we get a constant value of G. Since we can
interpret this frequency point as a bandwidth (since it is the 3db point), we can
understand how G is called a gain-bandwidth product, and that bandwidth is inversely
proportional to the gain. Note that G is assumed to-be in radians-per-second.
When it comes to plugging in numbers, which usually are quoted as in MHz, the
conversion factor of 2w should not be forgotten.

7-4  AMPLIFIER CONFIGURATIONS WITH REAL OP-AMPS:

‘ As a first application of our real op-amp eguation, equation. (7-26), we will
ook at our usual op-amp amplifier configurations. We are interested in these,
first of all because we will Tearn about what we can expect from real op-amp
amplifiers, such as we often need in audio and instrumentation. Secondly, many of
our active filters used these amplifiers; and when we study these active-filters, - - -
we will be able to transfer the amplifier results without rederivation.

Above we described the real op-amp in terms of an open-loop gain which depended -
on frequency, as A(s). Note that A(s) is a transfer function every bit as much as -
any T(s) we have written. When we now ook at amplifiers, we will be obtaining ,

- gains which will be functions of frequency, and we can write them as K(s), and these -
are also transfer functions. [In fact, the original gains K were transfer functions,
but were constants not depending on frequency, so we left off the (s).] These -

- amplifier gain transfer functions K{s) will only have the frequency dependence that-

. ~comes from the op-amp, and will thus also be first-order low-pass filters. The
differences between them will be.due to different cutoff frequencies and different

~ dc gains. : ' - :
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Fig. 7-5a Fig. 7-5b Fig. 7-5¢

Fig. 7-5 shows the three amplifier configurations studied in Chapter 1 for the
ideal op-amp case. Here we will re-analyze them for the G/s op-amp model, and will
write the final results in terms of G, s, and the gain in the ideal case. We will
begin with the follower of Fig. 7-5a. Using equation (7-26) we have:

= G . - & - - _o
Vout T s (v, v.) S (Vin Vout) (7-27)

which is solved for the follower gain, which we will call Kj(s) as:

G
out/vin T s+ G (7-28)
We note that this means that the follower done with a real op-amp has a pole at -G,
which can be of very little consequence for frequencies that are very small relative
to G. We can take the 1imit as s goes to O for the dc gain of 1. Also, note that
as G goes to infinity, we get the ideal case back of Kyi(s) = 1. Accordingly we have
the follower as a first-order low-pass with dc gain of 1 and 3db cutoff at G.

The non-inverter of Fig. 7-5b can be solved by first finding V_ by the voltage
divider back from Vgut: :

K](s) =Y

- R' . -
Vo= Vout RT+R . Vout’K - (7-29)

where K is the gain in the ideal op-amp case. Then using equation (7-26) we have:

_ 6 _ & | , '
Vo = =Wy - V) = F (V- VoK) (7-30)

which can be solved for K(s) as:

- - G | .
K(s) = Voue/Vin = sTE% L (7-31)

+

This is a first-order low-pass filter with dc gain K and with a pole (and corresponding
3db cutoff) at G/K. This means that the pole is now moving in on us. The Targer the
gain K we try to get, the lower the cutoff. Of course, equation (7-28) for the
follower is a special case of equation (7-31}, for K=1.

The inverting amplifier case is handled by first finding V- as:

' V. R . +V_ R, K, _
Vv = “in af out™i _ i a -
B Ro¢ * Ry Vingr =T ¥ Vo_ut T - Kj _ (7-32)
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where Ki is the gain in the ideal case (= - Rnf/Ry). Since the (+) input df-the'.-
op-amp is grounded, equation (7-26) gives: '

-Gy - G K3 1 N
Vout =5 Vo ® [Vin K;-T * VoutTTTEG'] (7-33)

which can be solved for Kj(s} as:

_ _ 6K -
Ki(s) = Vout’Vin = s(T-K;1 + G (7-34)

This is a first-order low-pass with dc gain of Kj and with a 3db cutoff at G/(1-Ki).
Keeping in mind that Ki = -Rnf/Ri is a negative number, we see that the pole again
moves in with a higher gain. :

It is interesting to compare the unity-gain voltage follower [equation (7-28)]
with the unity-gain inverter [equation (7-34) with Kij=-1]. In both these cases,
the "circuit gain" is of magnitude 1. That is, neither circuit provides any
amplification. The follower has a pole at -G, and a corresponding 3db cutoff at G.
On the other hand, the inverter has a pole at -G/2, and a corresponding 3db cutoff
at G/2, so there is only half the bandwidth with the inverter. '

A unifying concept that will help us understand the position of the pole and
the resulting cutoff, is the notion of "noise gain." The "noise gain" is the
reciprocal of the feedback factor from the output of an op-amp back to the (—) input.
The position of the pole will always be -G divided by the noise gain. We w111 )
denote the noise gain by Gy.* We can see how this concept is useful by considering
the op-amp network shown in general form in Fig. 7-6. Here we are concerned with
the voltages that actually appear on the (-) and (+) inputs of the op-amp. The
voltage V7 appears on V4 and this may be the scaled sum of any number of sources.

The voltage V- on the (-) input is the sum of a feedback term from the output, and
possibly a scaled sum of other sources, denoted by V2.  The path multiplier B tells
us how much of Vout actually gets back to V-, and it is mainly B that we are concerned
with here. Applying equation (7-26) we have:

_ 6 = Gy - -35'
Vout = ?T(V+ -V = 5 (VI BYout VZ) (7 35)
which can be solved as:
v R . o
out - G . o (7-36)
n ) V__..._...__l\NM—_—n
d

Vy oA #/,.34;\\ '

R
Ve N

V2
" g
Fig. 7-6 Feedback factor g ' Fig. 7-7 Four input summer is 1:1 for
determines Noise Gain Gy=1/8 any input/output relationship, but only

- has bandwidth of G/5 since GN=b

* It is important to distinguish the gain bandwidth pﬁoduct of the op-amp, G, the
- noise gain Gy, and the "normalized gain-bandwidth product” gp (which.will appear
. in the next section). : S _ U
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This shows that regardless of the way external voltages arrive at V4 and V_, there
will always be a pole at s = -8G. This pole depends only on the feedback factor.
Since the noise gain Gy is the reciprocal of this feedback factor, the pole is
always at:

s, = -6/GN (7-37)

The determination of the feedback factor B is a matter of looking at Vout as
the only voltage source, and applying the superposition idea. Thus, Tooking at the
amplifiers of Fig., 7-5, we have g=1 for the follower, 8 = R'/(R'+Rnf) for the non-
inverter, and B = Ri/(Ri+Rnf) for the inverter. For the follower and the non-
inverter, only B is responsible for V., so V¥2=0, and V+ = V1 = Vipn. Using these
facts, equation (7-36) can lead to equations (7-28) and (7-31). For the inverter,
V+=V1=0, and Vo = VipRnf/ (Ri+Rnf), which leads equation (7-36) to equation (7-34).
[See problems at end of chapter.] -

One additional example of noise gain will prove useful, and this is the four-
input inverting summer of Fig. 7-7. Here in the ideal case the output is just the
inverted sum of the input voltages, so the circuit gain is just of magnitude 1 for
any input to the output. On the other hand, looking back from Vout, the four inputs
are considered grounded, resulting in a net resistance of R/4 in the Tower leg of
the voltage divider. Thus B=1/5, and GN=5. The pole is at =G/5, and the 3db
bandwidth is G/5. Thus while we are mixing signals at 1:1 ratios, the bandwidth

is only 1/5 of what it would be for a follower, or 2/5 of what it would be for a
simple one input inverter. This sort of consideration can be very important in
audio circuits, for example.

It is important to realize that the discussion above permits us to understand
the bandwidth Timitations of amplifiers based on op-amps. Equally important for our
purposes here, we know how to handle these amplifiers when they appear inside active - -
filters of interest, and we have also looked at the concept of noise gain.

7-5 ACTIVE SENSITIVITY OF SECOND-ORDER FILTERS:

Here we will be applying the real op-amp model of equation (7-26) to second-order
active filters. This will involve at least some degree of re-analysis of the
configuration, and will result in a third-order network. When useful, we will
distinguish 2nd and 3rd order transfer functions by T2(s) and T3(s). In becoming
third-order, these transfer functions will now have a third pole that is real, in
addition to what is usually-a complex conjugate pole pair. In general, this third
pole is far enough away on the negative real axis that it is not, in itself, very
important (in fact, it would enhance the asymptotic roll-off by 6db/octave).

However, the nominal second-order poles may be sufficiently perturbed from their ideal
positions that the resuiting response becomes unsatisfactory. Fig. 7-8 indicates an
ovegvigw of the type of analysis that we will be doing, and it should be carefully
studied. :

We are familiar with the idea of analyzing second order networks, and going

back and forth between the transfer function and the pole/zero diagram using only the: - - -

quadratic equation. In the.case of the real op-amp, we will have a third-order
denominator, and this requires factoring by computer program. We will then
generally be unconcerned with the real pole, but will rather turn our attention to
the complex pole pair, of which we need look at only one of the two. Thus a typical
active sensitivity diagram will be the detailed region as indicated in the Tower .
right of Fig. 7-8, which will plot the pole {one of the pair) as a function of
nominal Q (second-order Q) and of various values of gn. When gy is infinite (G is
infinite - which is the ideal op-amp case), the poles are on the unit circle in their
second-order positions. For finite values of gn, the poles move. We are concerned
with the motion, and with its direction. If the pole moved inward along a radius.
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‘Fig. 7-8 Active sensitivity of 2nd-order filters is done by using the real

op-amp model, giving a 3rd-order T3(s). In

yielded to the quadratic equation.

shows a third real pole (relatively harmless) plus some

T3(s) must be solved numerically,

the ideal case, we had To(s} which
and
perturbation of the
Since this is of the most

complex pole pair, which may be significant.
interest, and because only one quadrant is unique,

this region is detailed

as shown at the lower right.

_circle at its second-order position.

When gn is infinite, the pole is on the
For finite values of gn, the poles move,

in general inward, and a bit (or a Tot) toward the jw-axis.

toward s=0, the pole frequency would change, but its Q {or damping) would remain the

same.
then the Q changes, increasing if the curve is
the poles will not move inward significantly,

the jw-axis, which is obviously a bad situation.

As a first example, consider the case of our well-studied Sallen-Key low-pass |

which has transfer function (Section 2-3):
k/ReC?
s + (3-K)(s/RC) + 1/R%C?

Tz(s) =

If it moves off of this radial line (as it actually always does to some degree),
toward the jw-axis.
but will head almost directly toward.

In some cases,

(7-38)

We could begin the analysis by going back to equation (7-26) for the real op-amp,
but we have already carried the non-inverting amplifier used in the Sallen-Key

through to the real op-amp case [equation (7-31)].
K(s) for K in equation (7-38), which gives:
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GK (T/RZCZ)

- G + sK R
TS(S) 32 + t 3 - SR J—i— + 1/R202 (7-39)
' G+sK JRC

For convenience, we will set wg = 1/vRC = 1. This will mean that all frequencies
are now relative to wg, and this includes the frequency G. Accordingly we define
a "normalized gain-bandwidth product” gn as:.

9y = &/wo (7-40}
With this normalization, and some simplification, equation (7-39) becomes:

I (7-41)

T3(s) = —5——
s” + s (gn/K + 3) + s(Bgn/K - gt 1) + gn/K

This allows us to solve for the actual poles, of which there are three. The
factoring must be done numerically with a "root finder" program. Table 7-1
Tists the pole positions for several values of D=1/Q=(3-K) and of gn.

Table 7-1
Damping D dn Complex Poles Real Pole
1.414 1,000,000 -0.707 +0.707] -630518
1.414 1000 ~-0.705 +0.707j -632
1.414 100 -0.68% +0.7073 -64.7
1.414 10 -0,558 +0.676] -8.19
1.414 5 -0.465 =0.623] -5.22
1.414 2 -0.339 +0.487j -3.58
1.414 1 -0.274 =0,3603 -3.08
0.1 1,000,000 -0.050 =0.999; -344830
0.1 1000 -0.050 +0.995j) -348
0.1 100 -0.047 20.959] -37.4
0.1 10 -0.063 +0.736] -6.32
0.1 5 - 0,087 £0.609] -4.55
_ 0.1 . _ . - .2 -.--=0,126 £0.430] . =3.44
0.1 1 -0.157 0.301] -3.04

In the table, we ﬁave examples for Q=1/¢?} or D = 1/Q = 1.414, which is a
Butterworth Q. and for Q=10 as a second case. We see that when gn is large enough,
_ the complex pole pair is near to its nominal second-order position, while the added

" real pole is quite far away. When gn is relatively small, the poles degrade in the

sense that they move away from their nominal pesitions, and the real pole moves in
closer to s=0.

