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This ilssue covers Chapters 5 and 6 of Analog Signal Processing. Both
these chapters expand on the repertoire of design configurations, to
include at least two active ladder methods, through the use of "gyrators™
or "supercapacitors® (Chapter 5) and through the use of integrators in a
flow-graph simulation (Chapter 6). Chapter 7, a very long chapter, deals
with the non-ideal aspects of the various configurations considered.

This issue begins with a "blast from the past" item, which 1ig a
modification to a classic and popular VCO circuit which first appeared in
EN#62 (Feb. 1976) and reappeared in its basic form in a number of
subsequent designs, including the well-received ENS76 Option 1 VCO. Here
Terry shows us a different way of deing the high freguency tracking.

MODIFICATIONS TO A VCO DESIGN FROM 1976

Along with Dave Rossum, Ian Fritz, and many others who contributed
circuits for our readers, Terry Mikulic was well represented and often
gave us extremely good designs. Often thege arrived at times that were
perfect in terms of assembling our . complete ensemble of modules. Terry's
VCF design provided the basic ideas of most of our CA3080-based state-
variable designs. The VCO in EN#62 (Feb. 1976) became a prototype for all
our later sawtooth-based VCO's, as I recall. It was a great pleasure to
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have him call a few months back, and receiving the circuit diagram with
VCO modifications was certainly remindful of the good old days.
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CHAPTER 5

ApprTioNAL CONFIGURATIONS L

5-1 Additional Low-Pass Configurations

5-2 Configurations Extending the
M.F.I.G. Bandpass

5-3 Ladder Network Realization
Using Component Simulation

EN#194 (2)



5-1 ADDITIONAL LOW-PASS CONFIGURATIONS:

We are familiar with the Sallen-Key low-pass structure which we have used 1in
many of our examples. Here we will look at a few more low-pass options. Again, we
use low-pass as an example, but the general ideas can be extended for other types of

filter,

The Sallen-Key low-pass is also known as the Positive Gain VCVS (Voltage-
Controlled Voltage Source)}, and the amplifier with gain of K is something we easily
recall about Sallen-Key. As we saw, when we made the component values equal, we
required a K greater than +1 for complex poles. Since the case of K=l (a "buffer")
is an easy op-amp circuit, and because other types of buffers are easily achieved
(such as FET source followers, which can have superior high-frequency performance},
we want to see what can be done with Sallen-Key with K=1 and allowing the component
values to spread.

Fig. 5-1 shows the Sallen-Key structure with K=1, and where we are now specifically
suggesting that C] need not equal €2, and R} need not equal Rp. For this case, the
transfer function can be obtained and put in the form:

_ 1/R,R,C,C
1727172
T(s) = (5-1)
2 ] (Ry*Ry) /5 1
s° * p—— —— St RR.C.C,
/ﬁ;ch1cz ¢fETR1R2 172712
from which we can easily write down the design eguations:
f , = 1/2n/R.R,C,C, (5-2)

d 1727172

]

We note that in the case R]=R2 and C1=C2, equation (5-3) gives D=2, which agrees with
the k=1 T1imit of our earlier studies of Sallen-Key. Our next thought would be to
try to hold C1=C, and try to achieve values of D that are_less than 2 by varying

R1 and Rp. However, in such a case D = [(R1/R2) + (R2/R1)] which has a minimum

value of 2 when R2=R1. Accordingly, we are not going to be successful uniess we
concede that there has to be a spread between C1 and C2. If we then take RI=R2,
equation: (5-3) becomes:

D = 2/C7CT (5-4)

From this relatively simpie resuit, it is fairly easy to design low-pass sections,
and have an overall dc gain of 1. Note that a simple 2nd-order Butterworth is
achieved with Cy=2C5. It is usually not difficult to obtain this 2:1 ratio. If
necessary, three equal valued-capacitors can be used, with a series or parallel
combination of two of them being used to obtain the 2:1 ratio needed.

Fig. 5-1

. Unity-Gain VCVS or.
Sallen-Key will
require Co# Cp
for useful values
of damping.
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We are familiar with the Multiple-Feedback Infinite-Gain (MFIG) bandpass. MFIG
configurations are also possible for low-pass and for high-pass, and in fact for
all-pass and notch (see Section 5-2). The MFIG low-pass is seen in Fig. 5-2. Its
transfer function can be obtained and put in the form:

-{R,/R){(1/R;R,C,C,)
1(s) = = ﬁ_._]R3 e (5-5)
: 2 1 in[j 2. j'é 2 3] ]
g% 4 ——— [ ZE] o ok YEem s+ —
. RRTC CiLfR3 JR2 R1 | R2R3C'I CZ-
37172
from which the design equations are easily obtained as:

fsd = 1/2n¢ﬁ2R3C]CZ '. (5-6)

_ e R2 R3 . /ReR3 )
o= & L% [R  R] (7

There are a number of component selections that can be tried here (see problem at end
of chapter) .* . One of the results of this component selection study is similar to that
of the unity gain VCVS just studied: we must have some spread in the capacitors. If
we do the next simplest thing, that of setting the resistors all equal to R, and set
the capacitors so that C2 = BC1, we find equations (5-6) and (5-7) becoming:

foq = 1/21/BRCY (5-8)
D= 378 - - - (5-9)
ST WAty - MFIG Low-Pass- -

The third new Tow-pass configuration that we will Took at is of the negative gain
VCVS type, which we have not looked at before. The Sallen-Key used a finite-gain that
was positive, the MFIG used an infinite gain op-amp, and this one uses a finite gain
that is negative. The negative gain VCVS structures are well regavded for their
excellent passive sensitivity properties (Chapter 7). However, their active sensitivity
is rather poor (again, Chapter 7) so they should only be used at lower frequencies
(say under 1 kHz). None the less, the configuration should be something. that the
analog filter designer knows about, and one form of the low-pass negative gain VCVS

is seen in Fig. 5-3a. Note that the negative gain“VCVS“here“is'shown“aS"aTtriangu1ar_**-"-~--

symbol marked -K. We specifically intend that K is positive here, so -K implies an .
~inverting amplifier. With positive gain VCVS, we were able to take advantage of the
very high input impedance of non-inverting stages. Here we have to recall that the
inverting op-amp stage has a relatively low input impedance, equal to the resistor

in the input Teg. We are able to avoid this problem by making the input resistor a
part of the circuit (Fig. 5-3b), the resistor R going to ground in Fig. 5-3a now
becomes the resistor R going to virtual ground in Fig. 5-3b.

Analysis of either structure gives the correct transfer function, which is:
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2.2
T(s) = —y—RRE 5 (5-10)
s“ + 5s/RC + (5+K)/R™C

The corresponding désign equations are:

foq = /FR/2mRC (&-11)
D= 5//5K (5-12)

From these results, we can begin to appreciate where some difficulty with this
structure begins. For a second-order Butterworth, K is already 7.5, and for a 3db
Chebyshev 2nd-order, K is 37, and so on. This compares with K values between 1 and
3 for Sallen-Key. If we are working with real devices which have a finite gain-
bandwidth product, the more gain we ask for, the less bandwidth we have available.
On the other hand, it is probably the large, negative feedback, that gives the
configuration its excellent passive sensitivity.

: R
' Vin |
Fig. 5-3a Negative Gain VCVS Low-Pass Fig. 5-3b Circuit of F{gu 5-3a showing
[Note: K is a positive number here) ... realization of negative K. ,

It is worth mentioning that in both positive gain and negative gain VCVS
configurations, the mathematical analysis is the same whether K is positive or
negative. Negative values of K for Sallen-Key iead to overdamped filters. Negative
values of K for negative-gain VCVS (meaning a positive gain amplifier) lead to an
unstable filter for K more negative than -5, through an interesting path (see problems
at end of chapter).

We will return to these three basic types, positive-gain VCVS, negative-gain
VCVS, and MFIG in Chapter 7 when we discuss sensitivity. At that time, the state-
variable structures of Chapter 6 will also be available for consideration.