- We need to be clear on what is meant by gn. In deneral, gn as given by
equation (7-40) does not change as a result of a change in G, since G is a fixed
parameter of any op-amp type, and only changes if we change type. Rather gn changes
by having -wo change, which means that we try to use the op-amp at different
 frequencies. As long as wo is very small relative to G, gn is large and the poles
and performance are near nominal. As we try to design for higher and higher '
frequencies wp, gn effectively gets smaller, and the poles are less and less nominal.

For example, let's say we have a 1 MHz gain-bandwidth product op-amp {such as
the famous type 741), and that we are trying to design a filter for fo:="10,000 Hz,
and for a Q of 10. - This gives us: : . . _ _
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9, = G/w, = 6(Hz)/F, = 1,000,000/10,000 = 100 (7-42)

From Table 7-1, we see that the poles for this case are listed as -0.047 £0.959],
with the real pole at -37.4. By a simple comparison with the g, = 1,000,000 case,
which should be very close to ideal, we see that there is a relatively slight
movement of the poles in this case. The data listed, like all frequencies in this
normalized case, are relative to wo. We could multiply these pole positions by

wo = 2rfp to get the poles in rad/sec., and then divide by 2m to get the poles in
Hz. It is simpler to just reinterpret the unit circle which contains the nominal
poles as being at fo. In this case, we avoid multiplication and subsequent divisions
by 2m.  With fo = 10,000, the poles are at -470 + 9,590j Hz, which is a radius of
about 9,602 Hz and a damping of (-2)(-470)/9602 = 0.0979, which is a Q of 10.21.
Thus we would expect the frequency to be low by about 4% and the Q high by about

2% for this particular op-amp and nominal design. As we might have expected,
designing at 10,000 Hz with a 1 MHz op-amp works out fairly well. It is easy to
see from the data, however, that for lower effective gn values, the result could
differ significantly from nominal.

We can make an experimental test of this theory. Because it is inconvenient
to work at frequencies approaching 1 MHz, we can effectively "slow down" an op-amp
for our purposes for testing.. This we will do by choosing a custom compensated
op-amp (the type 748, which is essentially a type 741 with the internal compensation
removed). In the experimental test, a measured gain-bandwidth product of 1.6 MHz
was obtained with 27 pf capacitance of compensation, while 2000 pf of compensation
resulted in only 23 kHz for the gain-bandwidth product. For a test, a second-order
Butterworth with an 8 kHz cutoff was chosen {R=1.5k, C=0.013 microfarad, R'=51k,
and Rpf = 30k). With the 27pf compensation, the gn was 1.6 MHz/8 kHz = 200, while
2000 pf compensation gave gn = 23 kHz/8 kMz = 2.9. Fig. 7-9 shows the near-nominal
Z2nd-order Butterworth that occurs when gn = 200. In contrast, when gn = 2.9, the
solution for the poles of equation (7-41) gives complex poles at -0.386 0,548j, and
a real pole at -4.04. The theoretical frequency response is obtained by multiplying
these poles by 8,000, and by calculating according to equation (1-35) as usual. The
solid line for g = 2.9 gives this theoretical curve, while the open circles are
overplotted experimental points. The agreement is excellent. Note that all three
of the poles were used for the calculation, and we begin to see evidence of the
third-order roll-off. Incidentally, we note that the result is not a bad filter
at all - taken on its own merits - it just is not what we were designing for.

Fig. 7-9 Experimental Test,

2nd-order Butterworth
Tow-pass, 8 kHz cutoff.

gn=200 (27 pf compensation)

9,=2.9 (2000 pf compensation)

l:'|;
0.013== cbmp. 1 khz
;1: cap- P

P
AR AN | .[ 1 { i e
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Fig. 7-10 Active sensitivity charts for three single-op-amp low-pass
configurations, and for the M.F,I.G. bandpass configuration. Each shows
pole positions for two different values of Q: Q = 1//2 (Butterworth) and
Q=10. Each pole position curve runs from g, = infinity to gp=1, with the
gn=infinity positions being on the unit circie, and with heavy dots for
gp = 1000, 100, 10, 5, 2, and 1 curving inward toward the center-of the
circle. The nominal cases for the configurations are as follows:

a) Sallen-Key Low-Pass: Rj=R2=R, Cy=Cp=C

b) M.F.I.G. Low-Pass: R1=R2=R3=R

c) =-Gain VCVS Low-Pass: Ry=Rp=R3=Rg=R, C1=Cp=C

d) M.F.I.G. Bandpass: C1=Co=C

EN#195 (20) ASP 7-18




Fig. 7-10a shows the data of Table 7-1 plotted out in a single quadrant,
completing the analysis and presentation scheme proposed in Fig. 7-8. (The other
three plots of Fig. 7-10 will be discussed as they come up later.) Of course, we
could add many more curves to these diagrams, since each point on the unit curcle
is a possible value for a nominal-Q case, and would have its own pole-position
‘curve. curving inward from it. Some text and journal papers will often show many
curves for many values of nominal Q, and with "cross-gridding” to connect 1ike values
of gn. In such a case, it is possible to make some general estimates of actual
performance. However, a full analysis will usually require more than just the
gridworks these diagrams offer. Individual calculations, solving the third-order
denominators with a computer "root-finder" are possible and very useful. Thus here
we find it most useful to do a comparative study of different types of configurations.
Accordingly, we have done all our diagrams for the same two nominal values of Q, and

for the same six values of gn plotted as heavy dots (even when more of the curve is
shown as a solid Tine).

The analysis of the Sallen-Key low-pass with a real op-amp has been convenient
since we were able to directly employ a previous result - the non-inverting amplifier
with a real op-amp. In some other cases, we must use the real op-amp equation
(7-26) directly from the start. Such a case is the M.F.I1.G. Tow-pass (Section 5-1,
Fig. 7-1, etc.) which is considered here for the real op-amp case in Fig. 7-11.

) Fig. 7-11 M.F.I.G. Low-Pass

R -
e NVAN—d R IF————A- considered here for its
V. i Co active sensitivity

out

|

In the ideal case, we had a transfer function and design equations for the
"equal R" case as:

1/82¢4C,
TZ(S) = —— (7-43)
s2 +(3/C2/C1 ) (1/R/C7Co) s+ 1/R?C1C2 |
w, = 1/R/C1C2 (7-44)
D= 3/4,/Cy : (7-45)
For the case where the (+) input is grounded, equation (7-26) leads to:
Vout = (G/s){V, - V_) = -(6/s)V_ (7-46)
or:
Vo= -(s/6)V, (7-47)
Here we obtain V_ as the voltage node between two impedances as:
V_ = VI/SC2 + VoutR ) (7_48)
R+ 1/sC2

but do not set this to 0, as we would in the ideal op-amp case. [instead we have
equation (7-47}]. Finally we sum currents at the V' node as:
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- Vl - V V:
n . out -
R R YR "7, (7-49)

Equation (7-49) is solved using equations (7-48) and (7-47). However, before we
write down the expression for the transfer function, we will set wg = 1, which has
two effects. First, when we see R/CICZ in our algebra, we can replace it with 1.
Secondly, G is now in units of wp=1, and when it occurs, we replace it with an. It
is left to the reader as an exercise to show that this gives:

v _ -9
Tyls) = 22 = n . (7-50)
in s” + s (362R + C1R + gn) + s(3C2Rgn+2) t 9,

In fact, we have not yet achieved quite the form we want, since equation (7-50) is

still a function of the R's and C's, and not just of gn and Q (or of D).* We need
to replace the C's and R's by use of equations (7-45) and (7-44). It is convenient

to see how this works by writing CoR as: _

_ JE_
- 1 _ [C, _
C,R = JC; RJEE‘—E— = /;é = D/3 : (7-51)
ST

and J__ -C2 C? ( |

C.R= [C; R[C; —= = |=— = 3/D 7-52)

] 1 RGY 5 i
which allows us to write equation (7-50) as:
_ -9,
Ty(s) = -3 (7-53)

s7 + 52D+ 3/D + g) +s(Dg, *2) + g

~As with the Sallen-Key, we can now solve for the three poles of T(s) numerically
and plot them as seen in Fig. 7-10b. Again we show nominal Q cases for Q=0.707 and
for Q=10. As a quick evaluation, we might say that M.F.I.G. looks a bit better than
- Sallen-Key, mainly because the Q=10 case seems to loose frequency without curving
much away from a radially outward Tine. Thus it tends to maintain its Q better.
This will be discussed more later after we look at some additional cases.

~ Another case of interest is the negative—gain'VCVS low-pass (Section 5-1, Fig.

~ 7-1, etc.), which was seen to have excellent passive. sensitivity properties. In the
nominal case of R1=R2=R3=Rg = R, and C}=C2 = C, we had the second-order transfer
function: ' '

22
Ty(s) = — -K/R°C 5 (7-54)
s + 55/RC + {5+K)/R™C o
where: - : o
w w, = /5FK/RC = /5[ /RC | | (7-55)
and:  p = 5//BFK = 5//5K; (7-56)

"% Compare this with the corresponding step, equation (7-41) for the Sallen-Key.
We were successful there in substituting just for.wg=1 because the damping
‘depended only on K (which is 3-D) and not on the R's and C's, This can. be
compared with Sallen-Key using a unity-gain amplifier rather than a gain of K -

~ (see problems at end of chapter), where we need to make further simplifications,
of the type we must do at this point for the M.F.I.G. '
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where: g, = R o/R. = -K (K is positive, Ki is negative) (7-57)
It might be supposed that this case can be handled in a manner similar to the Sallen-
Key case by employing a previously studied amplifier stage [the inverting amplifier of
equation (7-34) in this case]. However, this case provides a couple of interesting
"wrinkles" to complicate the problem. First, substituting -Ki(s) from equation (7-34)
for K in equation (7-54) does properly relate the two corresponding voltages in the
network, and does give a good approximation to the actual transfer function. The
problem is that equation (7-54) comes from an ideal op-amp analysis, which assumed
that the (-) input of the op-amp was grounded, while here it is actually at a voltage
-($/G) Vout, which simply using equation (7-34) does not change (see problems at end

of chapter). The second problem relates to the normalization to wo = 1, which
according to equation (7-55), gives us:

V5 = K5 =RC - (7-58)
so we do not just get to set RC=1 here. Analysis of the network gives (see problems
at end of the chapter).

(1-Q%)gn/AQ? (7-59)

Ta(s) = 3, Sz[goq..%.+ gnl/A + s[Z-—E%y-+ %?J/A + gn/A

A= 25Q% - 4 . (7-60)
where equations (7-55) and (7-56) have also been used.

As in the previous examples, the denominator of equation {7-59) can be factored
numerically, and poles as seen in Fig. 7-10c are the result. In contrast to the
Sallen-Key and the M.F.I.G., these result are much Tess satisfactory. Note that the
poles not only move more, but move fairly rapidly into the right half-plane. For
example, a Q- of 10 is unstable even when gn is as large as 1000, *

We could continue with numerous other second-order sections. The second-order
M.F.1.G. bandpass (Fig. 7-2 with C1=C2=C, etc.) comes out as:

-2sQqg
T3(s) = — -

> ‘ - (7-61)
s” 4+ s7[2Q0 + 1/Q + gn] + s[gn/Q + 1] + gy

by an analysis that is very similar to that for the M.F.I.G. low-pass above. The
M.F.1.G. bandpass is represented by Fig. 7-10d. A first evaluation would suggest
that the M.F.1.G. bandpass is simiTar in active sensitivity to the M.F.I.G. low-pass.