5-2 CONFIGURATIONS EXTENDING THE M.F.I.G. BANDPASS:

A number of interesting extensions of the MFIG bandpass which we have studied
can lead to higher Q bandpass filters, or to all-pass and notch filters. A general
approach to this type of configuration can be achieved by first finding out what the
transfer function is from the (+) input of the MFIG bandpass-{which is normally . .
grounded).  To do this, we first consider a general network of passive components,
as suggested in Fig. 5-4a. We assume that this network contains no sources, and no
internal grounds. We also assume that we have access to three of the nodes of the
network, and we will be concerned with the case where external voltage sources are
applied to Vi and V2, and where the voltage V3 is then measured open circuit (no
current flows in or out of y3. In this case, we can write, using superposition:

Vg = Tl(s)v]if“TgEs)vz . 1 (5-13)

where T](s) and T (s) are transfer functions which we do not know. If we knew the
details of the co%ponents inside the network, we could likely calculate these
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R's,L's,C's {: ¢
v [no sources Ty y in .
1 no grounds 2 v
Vs
Fig. 5-4a
' Fig. 5-4b

transfer functions, but these are not needed for our purposes here. We note from
equation (5-13) that: _

Ty(8) = Dy Jy g (5-14)

and: Tp(s) = y/Vply =g S (5-15)

The next point is to consider what happens if we connect Vq and V2 together
and drive them with a single voltage source V1=V2. Because there are no sources
or grounds inside the network, V3 simply "floats" along at Vi=V2. Another way to
look at this is that since V1=Vp, and since V3 is open circuit, there are no
potential differences possible inside the network, no currents flowing, and no
voltage drops across components.  Applying this to equation (5-13}, we get:

1= Ty(s) + T,(s) (5-16)

Now, while we do not know T1(s) or T2(s), because of the assumed nature of the
network, we know that they sum to 1.

Next we assume that the network is employed as part of an op-amp circuit, as
seen in Fig. 5-4b, and that the result is a transfer function T(s) as indicated.
Here Vout takes on whatever value is necessary so that V3 = 0 (the virtual ground
jdea).  For this configuration, equation (5-13) becomes:

0 = VinT}(s) + ¥ T2(s) (5-17)

out

- or:

T](S) - Vout(s)
T,(s) V., (s)

which tells us that the ratio of the unknown Ty(s) and Tp(s) is related to the
transfer function T(s) when the network is used as in Fig. 5-4b. [At this point, if
we know T{s) we can solve for T{(s) and Ta(s), but this is not what we are after at
the moment. ]

The final step which we need is to consider the use of the network-in a

different op-amp circuit, as in Fig. 5-4c. We do not know the transfer function
T'(s) for this case, but equation (5-13) for this case gives:

= -T(s) (5-18)

Voot = 0oTq(s) + Vg Ty(s) (5-19)

and since T'(s)

T'(s)

Vout/vin , We have:

1/T2(s) _ . (5-20)

Combining equations (5-16), (5-18), and (5-20) we obtain:
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The implication of equation (5-21) is that if we know T{s}, we also know T'(s},
the transfer function from the (+) input to the output. In a moment, we will apply
this to the MFIG bandpass, but first we will look at a simple example.

Yin Ry l Ry
y .--—--—AMAM—Q»-——MMM———-—.” —a=
Vout in N, ; A Tout
. "t "’ S
Fig. 5-52 *V3 Fig. 5-5b = Fig, 5-5c |

"EXAMPLE 5-1 Verify equation (5-21) and equations leading to its development for the
simple resistor network of Fig. 5-5a.

Since we know the network here, we can calculate T1(s) and T2{s) for easy use
‘1and reference. We have:

T1(s) = Ry/(Ry+Ry) | (5-22)
Tp(s) = Ry/(RyR,) (5-23)

and we see that equation (5-16) is true for this case. Using the network as in
Fig. 5-4b, we find our familiar inverting amplifier, Fig. 5-5b, for which we know:

T(s) = -Ry/R, (5-24)

from which we see that equation (5-18) is true. Using the network as in Fig. 5-4c,
{we find our familiar non-inverting amplifier, (Fig."5-5c).,-for which we know:

T'{(s) =1+ RZ/R] (5-25)
which is in agreement with equation (5-20). Finally, equations (5-24) and (5-25)}
clearly obey equation (5-21) itself.

While equation (5-21) is of interest if we want to obtain T'(s) knowing T(s),
it is more useful here in determining an output due to two inputs, one at the
"normal” input, and the other at the (+) input. The total output is obtained using
superposition. If the inputs are Vin and Vin' applied as in Fig. 5-6, we have:

Vo = Vi T(S) + V. [T - T(s)] (5-26)

out

We will be specifically interested in the case where Vip is not an independent second
input, but rather some combination of Vin and Vgyt, or:

Vo' = KV o+ av (5~??)

in out
where K and a are constants determined by certain network paths.- In this case, - -
equation (5-26) becomes:

v = VinT(s) + (Kvin+ avout)[] - T(s}] ' (5-28)

out
We can now write a total transfer function as Voyt/Vj,, using equation (5-28) as:

_ _ K+T7 1-K
Tels) = Vout/Vip = (]-agsl[aT(s)] ' (5-29)

Of course, when a and K are both zero, Tt(s) = T(s).

Having now established the important equation (5-29) we will specifically be
looking to apply this to T(s) of the MFIG bandpass, and for individual cases of
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Vin'o————-m—ﬁ~+ Vout Fig. 5-7 »V-m—q
Fig. 5.6 MFIG Bandpass out

feedback (K=0, a#0) and of feedforward (K# 0, a=0)., Fig. 5-7 shows the familiar
MFIG bandpass, which has transfer function:

Ty(s) = g | (5-30)
s™F BRC + 1/BR™C™. B N
where B is the resistor ratio shown. Note that the Q of this configuration is VB/2.
Il . |
¢\ | | | ni
i WA—e | S VY YV §
.‘—'-HNV‘M"' e Py V- o A'l'-l'l‘A'A . oy
V'in. : h_” . _ _ in ‘ ] .
| > L Yout b2 out
R
aVout -
: | ' R Fig. 5-9 .
Fig. 5-8 _f.z MFIG with 1
" MFIG with Feedback == Feed-forward .

‘ Fig. 5-8 shows the case where feedback is used. Here we have‘a'= R2/(R1+R2).
Applying equation (5-30) to equation (5-29), with K=0, we arrive at:
Tb(s) -s/(1-a)RC
Tp(s) = - = (5-31)

(1-a) + aT_(s) 2 ji{g__ _g_l 2.2
b s+ el E - 1oy |+ 1/BRC

Here the D that is subscripted to T(s) indicates that this is the so-called "Deliyannis
bandpass structure, named after the person who first reported it. We note from
equation (5-31) that the center frequency of the bandpass has not been changed by the
feedback, although the Q and the peak gain have been changed. In fact, the Q is given
by: ' '
: _ ¥B (1-a) :
Q = ?TTgai‘?EE (5-32)
which in fact means that the Q is always increased here, relative to the normal MFIG
bandpass. Note the usefulness of this in that we can first get the center frequency
set, and have the Q come out somewhat lower:-than we want eventually. At this point,
a bit of positive feedback will boost the Q to the desired value. In addition,
somewhat higher values of Q can be obtained with this structure, without having to
go to a very large value of B (spread of resistor values).

Actually, the Deliyannis bandpass is a specific example of a more general
technique by which the Q of a bandpasS'filter can be adjusted. We can look at this

—
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° TB(S)
in

~
~

Fig. 5-11 g8l - >

by considering what happens when feedback is placed around a transfer function, as in
Fig. 5-10. We can easily obtain the transfer function with a feedback gain g, Tqy(s)

as:
' T.(s)
= out _ 0 o
Tyls) = . T (5-33)

In the case where To(s) is a general bandpass filter, Tg(s) given by:

Tgls) = — Roo 5 (5-34)
s© + (wO/QO)s o,

then Tg(s) comes out as:

_ Aswg .
T (s) = {5-35)
9 52 + UJO(QIEJ’ - gA)s + woz

from which we see that the Q is now:
Q = Qo/(1 - gAQop) (5-36)

so Q is increased from its original value of Qo if g is positive, and can be decreased
if ¢ is negative. Note that the feedback in the Deliyannis filter is positive.

As our second important case, we look at the "feed-forward" case where a=0, but
where K is non-zero. This can be accomplished as in Fig. 5-9, where K = R4/(R3+R4)
In this case, Tt(s) from equation (5-29) becomes:

Tt(s) = K + T(s)[1-K] (5-37)

and in the case of the MFIG bandpass Tp(s) for T(s), we have:

2, 2s [ 2K + BK - B]-+ 1 /8R2C2

S TERC 2K (5-38)