Before we review the overall situation with regard to these second-order
-configurations, it will be useful to look at two more configurations. The unity--
gain Sallen-Key of Fig. 5-1 can be examined in the case where R1=Rp=R, in which case
the third-order transfer function is obtained using equation (7-28) along with
equations (2-11) and. (5-4) (see problems at end of chapter).: ;

' g

T3(s) = —3— .
| s + s"[g, + 2/D + D] + s[1 + g,D] + g

This has poles as shown in Fig. 7-13a, which is noticable different from_the case
where K is greater than 1 (Fig. 7-10a). Incidenta11y,'the active sensitivity plot

(7-62)

*In fact, the active sensitivity is so bad that the extra real pole is also a
problem, and is itself within the circle in many cases.
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for the Sallen-Key high-pass (Fig. 3-20b), which is an equal-R, equal-C case, is
identical to the equal-R, equal-C low-pass case (Fig. 7-10a). We may note a slight
improvement when we compare the unity gain case to the equal-R, equal-C cases.

Fig. 7-12 shows a M.F.I1.G. high-pass configuration, the analysis of which is
very similar to that for the M.F.I.G. low-pass and bandpass cases, resulting in the
third-order transfer function (equal-C case) of:

-s%q /2
T3(s) = —5— - (7-63)
57+ s°(g./2 + 3/2D + D/2) + s(1/2+Dgn/2) + g9,/2

where:
D = 3/Ry/R, (7-64)

The pole position plot for this case is seen in Fig. 7-13b.

I R |
o L Fig. 7-12
Cﬂ , C% M.F.I.G. High-Pass
1l J— T
Vin ~ Nominal Case: C4=€,=C5=C
'%?]- out . o S
4 o | o
a) .Sa1]en—Key Low-Pass Unity Gain . b) M.F.I.G High-Pass

Q=10

L

Fig. 7 13" Active sens1t1v1ty charts for two additional examples: Sallen- Key
_Tow-pass with-unity gain, and M.F.I.G. high-pass. The Sallen-Key low-pass s

for the nominal case of R1=R, = R, and the M.F.I.G. nominal case is Cy=Cp=C3 = C.

The values of Q are BW (Buttervorth or (Q=0.7071) and Q 10, and. the values of

an are {spiraling inward): 1000, 100, 10, 5, 2, and 1,
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_ We now have enough data on active sensitivity to make a few generalizations.
First, it . is clear that the performance tends to be relatively constant for a
particular style of configuration. We have noted that Sallen-Key Tow-pass and
high-pass filters share the identical active sensitivity plot. We have also seen
a good deal of similarity between MFIG low-pass, bandpass, and high-pass: Fig. 7-10b,
Fig. 7-10d, and Fig. 7-13b. If we were to look at other negative-gain VCVS
structures, we would find them all similarly poor. Consequently, we might say in
general that MFIG looks best, Sallen-Key is not as good, and negative-gain VCVS is
rather poor when it comes to active sensitivity. This is essentially correct.

If we Took carefully, however, at the case where a unity-gain amplifier was used
in a Sallen-Key approach (Fig. 7-13a), we note its basic similarity to the MFIG
graphs.  This might lead us to suspect that there is something a bit more
fundamental going on here, '

What this more fundamental thing is is noise gain. Configurations with lower
noise gain have better active sensitivity. -As we saw at the end of Section 7-4,
noise gain was related to a certain feedback factor, and the op-amps effective
bandwidth was reduced by a factor equal to this noise gain. The poor active
sensitivity performance of negative-gain VCVS structures can be related to the
large negative gains required (-10 to -100 or more), with correspondingly large noise
gains and associated small bandwidths. Somewhat better are the Salien-Key positive
gain VCVS structures, which have more modest gain requirements (+1 to +3). Best of
all are the MFIG structures and the unity-gain Sallen-Key configurations which have
a noise gain of 1. *

In a sense, the VCVS designs (positive or negative) are being "cheated", since
we are assuming that we are using unity-gain compensated op-amps [equation (7-26)].
This means that the op-amps are overcompensated in most cases. The situation would
be somewhat improved, for example, if we were using a negative-gain VCVS circuit and
were abie to custom compensate it for the particular gain being used. This would be
done by reducing the value of the compensating capacitor. In such a case, values
~of G approaching 10 times the unity-gain bandwidth of the internally compensated
version are possible, *=* ‘ '

While this (overcompensation) point of view adds some perspective to the active
sensitivity problem, the graphs we have Tooked at do properly discribe the practical
situation with regard to the use of ordinary (internal compensation for unity gain)
op-amps.  This 1is, as mentioned above, because the overall performance of the best of
the internally compensated op-amps available today is probably superior to that which
we could get with custom compensation of older types, *¥* . _

*° For the MFIG types, we are considering that there is no "excess feedback."
Certainly there is negative feedback - that's how our op-amp circuits work: .
But there is only feedback that is needed to make the configuration work in
the first place - no extra that is just to stabilize the op-amp used.

*%* In theory, as the attenuation from the output to the (-) input is increased,
the noise gain is increased, and the potential oscillation-causing signal is. ..
decreased. Accordingly we should be able to reduce the compensation (move the
6db/ocatve roll-off upward in frequency) proportional to the noise gain, and '
thereby increase bandwidth. This does work in that way, but only for improve-
ments of five to ten at most. This is because the 6db/octave compensation is
not being imposed on an ideal op-amp [as equation (7-26) might lead one to
suppose], but on a high gain differential amplifier that is capable of
exceeding the compensation limits, but which is certainly not unlimited in
bandwidth.  Thus relaxing our imposed compensation only pushes us up closer
to the next physical limitations that await. ' '

*kx I 1ight of footnote just abbve, we can understand this.desjgn 1mprovemgnt as
not so much one of improving the ampTifier stages, but of reducing spurious —
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We can use active sensitivity plots and data tables in several ways. The first
and most obvious way is to try to choose a configuration with Tow active sensitivity
in the first place. The second way would be to examine the active sensitivity data
-and try to choose regions were the performance comes out close enough to nominal so
that no corrections would be necessary. The third way to use this approach would
be to see how much a given design situation degrades, and to try to compensate for
this by "overdesigning" the filter in the first palce. The idea is that since we know
that the performance is going to degrade a bit, we design it a bit beyond what we need
with the expectation that it will fall back closer to the nominal specifications. At
times we can make useful estimates of the degree to which the filter should be over-
designed.

As an example, let's consider the design of a second-order Tow-pass section
with fo = 30,000 Hz, Q=2, using Sallen-Key low-pass. Assume that we are using a
1 MHz gain-bandwidth product op-amp, so gn = 1,000,000/30,000 = 33.33. We can put
these numbers into equation {7-41), and the denominator is solved for the following
poles:

Sp1 p2 -0.2747 * 0.8901] (7-65)

sp‘3 = ~15.90 ' (7-66)
These poles are relative to the pole frequency fo, SO we can multiply them by 30,000
to see where they are in our actual example:

Sy1.p2 = 6441 ¥ 26,7035 Hz | - (7-67)

sp3 = - 477,000 (7-68)
These we can compare with the nominal positions for second-order fg=30,000 and Q=2
which would be:

sm’p2 = -7500 * 29,047j Hz _ (7-69)

The actual complex poles [equation (7-67)] have a radius of 27,469 Hz and a damping
of D = (2-6441)/27,469, or Q = 1/D of 2.132. At the same time, we feel that the real
pole at -477,000 Hz [equat1on (7-68)] can be ignored. Thus we find that the
frequency of ‘the section came out about 8% Tow, while the Q came out about 7% high.
Whether or not this is acceptable depends on the application.

_ In cases where this is not acceptable, we need to do an overdesign. To a
degree, this is a trial-and-error process, although we can make some useful guesses
about which direction to move the original spec1f1cat1ons One method would be
to try designing by moving the fo and Q specs in the direction opposite to which
they fell, and by the same percentages. Since we designed for fo of 30,000 and
-ended up with fg = 27,469, 8% low, we will design now for fo 8% high, or 32,764.
Since we were after a Q of 2, and got instead 2.132, 7% high, we will design now
for a Q that is 7% Tow, or 1.876. We reépeat the design process. Note that here
gn becomes 1,000,000/32,764 or 30.52, and is not 33.33 as in the original case.
We put gn = 30.52 and D = 0.533 into equation (7-41), and get poles which
correspond to equations (7-65) and (7-66) as: '

Sp1,p2 -0.2267 + 0.8820] (7-70)

Sp3 = ~14.92 | (7-71)

phase shwfts SO that the compensation curve can be moved upward... -That is, a
4.5 MHz unity gain compensated op-amp of today could not be -improved to 45 MHz
'ﬁ s1mp]y by making it custom compensated, even though this order of 1mprovement

1 was ava1]ab1e for a 1 MHz op-amp.
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These poles are multiplied by fo for this example, which is 32,764, and the result
is:

p1 pp = -7428 1 28,897j Hz (7-72)
03 = -488,839 Hz (7-73)

which are at a radfus of 29,837 (-0.5% short of 30,000) and at a Q of 2"01 (+0.5%
over 2.00). This would probably be close enough for most applications.

Alternative to adjusting the specifications for fo and for (Q, we might try to
adjust the real and imaginary parts of the poles. For our example, we started with
desired poles at -7,500 + 29,047j Hz, and they moved to -6,441 t 26,703 Hz. We
could try an overdes1gn by percentage fall-back, as we did for fo and Q. Or we could
just add the amount of the fall-back to the original.designu For a second example,
we will try this latter approach. The overdesign is thus represented by poles at

-(7500 + 7500-6441) + (29,047 + 29,047-26,703)j Hz = -8559 * 31,391 Hz. These
overdesigned poles have a radius of 32, 537 Hz and a Q of 1.901. The gn for this case
is 1,000,000/32,537 = 30.73, and D = 1/Q 0.5260. - These values can be put in
equation (7-41) and give po1es at:

5

SpT,pZ = -0.2239 = (.8829j (7~74).
sp3 = -15.00 (7-75)
When we multiply these by the pole radius of 32,537, we get:
p1,p2 -7285 t 28,727j Hz (7-76)
p3 = -488,055 Hz ' (7-77)

which have a radius of 29,636 Hz (1% Tow) and a Q of 2.034 (2% high).

We see that in either case, we get a significant improvement, and one which could
become even better in an iterative procedure. Here in fact, the overdesign of the
frequency and the @ worked a bit better than the overdesign of the poies. However,
no hard and fast rules can be offered as to what works best for any particular case.
It is clear that overdesign can work, and that there are several procedures for
approaching it. It is probably also obvious that since we need a computer to solve
the third-order equations, that we may well want to program the entire overdesign
procedure

By far the most 1mportant of the non-ideal properties of the op—amp'as far as
active filter design is concerned is the G/s behavior of A(s). At times, we need to
Took at other limitations, of which the finite slew rate of the output stage can
cause some interesting complications. Because of a limited current drive, it is
possible for the input and the rest of the op-amp to move faster than the output can.
In such a case, the output may "slew" for certain periods of time - going as fast as
it can but remaining "behind" where it should be. This could occur for example when
a very fast step appears at the input, in which case, the output "ramps" up to the:
new level as fast as it can, but not instantaneously. Slew rate 1imiting can also
occur even with sinusoidal inputs, if the amplitude and the frequency are both high
enough so that the dv/dt required exceeds the dv/dt available, at Teast for a portion
of the waveform, In such a case, the waveform becomes more triangular in shape.

The situation constitutes a failure of our negative feedback ideas, and can also be
interpreted as a non-linearity at the op-amp output. This can be seen since the
output should be a sinusoidal, but is instead a more triangular shape of the same
frequency, and thereby being a waveform with a fundamental and at least some harmonic
~distortion, as would occur if the sinusoidal were driven through a non-linear
c1rcu1t This can lead to the phenomenon of "Jump resonance. "
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It is easy to determine the frequency at which slew rate limiting and the
beginning of a non-linear behavior will occur (see problems at end of chapter).
However, what is usually seen first is an unexpected "jump" in the measurement of
the frequency response curve.  Typically, in a bandpass.case, as the freguency is
increased up the Tower sTope before the peak, there will be a sudden jump upward in
the response. This jump may be small enough that it seems ignorable at first.