T, (s) = K
K 2 2.2

s™ + 2s/BRC + 1/BR™C

This has left the denominator unchanged, but has added a .numerator: which is the same
as the denominator, except for the middle term {power of s}. Note however that we

can control this middle tevrm by adjusting K. Our most interesting cases here are

the notch filter that is obtained.by making the middle term O, and the all-pass which
is obtained by making the middie term -2s/BRC. The notch is obta1ned when 2K+BK-B=0

or when:
= B/(B+2) (5-39)
and the all-pass is obtained when (2K+BK-B)/2K = -1, or when:
A = B/(B+4) ‘ (5-40)
As was the case with the feedback, the all-pass and the notch here are specific

examples of a more general principle of subtracting a bandpass from unity. F1g 5-11
shows the setup of the general case, from which it can be shown that:
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2+ wos[g'A+1/Qp] + woz (5-41)

Tgp(s) = 9'Tg(s) + 1= —— :
s° * (wo/Qo)S o wo
for which we get a notch for a value of g' equal to g'N where:

g'N = =1/AQq (5-42)
and we get an all-pass for a value of g' equal to g'p where:

glA = -2/AQ, (5-43)
This result makes sense in that it takes a certain gain to cancel the middle term, and
twice that gain to change the sign of the middle term. The method of achieving useful

notch and all-pass responses by controlling the middle term was first mentioned in
Chapter 4, and will again be seen in the Biquad methods of Chapter 6.

5-3 LADDER NETWORK REALIZATION USING COMPONENT STIMULATION:

Over the years it has been well-established that the passive ladder structure
has very low component sensitivity. This means that even when we get a component
with poor tolerance, the resulting filter may still come out satisfactorily close to .
nominal. It thus makes sense to think of simulating or emulating the ltadder - -
structure.  Two ways of.doing this have proven.useful and become popular. In this
section, we will “Teok at component simulation methods, where unwanted inductors are
replaced by active R-C networks. In Chapter 6, a second method, that of simulating -
the flow graph of the ladder,will be examined. We will be using the same passive
3rd-order R-L-C Tow-pass for both cases.

We have already seen an example where an inductor was simulated: the active
notch filter in Section 4-2. Here we will be doing things in a similar but more
general manner, and will postulate the existance of a new type of circuit element
called the "Gyrator." The gyrator is a four terminal network or "conversion box".
We attach a capacitor to two of the terminals, and the other two look like an.
inductor. Fig. 5-12 shows our starting R-L-C passive network, and Fig. 5-13 shows
the way a gyrator could be used to get rid of the inductor. Gyrators are not
something we get off the shelf in a stockroom, but rather a circuit idea that we
must realize. Below we will develop a circuit for a gyrator that can be used to
simulate a grounded inductor (not a floating one as in Fig. 5-13). We will then see
that a similar concept can lead to what is called a Frequency-Dependent Negative
Resistor (or FDNR}, which can be used to handle the floating inductor problem.
Incidentally, the FDNR is also known by the more colorful name of "supercapacitor.”

_ : C3

R1 L B R]
=T C o1 =T C
M 2 R, 1
Fig.“5412:hR=L—C 1adder-foffa““f"“ﬁ““”“"“‘FﬁdT“SZTé4Rep1acementrof an inductor-
_third-order low-pass _ ' with a gyrator and a capacitor
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The analysis of Fig. 5-12 is not difficult, being a matter of network analysis
and persistence, and will not be done here. In Section 6-4, the network equations
are written down, there because they are needed for the flow graph. The transfer
function of Fig. 5-12 is: :

1/C,C,R,L
17271
(C,R, +C,R,)} [L + RyR,(C,+C,) ] R.*+R
$ 4 “{C(Z:z’“s RR1CZCT : +’RE{CZCL
1M2° 12 170 bl %2172
This is a third order low-pass, and for example, if R1=Rp=1, Cy=Cp=13 and L=2, we
have a third-order Butterworth. The tabulation of element values for this structure
and for many other passive R-L-C filters was a mainstay of filter research for
many years, so there .is no need to derive new data, if we choose to use this ladder

approach.  Here however we are interested in getting rid of the inductors, so the
idea is to use the available element values, but to simulate inconvenient components.

T(s) = (5-44)

Fig. 5-14 and Fig., 5-15 show two similar-looking circuits. The first of
these simulates an inductor, and the second is the so-called FDNR or “suypercapacitor.”
It will turn out that the supercapacitor will be needed to handle Fig. 5-12, while
the simulated inductor or "Gyrator” of Fig. 5-14 will prove useful when we have
grounded inductors, as we would for example, with a high-pass ladder (Fig. 5-16).

The analysis of Fig. 5-14, the gyrator, is much simpler than it might first
appear. The network falls apart once we recognize that by the ideal op-amp
principle, V1 = V3 = V5. Then since I3 must be flowing through both the lower R
resistors, V4 = 2Vy.  Thus Ip = Vq/R as well, and this current also flows up through
the capacitor C, from a voltage V3 = V], producing V2 as:

V, = V, - IZ/SC =V - V1/sCR = V(1 - 1/sCR) (5-45)

2 3
from which we get I7 as:

e cR2 ) 200200 - 172
Zin~s(CR )fSLequiV Zin 1/s“(C°R) = 1/s°D

—<l: "2 <l:

v
3 12
%R =
V4 ::i:: ——[::
r|'3 R
Fig. 5-14 V5 Fig. 5-15
Gyrator R FDNR or
Suitable for Supercapacitor R
grounded
inductor
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- - . _ 2 _
I; = (Vy=V,)/R = (¥ - Vg + V;/CR)/R = V,/sCR (5-46)
Knowing V, and 17 we now know the input impedance of the network at Vi, which is:

- = 2 -
21.n = V1/I1 sCR (5-47)
This impedance, being proportional to s, is inductive, s0 the circuit Tooks like an
inductor to ground, with equivalent inductance:

_ rpl _
Lequiv = CR (5-48)
A very similar analysis gives the input impedance of Fig. 5-15 as:
z, = 1/s%(C%R) (5-49)

The impedance of equation (5-49) is one which we have not seen before, since it is
proportional to 1/s2, and we have only seen impedances proportional to s (inductors),
to sO (resistors), and to 1/s .(capacitors). Being proportional to 1/s2, we can begin
to understand the terminology "supercapacitor." Further, if we evaluate the impedance
ot sejw. we gets |

: 'Zm(yu)? -1/w2C2R : - (5-50)
which is negative and frequency dependent, hence the FDNR name.

The gyrator of Fig. 5-14 can be immediately applied to the high-pass ladder of
Fig. 5-16, for example, with no complications, one gyrator for each of the two
inductors. Realizing a floating inductor, as in the low-pass of Fig. 5-12 is more
complicated, Gyrator ¢ircuits for floating inductors are possible, but are not
efficient, relative to what can be done with the FDNR. :

The FDNR idea is approached by asking what happens when all the network
impédances are divided by s. Effectively, resistors R go to R/s = 1/s{1/R), so
Took 1ike "capacitors" of value 1/R. Inductors with their impedance sL now look -

purely resistive with "resistance"” L. . Capacitors -with their impedance 1/sC go to
1/s2C, ‘which is: our "supercapacitor” 1/s2D, with D=C. Note that this is not the:
same thing as dividing the components themselves by-s. .For resistors and inductors,
- the impedance is proportional to the component values, but not for capacitors, for
which the impedance is inversely proportional to the component value. Thus by
dividing all impedances by s, we are effectively dividing all resistors and
inductors by s, but multiplying all capacitors by s. This leaves an R-L-C transfer
function unchanged, as can be verified by equation (5-44), for example. We thus
effectively "banish" inductors out of existence, at the price of having to come up
with a new circuit element, the FDNR. We can not go out and buy an FDNR, but we
know how to simulate one. = o . o R

0

I

= =

~ Fig. 5-16 3rd-Order High-Pass can ‘Fig. 5-17 FDNR transformation of ~

“make use of_Gyrator of Fig. 5-14 . .~~~ Fig.-5-12 makes-possible the 1ow4pa§sd“l

" to realize the inductors to ground. ~  using the "Supercapaciter”, Fig. 5-15.
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‘““‘*‘—*V . — AW
Vin ! ' R=1L '
Cs=1/R] "
_ ] FDNR #1 . FDNR #2
c

T Dy=C4 ) c=T= D,=C,
<] <t ]
| C:1= + -
v r'Z ’

Fig. 518 FDNR realization according to Fig. 5-17, u?timate]y‘realizingmthe
‘ o 3rd-order Low-Pass of Fig. 5-12

Fig. 5-18 shows a realization using the FDNR method. Essentially we start with
the known passive R-L-C prototype (Fig. 5-12), convert it using the FDNR (Fig. 5-17),
and then place the FDNR realization of Fig. 5-15 into Fig. 5-17, arriving at Fig.
5-18. Note that any differences between the FDNR values (corresponding to difference
between C1 and C2), are represented here by the use of a resistor r in one, and a
resistor r' in the other. (In practice, there are numerous ways to "tune” the FDNR. )
Aside from that, the only unexpected components are the resistors Rx and Ry which are
needed to supply bias current to the op-amps, in a manner to be explained {atera