However, if we then measure the curve again with decreasing frequency, we find that
the corresponding downward jump does not occur, but that at a sTightly Tower frequency,
a somewhat Targer jump downward occurs, and this one we can't ignore (see Fig. 7-14)

A'-‘T(sjé

fin = TOkHz - 20 kHz.

o

'Fig.<7¥14_Jhmp_Reébnanée L _FIQ. 7f]5

We may also observe that if we cut back the input.amplitude, that the probiem ejther
gets much smaller or goes away. Fig. 7-15 shows a bandpass circuit along with voltage
levels that can be used to demonstrate jump resonance.

The phenomenon of jump resonance is far more common in mechanical systems than
it is in electrical ones, owing to the fact that extended ranges of linearity are the
norm in electrical systems, but not in mechanical ones. Accordingly, more information
on jump resonance will be found in texts on machanical vibrations, and only an outline
of what is occuring will be given here. Because of the non-Tinearity, the actual
frequency response curve bends over and becomes double valued, as is suggested 1in
‘Fig. 7-14, We can therefore understand the smaller upward Jump as being from the Tower
part of the curve to the upper part. The larger downward jump occurs because the
response is on the upper part of the curve, and effectively, falls off the end. In
fact, if one watches the waveform just before this Jjump, it is easily possible to see
the triangular-Tike stretching of the sinusoidal, and the “snapping® of the waveform to
a "shorter lTength" seems very natural. We can understand that Jjump resonance will
not occur if the input amplitude is reduced, since the output requirement will be
below the slew-rate 1imit. A similar jump responance can be observed in some
voltage-controlled filters (Chapter 8) due to the non-linearity of the input stage of
the control elements: the operational transconductance amplifiers (0TA's). The OTA
input becomes significantly non-linear unless the signal is attenuated to 10 mV or

less, :

There are sometimes other effects that can be found with real op-amps, While
we ideally have no output impedance, it is actually on the order of 50 to 75 ohms,
although this is almost always "hidden" by negative feedback effects. A probliem can
come up however when a capacitive Toad is attached to the output, thus forming an RC
low-pass in the feedback loop. The excess phase can destabilize the unity-gain
compensation faster than the additional loop roll-off can prevent it. One such case
is common with faster op-amps such as the LF351 BiFET type with its 4 MHz. gain-
bandwidth product. A scope cable in excess of about 5 feet length or similar
capacitive load can cause this op-amp to go into a small amplitude but high-frequency
oscillation of several MHz. This is often relatively harmless, particularly in the
case. where it is caused by the scope cable, in which case it is not there except
during the times we are actually looking at it. For a number of reasons, it is
sometimes wise to use a slower op-amp such as a 741 type with 1 MHz bandwidth unless
the higher speed is actually needed. A 741 type will not normally oscillate with
a scope cable capacitive load.
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7-6 SENSITIVITY QF STATE-VARIABLE FILTERS:

As we have seen in Chapter 6, the state-variable (or other "Biquad") approach
offered a useful alternative to the single-op~amp configurations used for second-order
sections, In this sense, our study here is similar to that of Section 7-5, in that
our goal is a usable second-order section. However, there are a couple of differences
as well. First, since there are three (or more) op-amps invoived in the state-variable
approach, we expect that the real op-amp model will have fifth-order behavior instead
of just 3rd-order as we have encountered so far. Secondly, we will find that the
passive sensitivity is quite acceptable (comparable to M.F.I.G.), but that the active
sensitivity is very bad - at least as bad as negative-gain VCVS. What must be kept
in mind therefore is that we are designing with bad elements (integrators and summers )
which we know we can eventually fix up (Section 7-7).

Our first step in the analysis of state-variable filters with real op-amps is to
develop. the transfer function of a real integrator which we can then put into the
particular state-variable configuration of interest. We will look at the popular
inverting integrator structure, as in Fig. 7-16.

Fig. 7-16 Inverting
integrator Ts(s)
with a real op-amp

We can identify the voltage V- as a voltage node between two impedances connected to
two voltages sources, and write an expression for V_ as:

Vin(T/sC) + Vo R V. + VoutsCR

= ut _ _1in _
V. —7stEx = TSR - (7-78)
With the ideal op-amp we would set V. = V4 = 0 and arrive at the ideal integrator as
T(s) = ~1/sCR. Here however we have the real op-amp and will use the G/s model
of equation (7-26), which for V4 grounded gives us:
_ G gl Vin T VoueSER
_VOut = —g-(—V_) =- 3 (7-79)
1 + sCR

whzc? can be solved for the real integrator transfer function, which we will call
Ti(s) as:

T;(s) SCRLT + s/G + T/RCG] (7-80)

This result we can use whenever this particular integrator appears. Note that there
are two poles here, one at s=0 as expected, and the second at approximately -G.

Next we must choose a particular version of the state-variable configuration.
We will choose the three op-amp Version 2 seen in Fig. 6-6d. This circuit is repeated
in Fig. 7-17 here, where the integrator Ti(s) of Fig. 7-16 and equation (7-80) is
shown as a block for convenience. This will automatically take care of the active
sensitivity of the integrator itself, and we are left with the guestion of how to
handle the summing op-amp. This we will do by applying equation (7-26). As in the
ideal op-amp case, it is true that:

Vo= (VY + V)3 | | (7-81)

It

and:

<
1

+ = VgR'/(R'+Rq) = VB/3Q . : (7-82)
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g R Fig. 7-17 State-variable configuration
R' for active sensitivity study.

where Q = (R'+R9)/3R' is the Q in the ideal case. Putting these values for V+ and V_
into equation (7-26) we arrive at:

] _ -1
Th(s) = Wlsy = 557a =T 570 = Ti7(s) # 1 (7-83)

. Equation (7-83) is the correct answer, but we need to put it into a more useful
form in order to work with it. We will be setting wy = 1/RC = 1, so that frequencies
are normalized to wy and G will become g, as we have done before. Using equation
(7-80) and working out the algebra, we can convert equation (7-83) to:
i -9,05%(s)
. TH(S) © as® + bs* + cs° + ds? +es + T
where Dj(s) is the denominator of Ti(s), and the other coefficients are given by:

(7-84)

a = 3/gn2 (7-85a)
b =7/, +6/9,% (7-85b)
c=5+ 8/gn + B/gn2 (7-85¢)
d=1/0+2+ 9, * 179, (7-85d)
e= (g, +1)/Q | (7-85¢)
f=g, | (7-85F)

Equation (7-84) is the real op-amp equation for this particular state-variable
configuration, It is fifth-order, as it should be, with two orders being due to
the ideal case, and three additional poles being contributed by the op-amps. Note
from the equations for the coefficients [equations (7-85a) through (7-85f)] that
the coefficients for the 5th, 4th, and 3rd powers of s are "weak" if gn is large.
Thus as gp goes to infinity, we get the ideal op-amp case back, as we should. We
can compare equation (7-84) with earlier results for other configurations, such as
equations (7-41), (7-53), etc. Here the difference is that we get fifth rather
than third-order, and that for convenience, the coefficients are listed separately.

We will be interested in where the five poles of equation (7-84) occur. In
particular, where are the three extra poles, and how much do the two closest poles
move from their nominal positions.  We can plug in some numbers and solve equation
(7-84) numerically.  Such calculations show that the extra poles occur with two-at -
approximately -gn, while the third occurs at approximately -gn/3. In the unnormalized
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The two {desired) poles of
the state-variable do not

show on this scale (see
Fig. 7-19)
-G —913 J

¥ 03
two summey
" integrators

Fig. 7-18 Extra op-amp-caused
poles of the state-
variable filter

I )

 Fig. 7-19 Active sensitivity chart for the

. “state-variable:of Fig. 7-17. Heavy dots
are for gn=1000,100,10,5,2, and 1

case, these are of course at -G and at -G/3 (Fig. 7-18). Thus we can reasonably
associate the two poles at -G with the poles of the real op-amp integrators that are
used in the state-variable structure [see equation (7-80)]. The pole at -G/3 can

be seen to be due to the summer, as can be understood as the summer having a noise
gain Gy of 3, and a corresponding pole at -G/Gy [equation (7-37)]. Further, we have
already seen that this particular summer was working at a non-inverting gain of 3, a
result that led to finding the Q in the ideal case [see equation 6-23)].

It §s important and interesting to understand the positioning of the three
extra poles, but our major concern is the perturbations of the more dominant pole
pair at the design frequencies. Accordingly we look at the active sensitivity curve
for these poles that corresponds. to those for other configurations seen in Fig. 7-10
and Fig. 7-13. It is clear that these are as bad or worse than any that we have
seen so far. We can understand this mainly in terms of the added number of op-amps.
We would thus suspect that the state-variable would only be useful for low frequencies
unless we do something to compensate the network. Fortunately we can do this where
it becomes necessary (next section).

We have commented above that the passive sensitivity of the state-variable.
filter is reasonably good. Because there are so many different state-variable and -
"biguad" configurations, we will mainly be looking at generalities here. However,
the configuration of Fig. 6-6¢c will be used for an example, and is repeated with
all the passive components separately identified, in Fig. 7-20. The first thing to
keep in mind was that the pole frequency was basically identified with the inverse
of the product of the time constants of the integrator. In fact, in all cases, we
saw wo = (1/RC. What we will see here is that this will mean that.the sensitivities.
of wy to the passive components in the integrators will be -1/2, as expected. However,
there are now other components that matter: R3 and R4 in the upper Toop, which in
effect, in changing the gain in this Toop, affect the overall time constants of the
integrators. The second thing to keep in mind is that the Q of the state-variable
was given by the inverse of the gain from the bandpass output back to the highpass
output - the gain in the lower loop. This gain is nominally -1/Q, and since:

@ - -
S]/Q 1 | : . (7-86)
we expect sensitivities to be close to -1, and smaller than -1 if a given component .
does not directly affect this gain.
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The denominator of the transfer function of Fig. 7-20 is given by:

2 1 14R3/R4 R3/R4
D(s) = s" + s -+ (7-87)

from which we see that:

50 =-1/2 = - S0 (7-88)

R1,R2,R4,CI.,C2 R3

From equation (7-87), we can get the Q as:

14R./R' [ R.R.C. 1V/2
Q* TR | BRC (7-89)
3Ry | RaRoCo

From equation (7-89) we can get, for example:

Q _ 20-1 7_

Sp = 20 | (7-90)

Q
As an example, if Q is nominally 10, then it must have been set by:
1
0=10= R*FQ (7-91)

according to equation (6-18), or Ry = 19R'. If now Rg is in error by +5%, then Q =
10.475, which is 4.75% high. According to equation (7-90), for a Q of 10 the
sensitivity is 0.95, so a 5% change is Rq should give a 4.75% change in Q, as we see.
Thus we see a percentage change that is the same as the percentage change in the

gain of the loop from VB to VH, as we suggested.

The dependence of Q on Ry and R' is well understood, but from eguation (7-89),
@ also has sensitivities of ]92 to R1 and to €], and sensitivities of -1/2 to R2 and
to Co. Q is also sensitive to R3 and to Rg, but much less so than one might first
expect. Even though a change of R3 or R4 causes a significant change of the gain
across the summer, this is not reflected directly in changes of (Q, since there are
compensating effects. In fact, it takes nearly a 2:1 change of R3 or R4 just to
cause a 5% change in Q. [Of course, the frequency would change by 50% while this was
going on.]  The Q is always reduced by an unequal ratio of R3 to R4. (See probiem at
end of chapter).

In total, the'passive sensitivity of the state-variable approach is acceptable
and comparable with the M.F.1.G. structures. Accordingly we next need to see how
the poor active sensitivity can be fixed up by compensating integrators and summers.
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7-7 COMPENSATION OF LINEAR CIRCUIT BLOCKS FOR THE EFFECTS OF REAL OP-AMPS

We have seen that "overdesign" was one approach to handling the problem of
active sensitivity, Another approach, which works where a filter is actually
made up of component blocks, is to improve the blocks individually. This can be
done in the case of state-variable and signal-flow-graph "ladder” filters. These
are composed of integrators and summing amplifiers. If we can improve these blocks,
in effect before we use them, we should end up with a better filter. We will be
looking at both passive and active ways of compensating these devices. It will be
seen-that a general method of locating poles and zeros for improved response can
be employed.

We can begin with the most fundamental of our building blocks - the inverting
integrator. We have looked at the inverting integrator using a real op-amp and
found its transfer function [equation (7-80)]. This had the desired pole at s=0,
but also a second pole at -G - 1/RC, which is at approximately -G in most cases.
Passive compensation of the integrator is achieved by canceiling the extra pole.
There are two ways of doing this, as seen in Fig. 7-21. In Fig. 7-2la, a small
capacitor C' is placed in parallel with R. The voltage at the (-) input of the
op-amp is thus:

R
} Vin(1/sC) + VoutT;EETﬁ“ (7-92)
1/sC + R/(1+sC'R)

Using equation (7-26), with V4 grounded, also gives us that V- = -Vout{s/G}. Thus
we can solve for the transfer function with C' added as:

() = —pp (1 + sC Rg (7-93)
s 'ﬁ'(C+C') i +.sCR

When we separate out the pole at 550, what is left is:

-{1 + sC;R)

T(s) = R
s(C+C’) A (7-94)
scR| g t et 1} | T
which has a zero at -1/C'R and a second pole at: s
_ -(RCG+1) e
62 = {C+CR | A7:-95)

If we set the extra pole to the zero position, we arrive at, simply:

C' = 1/RG (7-96)
Analysis of the second structure, Fig. 7-21b gives a similar resuit:

R' = 1/C6. | (7-97)

- Fig. 7-21a
“passive comp. of inverting . passive comp. of inverting
“integrator using shunt C' __Integrator using series R’
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This passive compensation technique seems very effective, since it seems possible
to completely cancel the unwanted pole. However, it must be remembered that there
are tolerances here to consider. We do not know exactly what value of G any given
op-amp will have, and the capacitor (or resistor) we use to compensate it also has
some tolerance associated with it.  Nonetheless, even getting the extra zero
relatively close to the unwanted pele can mean a substantial improvement.

There is also an active way of compensating the non-inverting integrator. This
is done by putting a second op-amp configured as a follower in the feedback loop, as
shown in Fig. 7-22. In this case it will be seen that we do not get a zero that
cancels the extra pole. Rather we get a special array of one zero and two poles
(in addition to the one at s=0) which has a favorable phase response. This type of
array will prove the key to a good number of additional compensation schemes that we
will Took at later. '

The analysis of Fig. 7-22 begins by recognizing that the op-amp follower in the
feedback is known to us, and we can employ equation (7-28) to give:

- __C':'__ 7 7-
Vi = Vout 558 ' (7-98)

Now, applying equation (7-26) to the lower op-amp of Fig. 7-22 we have:

_ Vin(1/sC) + V'R _ s
v R+ 1/sC = % Vout (7-99)
which in turn gives a transfer function:
- -G(s+6G)
T(s) = (7-100)

SCR[ 52+ s(G + 1/RC) + G(G+1/RC)]

Here we see that the added pole at -G which was put in the feedback Toop has resulted
in a zero at -G, something we might suppose will be very helpful since the inverting
integrator has a zero there. Yet a curious thing happens in that the pole that was
at -G has in effect already moved out, pairing with the feedback amplifier's pole.

In fact, for the case where G is much greater than 1/RC, we can find the poles at:

s g = <6/2 F 632 (7-101)

p1 = O p2°%p

The pole/zero plot for T(s) of equation {7-100) is shown in Fig. 7-23. Ne need to
consider if this is in any way better than just having a pole at -G, and if so, how
much better, and why.

V! Lig

- . _ X

i Fig. 7-22 | /36
Vo + o . : 2
' . -G/2 1
: e \E x

— -G :

Vout : B E

Active Compensation of _ %
Inverting Integrator Using ) +-G

Follower in Feedback Loop
| © EN#195 (34) asp 7-32



In this case of an integrator, we expect a 1/f roli-off and a 90° phase shift.
The pole at -6 in the uncompensated case, or the pole/zero array of Fig. 7-23 in
the actively compensated case do not in general have a major effect on the 1/f
behavior of the integrator. However, they have an immediate effect on the phase.
This can be seen by considering the pole at -G as an example. As we move from s=0
and begin up the jw-axis, the distance to the pole gets longer, but only very
gradually at first, since we are moving perpendicular to the Tine.to the pole.
On the other hand, the phase begins to run immediately, being proportional to the
distance along the jw-axis. Accordingly it is phase that is of concern to us first.
In fact, it is what we call "excess phase" that is of concern: phase in excess of
the 90° we do want and expect. It is this excess phase that is most responsibie
for the non-ideal behavior of circuits using the inverting integrator without

compensation.

The excess phase of the uncompensated inverting integrator is determined by
the extra pole at -G, and is given by (where frequencies are in units of G):

g = -Tan']m

(7-102)

In comparison, the excess phase due to the two poles and single zero of Fig., 7-23

is given as:
. Y3 V3
g = Tan o -{-Tan'l st

0.5 0.5

7 -w] - Tan"' 2

(7-104)

Fig. 7-24 and Fig. 7-25 give plots of these phases. As a means of comparison, we
also show a case of passive compensation where we assume that there is a 10% error
between the actual G and the placement of the cancelling zero. [O0f course, if the
passive compensation is done perfectly, there is no excess phase at all.]

| w/G~>
0.2 0.4 0.6 0.8 1.0 1.2 1.4
- \\ - - N -l‘--".“ ‘."':"""""""'"-F-)-a-osvvs--i-Q-e-.-..116270;.-é.r..‘.r.l.c).§‘...............--...-..........-....'
20%¢ Te— T~ lactive
L. \.,__ .
4o+ uncompensated *‘“*m-ﬁ‘\ﬁ_“_‘;;l;.‘_
i ' - -1 w e
Tan~ = S ITT————
60°% Tl . I
g80°t i 7-24 -

In fact, from Fig. 7-24, it is clear.that both the passive and the active
compensations do work, as compared to the uncompensated case. Further, it seems
from Fig. 7-24 that passive compensation is superior to active. However, we need
to take a closer look at the low-frequency region, and this is shown in Fig. 7-25.
From this we see that the active compensation is superior in that the slope of the
active compensated case is zero at zero frequency, while that of the passive
compensated case is non-zero. In fact, the active compensated case has only a

“small fraction of a degree of phase shift even at frequencies of 0.1G, which 1is

equivalent to designing at 100,000 Hz with a 1 MHz op-amp - something we would be
a bit hesitant to do without some assurance of compensation, since there would be
a phase error or about 5° without any compensation.
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_ Consider the general problem of replacing an unwanted pole with a zero and a
pair of poles. Of course, if we could place a zero right on top of a pole, and the
pole stqnds still, we just get rid of it, and that's great. This does seem to
happen if we are successful in passive compensation of the integrator. But we can
ask ourselves if it is possible to cancel out an op-amp-caused pole from an amplifier,
the way we did with the inverting integrator using passive compensation. If we could,
that would be great, as we would be getting an ideal op-amp back from a real one.
That's not going to happen - we don't cancel the pole. Instead we are able to get
an "array" of a zero and two poles - very similar to what we got in the active
compensation of the inverting integrator - which has favorable phase properties.
We saw in the active compensation of the jnverting integrator that poles at
-172 +(/3/2)j , relative to a zero at -1, had a favorable phase response (Fig. 7-25).
Here we are looking for a general solution of which this is a special case. We will
find the result useful for establishing and checking passive and active attempts to
" compensate amplifiers and other Tinear blocks.

7F19"74263h0w§1jb case where a zero appearé at -1, and a pair of poles appears

" at’angle 0 and radius r as shown. - At DC, the phase adds up to zero, and we would

’VJTke it to remain zero for a small frequency displacement x along the jw-axis. .Thus -
“we will be looking for the phase changes across the poles to cancel the phase change
across the zero., We are assuming that the frequency change x is small, so the angles
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are all small, and can be approximated in radians by the arc length divided by the
radius. The arc seen at the upper of the two poles is, by simple geometry, xSin@,

so the phase change is:

8 ; = xSin@/r ~(7-108)

The phase change at the zero is it's arc divided by the radius (which is 1) so:
88, = x/1 = X (7-106)

and the phase change at the Tower pole is the same as for the upper one. The phase
shift off the poles should be negative, relative to positive phase shifts off the
zero, so for a net of zero phase change for small frequencies:

Miotay = 86, - 8y = M, = X - 2xSin6/r = 0 (7-107)

which relates r and 8 as:
r=2sing - (7-108)

This is easily generalized for the case where the zero is at a distance -|Z]| as:
r = 2|Z|Sin® | (7-T09)

Thus equation (7-109) provides a simple check of a proposed phase compensation
technique, or a means of achieving one if a free parameter allows for the adjustment
of r or 8. The equation is seen also to represent a circle of radius |ZI about the
zero. Thus the poles should be placed on a circle, about the zero, such that the
~ circle also passes through s=0. Note that equation (7-107) meets these-conditions. -

- Fig. 7-27 shows the "circle of solutions" that pertains to favorable phase. What this
means is that the phase change, from DC to small frequencies, will start out with
zero slope. Thus a region of near~zero phase change will also exist for sufficiently

- small frequencies.

‘Since there is a solution for any angle 6 [equation (7-109)], we need to see
which of these solutions are the best. It is not always the case that a proposed
compensation method will have a pole/zero placement that satisfies equation (7-109).
In other cases, the pole/zero placement may satisfy equation {7-109), but we are
then stuck with that particular solution [as in equation (7-101) for example]. In
still other cases we may be able to manipulate a free parameter to satisfy equation
(7-109), and then perhaps even choose. a more favorable soultion to {7-109). Here
we will look at the possible solutions to see which is best, even though in many -

cases we do not have the freedom to choose among these., We will see that the

intuitive notion that the further back these poles are, the better, applies to

this_consideration.

In evaluating the cases shown here, it should be remembered that the results are
for poles placed relative to a zero at -1. While this zero might actually occur at
-G, or at -G/4, or some such position relative to the G of the op-amp, we are scaling
everything to a zero at -1. Thus we need to be aware not just of having poles as
far back as possible, relative to the zero, but also having the zero far back to
begin with. Thus for example, a solution with a zero at -G/10 and two poles at
-G/20 may be best, given the necessity of a zero at -G/10. However, another solution
with a zero at -G and poles at -GfjG would be better, even though the poles, relative -
to the zero, are not as far back as in the first case. o '

_ Figures 7-28 and 7-29, along with corresponding Tables 7-1 and 7-2, show the _
advantage of solutions of equation (7-109) that have their poles as far back (largest
negative real part, relative to zero) as possible. These figures show the phase and
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Table 7-1: PHASE RESPONSE

Pol - —0.5*53_/2 L —AEO _2+04 (8=90°)
= 1 (30%) | -1ej (085°) | -2405 (060°)
Zero none -1 ' -1 -1
Freq for 0.1°
ohase excess|  0-00174 0.121 0.152 0.193
Freg for 1° . .
ohase excess|  0-0174 0.26 0.33 0.43
Table 7-2: Amplitude Response
1 ~0.5 +J3j/2 BN =2%0j .

Poles - (6=30%) C(6=45°) (8=90°)
Zeros none -1 -1 -1

Error at 10.99995 1.0001 1..0000 1.0000
0.01 -0.005% 0.01% 0% 0%

Error at 0.99875 1.0025 1.0012 1.0006
0.05 -0.125% 0.25% 0.12% 0.06%
Error at 0.99504 1.0100 1.0050 1.0025

0.1 -0.5% 1.0% 0.5% 0.25%
Error at 0.98058 1.0399 1.0196 1.0097

0.2 -1.98% 4% 1.96% 0.97%

amplitude responses for four cases. The first case is the uncompensated case, and

the other three are compensated cases corresponding to angies § of 30°, 45°, and 50°.

In addition to showing the relative merits of different values of 8, a performance
evaluation for any one of the cases is possible.

In general it is seen that the replacement of the pole with a zero and the pole

pair greatly improves the phase response, and has relatively small effect on the

ampiitude response.

In some cases, the amplitude response is a bit worse, while

in others it is improved, although relatively speaking the effect on the amplitude

response is minor, and is secondary to the vast improvement in phase response.