In working out the component values, the important thing to keep in mind is. that
it is Fig. 5-18 that must have components in a practical range. The components need
not be practical in the prototype of Fig. 5-12. In theory, we can scale the network
either in the prototype, or in the FDNR realization, but it is usually easiest to do
in the prototype. Accordingly we must keep in mind that Cs and CL are the reciprocals
or R1 and Ro respectively, and that R is numerically equal to L. The supercapacitors
D] and D2 are given by:

Dy = cPr (5-51)
and: 2
D, = c“r' (5-52)
and are numerically equal to C7 and C2 respectively.

Resistors Rx and Ry have been added to the circuit with two things in mind.
Fivst, they are necessary to provide the very small bias currents that the op-amp
inputs require. . Without these, the (+) :inputs of the upper op-amps would be dc

.isolated, and the bias currents would charge the capacitors to power supply limits.
“'In fact, only one of Rx or Ry 1is tequired to supply bias current, and with good quality

~ op-amps such as BiFET types, the currents are very small so that very large resistors

(high MegOhm range) could be used with negligable effect on the rest of the circuit.
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However, once we find it necessary to have either Rx or Ry, it becomes necessary
to have them both, and once one is chosen, the value for the other is determined as
well. It all has to do with maintaining the correct DC gain. The d¢ gain of the
passive prototype of Fig. 5-12 is R2/(R7+Ro), since the capacitors become charged, and
the current through the inductor becomes constant. Below we will show that at dc,
no current flows into the FONR's. [For the moment, this should be true from equation
(5-50)} since the impedance is infinite at dc.] In this case, the dc gain of Fig. 5-18
is seen to be Ry/(Rx + R + Ry). If we set these dc gains equal:

R2/(R1+R2} = Ry/{Ry + R + Ry) (5-53)
we can choose Rx or Ry large and arbitrary, and calculate the other.

In this view, Rx and Ry are not chosen to set the dc¢ gain, but rather to maintain
it at the value it should have. Consider what the dc gain of Fig. 1-18 would be
without Ry and Ry (ignore the bias currents as well). It may not even be clear that
Fig. 5-18 has a non-zero dc gain, since it might seem that the capacitor Cg "blocks"
dc. In actual fact however, while a capacitor "blocks" dc current, it is perfectly
capable of holding a dc voltage. Once dc is applied, after sufficient time passes, an
amount of charge g has flowed from Vin, charging both Cs and € to voltages g/Cs and
q/CL respectively, such that: '

Vip = /Cs *0/C, (5-54)
(Since current has stopped, or at least become negligably small, there is no remaining
voltage drop across R.) However, Voyt is also the voltage on C, which is q/Cp, so

dc gain = Vout/vin = Cs/(CS+CL) (5-55)

Since Cs = 1/Ry and C = 1/R2, equation (5-55) is ih'agreement with the dc gain of the
passive network being R2/{R1+R2}.

What remains to be shown is that there is no current flowing into the FDNR's,
This we discussed from the impedance point of view of equation (5-50), but we can also
see it physically. Looking at one of the FDNR's, the only possible current path into
the FDNR is through the upper of the ¢ capacitors to the Tower op-amp output. (This
is because the (+) input of the upper op-amp of course draws no current, and because
the output of the Tower op-amp absolutely determines the voltage at the bottom of the
capacitor - nothing below makes any difference.) Now, considering dc, no current
can be passing through the upper c, and hence no current enters the FDNR.

CHAPTER b

INTEGRATOR BASED DESIGNS

6-1 Integrators = In General
and In Particular

6-2 The State-Variable Filter
and Related Structures

6-3 Variations on the State-Variable/
Biguad Theme

' "6-4 -Active Ladder Method No. 2 - B
Signal Flow-Graph Realization '
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'6-1 INTEGRATORS - IN GENERAL AND IN PARTICULAR: -

An integrator is not a filter, although it may be used as part of a filter.
Integrator=based filter design methods include the very popular "state-variable"
approach and the "flow-graph simulation" approach which offers excellent sensitivity
properties. These approaches use the fact that the integrator is a multiplication
by 1{$» Before studying these approaches, we need to understand the integrator by
itself.