The

two tables are intended to supplement the information given on the graphs, giving

some details that can not be seen on the graphs.

all frequencies given are relative to the position of the zero.
usually placed as a significant fraction of G, so frequencies as small as 0.1 still |
represent fairly large operating frequencies for the linear circuit blocks using-

the op-amps.
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Fig.Z- 28'&ms shows the vast improvement of the use of the zero and pole pa1r1ng,
giving phases of less than 0.1° at frequencies exceeding 0.1, relative to a phase
of nearly 6° at 0.1 for the uncompensated. Table 7-1 further reflects these results.
InTable 7-1the case of no zero and a pole at -1 is the uncompensated case, while
the other three cases, from left to right, correspond to angles of 30°, 45°, and 90°.
The case of 90° places two poles at -2, and cancels the phase by virtue of two poles
at twice the distance, relative to the zero.

Fig.7-29 shows' that the effect of the use of the zero and pole pair is to cause
a peaking in the amplitude response at higher frequencies. Note that if we were
only concerned with amplitude response, that generally we find an increase in
available bandwidth, if we can tolerate the peaking. For more modest freguencies,
Table 7-2 shows that the error in the amplitude respose is a bit worse than the
uncompensated case when the poles are to the right of the zerc position, is equai
to the uncompensated case when the poles are above and below the zero, and gets better
as the poles move to the left of the zero. Thus the most favorable cases of phase
correction (approaching the best case of poles at -2%0j) correspond to cases where
there js also an improvement in amplitude response. In Table 7-2, two values are
indicated in each box. The upper value is the actual response value, relative to
an ideal value of 1, while the Tower value represents the corresponding error in %.
Note that for frequencies up to 0.7, the error is at most 1%.

Having now looked at both passive and active compensations of an inverting
integrator, and then developed a general theory for a pole/zero array with a minimum
amount or excess phase, we can turn our attention to amplifiers and summers, which
are also blocks of our filters, in addition to being of inherent interest of their
own. We will Took at passive and active compensation techniques on the amplifiers.
However, we have suggested earlier that we do not expect the extra op-amp- -caused

"pole to just get cancelied, as this would give us back jideal op-amp: performance:
‘We will take.this same approach however, and ‘see: what happens.

, Fig. 7-30 shows the inverting amplifier structure. It is clear that the voltage
at the (-) input is given by:

Vv = VinaR + VoutR _ aVin + Vout (7-110)
) aR + R a+l _ S L
In the ideal case, V. = ¥4+ = 0, and we have T(s) = -a, an inverting amplifier with
~ gain of a.. In the case of the real op-amp, V. is set equal to -~(s/G)Voyt and we
~arrive at: _ _
_ _at _ Ty
T(S) = s(a+1) + G ( H) '

 which shows a pole at[compare same resu1t:frdmfequat10n (7-34)]:

s, =-6/(at1) (7-112)
v ¢ A
- AMAN AR
_ R aR _—4! lv; aR
*——AN N -4 -
S W V. R 4
in
Yin o+ ;t//// Vout
Fig. 7-30 . Inverting Amplifier g 7-31 Invert1ng Amplifier with
with Gain of a Using No Gain of a Using Passive Compensation
Compensation with Capacitor C'.
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First we attempt to look at passive compensation of the inverter through the use
of a small capacitor C' in parallel with the input resistor R, as shown in Fig.-7-31. -

This has a voltage V- given by: |

E—— |
VindR * Vout T9507R

= =_.§_ "— .‘—:
v aR + R G Vout , (7-113)
T+ sC'R
From this the transfer function is obtained as:
| .-E$§[1 + sC'R] |
T(s) = e - (7-114)
S *aRrR St acw
Which has a zero at:
s, = ~1/RC’ L -s)
and poles at: '
{1+ i .
(+a) 1 4+ J 1 S (7-116)

p1°%2 7 “2a RC' © 2a RC/ 4GRC'a - (1+a)?

The basic ploy here is to choose a value of C' such that the poles of equation
(7-116), relative to the zero of equation (7-115), meet the general solution of
equation (7-109). While an analytic match probably would not be too difficult,
~ here an empirical approach was used, ‘based on the intuitive idea that the zero

should be matched to the original pole. We thus set equations (7-112) and (7-115)

equal, giving:

-1/RC' = -G/(a+1) (7-117)

Making this substitution into equation (7-116) gives us:

= - + 3 I3a - ] . - iy :

Calculation of these poles shows that they do in fact corresponq to.one‘qf the
solutions of equation (7-109). Some of the solutions are plotted in Fig. 7-32'for
different values of a, Note that the a=1 case corresponds to the simple inverter.

It should be clear that the use of passive compensation of the invgrting
amplifier stage is both useful and simple to implement. It is useful in that the

phase response can be greatly improved, and that the magnitude response may be

V4 At Awm 2tk Taasd wat nv-ea-l-'lu Jhavmard Fe\ln examp'!e, the case

Sigﬂificaﬂt}y nnwuvcd, O du iéast nov gy vy naymec, Gat .
of a unity gain inverter inFig. 7-32 corresponds exactly to the -1tj case of Figures7-28
“and. 7-29 examined. earlier.. It is simple in that the determination of C' is just

a matter of placing a zero in the position where the pole was, and the desirable
placement of a zero and two poles results automatically. The only needed design

equation is thus: S
C' = (a+1)/R6 ' '  (7;119)ifi
» Having successfully found a passive compensation technique for the inverting
~amplifier, we might try an active compensation technique that worked in the case of
the inverting integrator - the follower in the feedback loop, as seen in Fig. 7-33.
This does not in fact work, and we must use a different technique that will Tead to

a new compensation principle, which is seen in Fig. 7-34, and will be discussed in a
moment. First, we analyze Fig. 7-33, and get its transfer function as:
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-Ga(s+G6)/(a+1) , (7-120)-
N 52 + sG + Gz/(a+1) '
This has a zero at s=-G, and poles at:

= -6/2 £ (6/2)/1a=3)/1a+1]) (7-121)

T(s) =

Sp1°3p2
This has a favorable phase solution only for a=0 (the same solution as the inverting
integrator) which is not useful since it represents zero gain. For uséful gains
where a is greater than 0, the pole pair always 1ies inside the required circle
rather than on it. For the unity gain inverter (a=1) the poles are at -G/2 * j6/2
- which is inside the circle of radius G centered at -G.

A successful method of achieving proper active compensation is shown in Fig. 7-34.
What has been done here is to put an op-amp in the feedback 1oop, such that the overa]]
conf1gurat1on around the op-amp has unity gain, but so that the amplifier is working
at a noise gain that is the same as that of the original op-amp. This is a principle
that we will find to work in general. This principle of placing a pole in the feedback
loop which is the same as the pole of the original conf1gurat1on, is in itself a case
of placing a zero on top of the original poles, as is the usual case with passive
compensation. The result is the placement of a zero at the original pole postion,
and the proper placement of a pole pair for favorable phase response.

In this particular case of Fig.7-34, applying equation (1) to the non-inverting
amplifier at the top would give a transfer function from the (+) jnput to the output
V' of: ,

V'V, (1+a)G/[s(1+a) + G] (7- 122)
and the voltage V4 is in turn determined from Vout by the voltage divider which
provides a loss of 1/{1+a} so the net gain from Vgyt to V' is ideally 1 and for the
real op-amp:

V' /Vout = 6/[s(1+a) + 6] | (7-123)

Thus for the lower op-amp we have:

_ VipaR + Vout6R/[s(1+a)+G] S '(7-124)
V. = = -5 out : '
‘ R + aR
Which is solved to give the transfer function of Fig. 7-34:-as:
-aG :
[s{1+a) + 6] : S
T(s) = {Jra G
s + Gs/(1+a) + 6%/ (1+a)?
This equation has a zero at: -
s, = 6/(1+a) (7-126)
- and poles at: _ | o
G j&/3 | (7-127)y

Sp1°%p2 © " 2(THaT * 312y

Here equations {7-126) and (7-127) represent one of the successful solutions of
equation (7-109), for the 8 = 30° case in fact.

We are interested in improving amplifiers for their own sake, especially as
this may Tead to improved autio circuits and the 1ike. However, in filter design,
we are equally concerned of more concerned with summers. Accordingly we will now
Took at passive and active compensation of inverting summers. Fig. 7-35 shows a
passively compensated inverting summer. The transfer function is given by:
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g 36 Pole/Zero Plot for Fig. 7- 35" with

1/RC' = G/3
I(s) = out _ _(-G6/2C'R)(1 + sC'R) (7-128)
WV, 2, 3 . & _
_ - ‘ 2C'R 2C'R
Equation (7-128) has a zero at -1/RC’ and poles at:
et - (7-129) -

Sp123p2 T 4RC' \/4(RC Y2 - 2Gge
The procedure here will be to choose C' so that the zero falls on the position where

the original poles was. Without the capacitors C', the network has a pole at -G/3.
Setting 1/RC' = G/3 we find that the poles fall at:

Sp1oSp2 = ~6/4 * (§6/4)/573” (7-130)

This pole zero positioning is shown in F1q 7 36 and it can be seen that the poles do
in fact fall on acirclepassing through s=0 centered on the zero. Thus it is one of -
the favorable phase cases, and the compensation is successful.

We can extend these ideas to cases where there are more than two inputs, where
the circuit amplifies as well as sums, and where the inputs are not equa]]y summed

(so that the input R resistors are not equa1) In such a -case, it is necessary to
FTnd +hn Fwnr+1nn nF +hn nn+nn+ un1+a u”a s fe kank to the (+\_1nput nheq a!]

AN Wk VS -

the input voltages are grounded (and no C' capacitors). This fraction is the reciprocal
of the noise gain GN. The pole of the op-amp would thus be at -G/Gy. [Above the noise
~ gain was 3, and in the original one input inverter, it was T+a (Fig.7-31)]. Finally

it would be necessary to adjust the 1nd1v1dua1 C' to the part1cu1ar R so that 1/RC' =

G/GN

Fig. 7-37 is a fairly simple extension of the inverting ampiifier of Fig. 7-34.
The upper op-amp has an overall gain of 1 from Vout to V' when the op-amp is ideal.
In the real case, the combination of the attenuator on the (+) input of the upper
op-amp, along with the non-inverting gain gives us (using the noise gain idea):

v G

- o f'}:}ngTiTZ
out s{1+3a) + G | ( )

v
-The-voltage V_ for the Tower op-amp is then given as:
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= Fig. 7 37 Active Compensation of Inverting (Amplifying)
Summer with Three Inputs

_ a(VisupHiz) + GVoup/[s(1+3a)+6] . _s (s,
- T+ 3a G Vout_, 13

v

and from this:
- -Ga ST
T(s) = y +3u£v 21+3 o) - 2 (7-133)
17 %27, s + Gs/(1+3a) + G /(l+Ba) o
This has poles and zeros at:
s, = -6/(143) o {7-138)

= -G b jeﬁ . y _ aEy
Sp1°%p2 ~ 2(T#3a) ~ 2(1+33) 7-135)

These are q]earTy the 8=30° solution of equation(7-T09). Notice how the solution carries
the number of inputs (3) through so that it appears always in conjunction with 3a, so
it is fairly obvious how to modify things if we have a different number of inputs.

To handle the more general case, we have to keep in mind that the feedback op-amp
has two identical attenuators so that its gain from Vout to V' is 1. This attenuvation
is the same as that from V' to the (-) input of the Tower op-amp. The pole/zero
pattern has a zero at G times this attenuation factor, and the poles are the 8 = 30°
solution to equation (7-109). Notice that while all have the same 8 = 30° solution, .
not all these are equally good. When the gain goes up and/or the number of inputs
goes up, the solution circle gets smaller, with the poles and zeroc moving in. Thus
there is the usual gain-bandwidth product penalty to pay, and nothing is free here.

We can also Took at non-inverting structures, and consider passive and active
compensation for these. Fig. 7-38 and Fig. 7-39 show a non-inverting amplifier .and
a three-input non-inverting summer, with passive compensation applied. Without
compensat1on, these structures have a pole at -G/{1+a). The transfer function of
Fig. 7-38 is found to be:

E;Lf£l§22.+ C'R1 —
T(s) = L) P {7-136)
aC'R ° aC'R

-

Equat1on (7- 136) is identical to equation (7-114) for the inverting amplifier
except for the term in brackets in the numerator which is here (1+a)/a instead of
just 1 [and equation (7 1]4) has a - sign of course]. Both have the same poles.

The zero is at:
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S— Y
Vine— Yout
Ejg;_25§§jPassive1y Compensated ig.> 7539 Three Input
Non-Inverting Amplifier Y3 R'  Summer with Passive
(Ideal case omits C') Compensation
. -(1+a) 1 ,_ |
27 Ta R (7-137)

If we follow our usual procedure now, we had an original pole at -G/(1+a) and sétfing
this to the zero of equation (7-137) gives-us:

s (a+1)2/aRG (7-138)
This choice gives us poles of equation (7-136) at:

Sp'l ,sz = "G + J.G\/B—

2{T+a) 2(1+a)

and since sz = -G/(1+a), we recognize this as one of the favorable phase solutions,

the familiar 8 = 30° solution to equation (7-109). Notice that unlike equation (7-116),

here we get a solution where 6 is independent of a. The equation for the compensating

capacitor C' is simple to.use in both cases. .. o i

Fig.. 7-39shows a simple way in which a passively compensated non-inverter can

be made into a passively compensated non-inverting summer. Here shown for a case of

three inputs, the inputs are averaged by the passive network of three R' resistors,

and then ampiified by a gain of 3. The capacitor C' is set according to equation

- (7:138) with.aequal to- 2, as should be clear. It should be clear how this can be

extended for more inputs, and for a summer with gain. Unequal sums can be handled

as long as the passive averaging at the (+) input is properly solved.

- (7-139)

- Fig..7-40 shows how the active compensation of the non-inverting amplifier can
be accomplished. As in previous cases, the amplifier is put in the feedback loop
with noise gain equal to that in the original case. In this particular case, this
is particularly evident since we can even share the feedback attenuator between the
two amplifiers. The attenuator on the right side of Fig. 7-40' serves to give the
feedback op-amp an overaii gain of 1. Normaliy this upper op-amp woulid have its
own feedback attenuator (as in:Fig.7-34), and this could be done. However, the
non-inverting ampiifier itself has its gain equal to the noise gain, so in putting

~Fig.-7=40" Active

" Compensation of the

R Non-Inverting

_ Amplifier (note the

_L—w-»——mw,- N 1 double use of same

= = attenuator on both
aR (-) inputs)
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an amplifier in the feedback with gain equal to the noise gain, we are using the
same attenuator. Of course it makes sense to save parts, and here there is no chance
of a mismatch of passive components, and Fig. 740 is a particularly attractive case.

Fig. 7-40-isanalyzed by realizing that V' is obtained from V exactly as in

equation (7-123), and then using equation (7-26) we have: out

- & ! GYout RIS
Vout T s [ Vin T T+a s(1+a) + G ] (7-140}
and from this the transfer function is found as:
' r .
1ot s(1+a) + G ] (7-141)
Ts) = 5 3 2 :
¢ + 25 G
T+a (THa)?2

This is identical to equation (7-125) except for the {-) sign and a factor of
a/(1+a) which appears in equation (7-125). We can understand these different
factors if we take the Timiting forms of equations (7-125} and (7-141). As G goes
to infinity, equation (7-125) goes to -a as it should, while equation (7-141) goes
to (1+a) as it should. Since both equations have the same poles and zeros, equation
(7-141) 1is obviously also one of the favorable phase cases. ‘

Fig. 7-41 shows how active compensation of a non-inverting summer can be achieved.
Here a three input case is shown, but the results can be generalized in the way we
have been doing. Note that here we are summing on a (+) input which becomes a .
summing node by virtue of the fact that an inverter is put in the feedback loop.
This may look strange at first. All that remains is to achieve the same noise gain
in both amplifiers, and this is the purpose of the R/2 resistor shown, which is
the same as giving the upper op-amp the same number of input resistors (3) that the
Tower one has, thus equalizing the attenuation factors (and thereby the noise gains).

We can consider the R/2 resistor as being two R resistors to ground, and thus
the {-) input of the upper op-amp is a resistor average of four voltages, one of
which is V', a second of which is Vg,t, and the other two or which are zero. Thus
for the upper op-amp V. is (Vout+V’?/4s and using equation (7-26) we have:

-GV ‘ : _
V' o= out _ _ _
Likewise the (+) input of the Tower op-amp is the average of four voltages: -

Vi = (VyHiprvgeyt) /4 (7-143)

and using equation {7-26) we get the transfer function of Fig. 7-41 as:

R - - le;;Z;ﬁlfAct1ve
~ Compensation of the
V! R/2 Non-Inverting
Summer,
+ R

L

Vout
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| G/1 + o
T(s) = —5{C/1E)(E gs) (7-144)
s + Gs/4 + G°/16 *
which has a zero at -G/4 and poles:

Sp1 792 = G/8 ¥ J6/3/8 sy

and this is one of our familiar 8 = 30° solutions to equation (7;109);,and thus -one of
our favorable phase cases. _ '

, In some cases, we may be successful in achieving phase compensation, but end up
in inverted form, or need an inversion that is not present. In such a case, we
consider adding on an op-amp inverting stage. This however costs us in that the
inverter itself brings in an extra unwanted pole (at G/2 in the case of a unity-gain
inverter). Thus we would have to think about adding phase compensation to this
extra inverter. However, in many cases, there is an easier and better way. This
nice method can be used to achieve a phase-free inversion as long as the op- amps

are well matched in G.

Fig. 7-42 shows the usual way in which an op-amp 1nverter is added on. Here
we are considering the special (but not at all unusual) case where the stage to be
 inverted involves a grounded (+) input (virtual ground). Normally we would just
ground the (+) terminal of the added inverter, as shown. However, in the ideal
case we can just as well connect this (+) input back to the virtual ground of the
previous stage, as seen in Fig. 7-43. There would be no real reason for doing this
in an ideal situation. However, in the case of real op-amps, something quite

unexpected happens.
We can see, using equation (7-26) as usual, that:

v, = -(6/5)V, | (7-146)
and likewise, for the added op-amp:
Y v
Vg = (/5)DYy - Vgl = (6/9)IVy - 552 ] (7-147)
putting equation (7-146) into equation (7-147) we obtain:
- G s Vz v
v, “'"E‘['GV2 - Vg ] (7-148)
or: | -
V4/V2 = -[1 + (6/25)]/[1 + {G/2s)] = -1 (7-149})
This is a pure.in#ersion, dispite the fact that an op-amp is involved. We can
think of it as using the first op-amp to pre-compensate the second. The idea is so
useful that we can consider using it in most new designs, and even possibly to
modify old circuits. '
_ : o true - to previous
, ' _ ground‘r . v t ] q
_Fig. 7-42  Addition - trtual ground
-of op-amp inverter. = . Fig. 7-43 Connectmn for

L _ ‘phase-free. 1nvers1on
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(ACTIVE SENSITIVITY IN A COMPENSATED STATE-VARIABLE FILTER)
--—-—continued from page 2

that is far away and relatively harmless, while the two "desired" poles are
close to {(or not so close to!) our desired second-order pole positions. Whether
or not the poles are sufficiently nominal depends primarily on the pole radius
(essentially, the frequency at which the filter section is to operate) relative
to the gain-bandwidth product G of a particular op-amp. Filters designed for

' lower frequencies can be expected to be near nominal.

In cases where the actual poles are too much displaced from their nominal

positions, we can do what we call "overdesign.® In this procedure, perhaps we
find that with a real op-amp, the pole radii drop to 95% the desired value while
the Q0 rises to 108% the desired wvalue. Intuitively we might redesign the

network, now with the frequency 5% higher, and the @ 8% lower than the original
specifications, supposing that the real op-amp will still cause the frequency to
fall by about 5% and the @ to rise by about 8%. If necessary, additional
iterations (trial and error) can be used to get as close as necessary to the
nominal case. In general, much or all of this iteration is simply a matter of
computer calculations. It is somewhat analogous to building a bridge, and
finding that it sags under its own weight, so you rebuild it, bulging it up
slightly, so that it sags back to exactly where you intended it.

In the second approach, favored in cases with more op-amps, and for
configurations composed of simple "building blocks" such as integrators and
summers, we displace the usual active sensitivity problem by stating that, in
cases where it is a problem, we will replace ocur simple (ideal) op-amp
realizations of these building blocks with improved ("compensated"} blocks.
This we do using extra resources, passive, or active compensation tricks (a few
"trimming" passive components, or an extra op-amp). In the bridge analogy, we
invest more resources in stronger beams so that sag is not expected.

It would seem that there is a clear advantage to the first (overdesign)
approach, as aside from some engineering time, it costs us less in production.
This is true. But there are cases where it is not practical. Readers of this
newsletter are familiar with wvoltage-controlled filterg as used in electronic
music synthesizers, which have variable characteristic frequencies (pole radii)
and Q@ (pole angle) . Clearly overdesign is only well-suited to filters with
fixed parameters. In such & case, we have in mind a particular frequency and Q,
and we calculate the necessary {non-nominal) values of resistors and capacitors,
and solder them in place. With a voltage-controlled filter, both frequency and
0 may change rapidly, continuousliy, and over & wide range. We HAVE IO fix the
building blocks of the filter in this case.

For reasons of algebraic entanglement, we have tended to neglect
recalculation once compensated building blocks are designed and employed in
place of the "textbook" blocks. Yet the supposition that the method is sound is
suggested first by its reasonable nature, and is borne out in experiments.
Indeed, any of us who has built a voltage-controlled filter with the
compensating shunt capacitors across the transconductor input stage has done one
form of this experimental verification. Over the years, we have seen numerous
other successful experiments. Yet, why not do the calculations for at least

one example?
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AN IDEAL STATE-VARIABLE FILTER

Qur starting point is the three op-amp version of the state-variable filter
first presented in Chapter & of Analog Signal Processing (last issue), and which
is used as the active-sensitivity example in Chapter 7 (this issue). The
circuit is repeated in Fig. 1 below:

VB “.VI.

£
AMAA
Rg

Vg
R o = R'/(R'+Ry)

Fig. 1 TUncompensated State-Variable Filter

In the ldeal op-amp case, V.=V. for all three op-amps and the hlgh pass
transfer functions is purely second oxrder:

Ty(s) = Vu(s)/Vin{s) = -8* / (s* + 3as/RC + 1/R’C?) (2)
50 the nominal poles are at:

Sprrpz = —00/2Q £ Foo(V 407-1)/20Q | (3)
where:

o=1/RC . (4)

is the pole radius and the @ is related to the attenuation factor o as:

Q = 1/3x (5)
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THE NON-IDEAL STATE-VARIABLE FILTER

The case of the non-ideal (real op-amp) version is covered in Sectien 7-6
of Chapter 7 (this issue} with the result (Fig. 7-19 of Chapter 7) showing
relatively poor active sensitivity. Note that at this point, we could easily
employ the overdesign approach, just as we have for one op—amp versions of
second-order networks. Again, we would be restricted to fixed parameter cases,
but otherwise, there would be no additional problems of much significance,

Instead at this point we have "bailed out" stating that we would fix up the

summer and the integrators later, and this we did in detail and in several ways
in Section 7-7. But we did not actually put the pieces together.

PUTTING IN THE COMPENSATED BLOCKS

. Where are we? Well, ideal op-amps gave perfect results. Then, using the
real op-amp model, we saw excessive pole migration. What we want to do now is
- bring in compensated blocks, replacing Fig. 1 with Fig. 2. Here we are
employing the active compensation methods, so note that we now have six op-amps
total.

Vs
C Ad
L
Vi NG
p _,_\ )
‘;// Vs R
L Pas
Wv »
aVp Ry
R' Assumptions: All op-amps have same G

All passive components nominal

Fig. 2 State-Variable Filter with Compensated Blocks
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We now have what is going to be an eighth-order network (6 poles from the
op-amps and two intentional capacitors). What we hope to find is two near-
nominal poles with the remaining poles far away and/or masked in part by zeros.
Note that we must consider all the op-amps to be real {otherwise, we get perfect
results). This is where the algebra gets messy, even though portions of the
mess have been worked out already in Chapter 7.

THE SUMMER PORTION

The active compensated summer consists of op-amp Al with A2, configured for
the same noise gain (3), in the feedback loop. Note that A2 is configured for a
gain of 3 and is preceded by an attenuator of 1/3, so it is ideally unity from
Vy to V;. However, as a real op-amp, we apply eqguation (1) to A2 to get:

V3 {G/s) (VH/3 - V3/3) ba)

or

Vs [ G/(G+3s) ] Vy (6b)

which has a pole at s8=-G/3. This is what we want. Now applving equation (1) to
Al, and using eguation (6b) we arrive at:

Ve = (G/s) [Vi = (Vip + Vi + V3}/3 ]
= GoVe/sS - GVin/3s - GVi/3s - G¥Wyu/[3s{G+3s)] {7}

This equation (7} is the key to solving our problem. Once we relate Vy; and V;
to Vy by analyzing our compensated integrators, we can transform eguation (7}
into the form Vg(s)/Vi,(s) and find the poles and zeros.

THE ACTIVE COMPENSATED INTEGRATOR

Applying equation (1) to Ad we get:
Vs = G/ (3+G) Vg (8)

which is a real wvoltage follower with a pole at s=-G. Once again, using
equation (1), this time on A3 we get:

Ve = ~ {G/s} (Vg/sC + VsR)/(1/sC + R} (9)
or, usging eguation {8)

Velg) /Vg(s) = -G{s+G) / sRC[s? + s(G+1/RC) + G{G+1/RC)] (10)
This is just the compensated integrator result, eguation (7-100) of Chapter 7.

Of course equation (10) also relates Vi(s)/Vg(s), and V.,(s)/Vyz{s) is the square
of equation (10). This completes the pieces.
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THE NEAR-NOMINAL POLES

Rewriting equation (7) using equation (10) as well gives us:

Val(s) /Vin({s) = - [Gs?R*C? (s*+sB+GB)?(G+3s)] /
[ 25 s2R*%(s? + 8B +GB)2(G+3a) + 3G%(s+B)sRC(s® + sB + GB} (G+2s)
+ G e+G)2(G+38) + G*s’R%C%(s® + sB +GB)? ] (11)

where we have substituted B = G+1/RC. There is a temptation to regard G as
being much bigger than 1/RC, but this we must not assume. Further, we might
have set RC=1 "without loss of generality" but this we resisted, as doing so
would have destroyed dimensional checking which can be extremely useful in
complicated algebraic manipulations. (All the terms of equation (11} have
dimensions of frequency to the 6th power.)

Egquation (11) is the answer we need, although we do need to do more algebra
in order to put the denominator in a from that can be factored to the poles.
When we do this, the denominator becomes:

des® + dys™+r des® + des® + Aust + dps® + dps® 4+ dis + (12)
where:

de = 9 R*C?

d; = 3 ¢ R%C? + 18 R%*CB

s = 24 R*GB + 9 RCB? + G* R*C?

ds = 6 R:C¥G*B + 21 R*CIGB® + 9 G%RC + 2BG*R*C?

d, = 15 R*CG*B* + 12G%°aRC + 9G*aBRC + 2G*BR*C? + G*B*R*C? (13)

d, = 3R*C'G’B? + 3G%RC + 21G°aBRC + 3G° +2@°B%RC?

d, = 15G*BRC + 7G* + G*B?R?*C?

d, = 3G°aRCB + 5G°

o = G°
RESULTS

The general results show that the method of using compensated blocks works.
Yet there are nonetheless some curious findings that are perhaps not too
difficult to explain. For our study, we have chosen to expand on the results in
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Section 7-6 of Chapter 7. Accordingly the results of equations (7-84) and
(7-85) will provide the comparison case. In Section 7-6, we saw results for
values of g, of 1000,100,10,5,2, and 1, and for a Butterworth Q {(0.7071) and for
a Q of 10. As we might expect, the pole positions become unacceptable for
gn=100 for a Q of 10, and for ¢,=10 for the Butterworth Q (see Fig. 7-19). What
happens when we use the compensated blocks? Do the poles stand still?

Fig. 3 shows a graph similar to Fig. 7-19, except here we superimpose the
compensated case, and show the desired poles for Butterworth and values of gn of
1,000,000, 1000, 500, 100, 50, 20, 10, 5, 2, and 1. The compensated case does
not show poles that do not move significantly. The uncompensated case spirals
out and around becoming unstable. The compensated case tends inward. If we
look carefully (the zoom of Fig. 4), the displacement in the compensated case is
roughly only half that of the uncompensated case. Also, we have noted that
motion of the poles inward more or less along a radius is a less serious mater
than an arc, as the ¢ changes in the case of an arc. However, for the most
.part, we don't see a dramatic improvement, and this is largely a matter of

“recognizing that a Butterworth Q of 0.7071 is not tooc taxing on the op- -amps.
Takle 1 lists the pole positions for this case.

Somewhat more revealing is the case of Q=10. Running this case
for the uncompensated case (shown here as Fig. 5) shows the same result
as Fig. 7-19 of Chapter 7. 1In fact, for this case, the poles become
unstable somewhere between ¢,=50 and g¢,=20. Also from Fig. 7-19 we saw
that the pole motion is more or less direct into the right half plane -
as bad as you can get. In fact, Fig. 5 is kind of messy, with some
nasty-looking compensated case poles. Who ordered them! = Of course,
these are for g,=2 and g,=1, likely pushing our op-amps beyond what we
could hope for anyway.

Let's look at Fig. 6 which is a zoom of Fig. 5. Once again, it is
clear that the uncompensated case just heads directly for trouble.
Finally we see a clear and dramatic advantage of the compensated case.
The poles move inward toward the origin and not to the right. A&t gn=20,
where the uncompensated case is already hopelessly unstable, the
compensated case shows 97% of the desired frequency, and little if any
change of Q. This is what we were looking for. The method works.
Table 2 shows a listing of the actual pole positions.

But what about those horrible cases for g,=1 and g,=2? Well, what
has apparently happened is that when the compensated case gets around to
deteriorate, it deteriorates rather suddenly. To extend the bridge
analogy, we are building with better beams, which deflect much less, but
when they do break, the bend suddenly and dramatically. Some notion of
why this is can be seen by looking at Fig. 7-25 of Chapter 7, which
shows the phase response of the compensated integrator. It starts out
flat, but when it bends (at about g,=3), it bends. But to reiterate,
this is 1nterest1ng but secondaxy, because we’ xeally have no business
trying such low gn.'s anyway.
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Fig. 4 Zoom of Fig. 3 about 076k 100 + ! 4
the nominal Butterworth ‘ ' : P
poles (-0.7071x 0.70713). : 5
The compensated case is 072r
better, but something only _ :
on the order of twice as o 0715k i ; ]
good. : : :
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Real
Table 1 0=0.7071 (Butterworth), RC=1, ¢g,=GRC
Tn Uncompensated Compensated
1000000 -0. 7071 + 0.70713] -0.707r + 0.70713
1000 -0.7079 + 0.70897 -0.7064 + 0.706475
500 -0.7087 + 0.71075 -0.7057 + 0.70573
100 -0.7153 + 0.7263] ~0.7002 + 0.69947]
50 ~0.7239 + 0.74867 -0.6936 + 0.690573
20 ~-0.7468 + 0 .84435 * -0.6757 + 0.65729 *
10 -0.6189 + 1.09503 ** -0.6485 + 0.58627 *
5 -0.2006 - 1.04297 *+* -0.5779 + 0.44027 **
2 0.0374 - 0.6821] *** -0.3870 + 0.22827 *=*
1 0.0652 — 0.44547 *** -0.2469 + 0,123375 **
* non-nominal behavior of some concern
* ok significant non-nominal behaviox
* kK unstable
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Real
Table 2 Q=10, RC=1l, g,=GRC
Tn Uncompensated Compensated
1000000 -0.0500 + 0.99877 -0.0500 + 0.9987]
1000 -0.0475 + 0.99813 -0.0500 + 0.99783
500 -0.0450 + 0.99743 ~* -0.0499 + 0.99683
100 ~0.0251 + 0.99097 ** -0.0496 + 0.,98943
50 —0.0013 + 0.9809] ** -0.0483 + 0 98127
20 0.0610 + 0 .9411j **~* -0.0484 + 0.96347 *
10 0.1309 + 0.8608] *** -0.0417 + 0.95433 **
5 0.1870 + 0.71735 *** 0.0602 + 0.9706] ***
2 0.1861 + 0.48275 *** -0.5129 + 0.3623F **
1 0.1427 + 0.3250] *¥* -0.3160 + 0.16037 **
* non-nominal behavior of some concern
*® significant non-nominal behaviox
KK unstable
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ALL THE POLES AND ZEROS

Above we have been discussing the "nominal" poles. Yet in the
unconmpensated case there were five poles total (two nominal, and one
from each of three op-amps), and in the compensated case, there are
eight poles total (two nominal, and one from each of six op-amps.)
Where are they all? Consider the example of a Q of 10 with gn 1000.
The poles are listed in Table 3

In the ideal op-amp case, this high-pass response has two poles (at
s= —-0.05 £ 0.99875j) and two zeros (at s=0). A high-pass filter needs
to have the same number of zeros as it has poles. That is, as frequency
approaches infinity, we need to be moving away from no net poles or net
zeros, or else the response would continue to fall or rise. However, we
also note that in a real network, we can not have a true high-pass,
"since the response is available at the output of an op—amp, which must"
have a finite bandwidth. This we see in the ddata of Table 3. Both the
uncompensated and the compensated cases involve real op—amps, and both
show one net pole.

Notable also in Table 3 is the near perfect cancellation of many
cf the poles and zeros. Of course, most of our interest is in the near-
nominal poles - how far from nominal they happen to be, and if we can

live with that. But we do note that even in the uncompensated case
there is a near cancellation of a pair of poles by a pair of zeros, .
leaving only the extra pole at -333.1903. In the compensated case, we

end up with near cancellation of two pairs of poles and zeros, and the
net pole is the result of the remaining poles at -166.61 * 288.71j
with a zero at -333.33, which are associated almost exactly with the
compensated summer stage (Al and A2) of Fig. 2. These are also the
favorable condition, equation (7-109) of Chapter 7, for an initially
flat phase characterlstlc

So much for algebraphobia. Did I get it right? Could the numbers
in equation (13} possibly be correct, and could I have possibly typed
them in correctly? Well, they might well be. First of all, there was
the usual checking p10cedures - do the algebra once just to see how
"big" the problem is, and then do it correctly, and a couple of more
times to check. Not very reassuring - we usually make the same errors
over and over. But there is the dimensional checks - the physical units
of the terms agree. This does not prove that the results are correct,
but it is very reassuring. More to the point, if we do dimensional
checking as we do algebra, certain errors shout at us before we go any
further. We almost always find some in-progress errors by checking
dimensions. By far the best indication that things are right is that a
complicated system does get down to a simple, familiar, expected result.
- the favorable pole/zero condition for zero incremental phase. Still -
if anyone wants to check one more tlme, please let me know, cne way ox

ancther.
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.TABLE 3 All the Poles and Zeros

Uncompensated , Compensated
POLES:
~0.0475 + 0.99813 (near nominal) -0.0500 + 0.99783 (near nominal)
-0.0475 - 0.99813 (near nominal) -0.0500 - 0.9978) (near nominal}
-1000.3 (real integrator) -500.31 + 866.60j (comp. int.)
-1001.7 (real integrator)  -500.31 - 866.60] (compf int.)
-333,1503 (real Summgr) _ -500.69 +-86600;j_(q0m30 int.)r
| ~500.69 - 866.019 {éamp" int.)
-166.61 + 288"71j‘(comp sqm.)*
-166.61 + 288.71j (comp sum,j*
ZEROS:
0 ' {nominal) ? 0 {norminal)
0 (nominal) . : : 0 - {nominal}
-1001.0 (real integrator) =-500.50 + 866"31ﬁ (comp. int.)
-1001.0 (real integrator} -500.50 - 866.31j {comp. int.)

~500.50 + 866.31j {comp. int.)

~500.50 - 866.313 (comp. int.)
-333.33 (comp. sum.}*
* Non-nominal un-cancelled poles/zeros, but the poles are on a circle,

centered about the zero, passing through s=0 - our favorable condition for
zero initial incremental phase. ‘ ’
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