An integrator has a transfer function that goes as 1/s, so to keep the units
correct, it must have a time constant, which we conveniently write as RC, since we
often relate it directly to network components. Accordingly, our integrator
transfer function looks Tike:

T{s) = 1/sCR (6-1)

It is clear that this has a pole at s=0, which is pot in the left half-plane, so

the integrator is not, by itself, stable. It will be useful at this point to look
at an example of an integrator circuit, which is shown in Fig. 6-Ta. This is a

very popular inverting integrator structure, which is one of the possible general-
izations of the inverting amplifier structure (Fig. 1-14). The transfer function is
obtained as the negative of the impedance in the feedback leg divided by the

impedance in the input leg, or:
T(s) = - (1/sC)/R = -1/sCR (6-2)

which is an inverting version of equation (6-1). (If we need a non-inverting
integrator, we could at Teast just add an op-amp inverter to Fig. 6-1a, although
there are alternatives which we will discuss.) MWe can understand why this is called
an integrator based on our experience with Laplace transform. Alternatively, we can
see by example (Fig. 6-1b) how the circuit responds to a particular time waveform.
In Fig. 6-1b, we show a rectangular pulse arriving at the input of our integrator,
and we assume that the integrator's output is zero before arrival. When the puise
arrives, a current V,/R begins flowing into the op-amp summing node (the = input
with the + input grounded). This current has no place to go, except out through

the capacitor, and the output voltage accordingly ramps (downward) at a rate:

dvout/dt = 1/C = Vp/RC (6-3)
from which we can infer the integrating capability of the circuit. Note that when
the pulse ends, the current stops, and the output holds at -Vptp/RC. In particular,

it does not reset to zero. Accordingly we also have the idea that the past history
of the integrator comes into play (the "arbitrary constant" added to integrals).

Having taken a brief look at the time response of the integrator, we know from
the transfer function that in the frequency domain, there is a pole at s=0, and the

frequency response is:
v , .
—> f*‘tp . Vout
S B I i

R —————
e AAAA g '
Vip —» , t
Tn- 1=Vp/R ‘ N . ¢ p ~ .
<L dVoyt/dt=Vp/RC “Vplp/RC
Fig. 6-1a The inverting Fig.. 6-1b Response of inverting integrator
integrator : ~ to an input pulse. T
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[T(s)| = 1/wRC (6-4)

From this we see that the response blows up at dc, which is the same fact that the pole
at s=0 was telling us. It is instructive to consider a plot of the frequency response
on Tog-Tog paper, which gives a 1/w roll-off, which is a 45% downward angle. Since
log-Tog paper '"goes on forever" in all d1rect1ons, so does.this response curve, as
suggested in Fig. 6-2b. The importance of this is, in addition to calling attention

to the instability at zero frequency, that there is no break point or "characteristic
frequency" on this curve, Corresponding}y, as we shall discuss in more detail below,
there is no real absolute mean1ng to the integrator's so-called time constant. Note
"however that the integrator's response is the high-frequency limiting case of the f1rst—
order Tow-pass filter T(s) = ]/(]+sCR)

jw \\\
. . AN
s-plane
- Tog
pole at s=0 amp1itude
H$—0C
N Tog freq.
. \\ .
Fig. 6-2a1P01e of integrator Fig. 6-éb “Frequency Response” of integrator
at s=0 in s-plane is 45° slope on a log-log plot.

At this point, we will attempt to put together some of these facts which we have
discovered concerning the integrator, and to put the really significant points about
the integrator in proper perspective. The first of these points is that the integrator
(a11 integrators) are unstable, unless they are stabilized. Exactly what does the pole
at s=0 mean? The pole at s=0 is on the jw-axis, and accordingly, it represents an
oscillator at the corresponding frequency w, which is w=0. Thus we have an oscillator
at zero frequency, which is a "d¢ oscillator." Like all oscillators with first-order
poies on the jw-axis, in theory, oscillation does not begin until some non-zero
excitation starts it off. As we saw in Fig. 6-1b, the inteagrator's output was zero
until a pulse arrived, which caused it to ramp. Now that the oscillator has been
excited, it continues to oscillate (continues to output a dc voltage of Vptp/RC).

The problem here is that in a real case there are always at least some smalil dc
offset voltages in our circuits, and these are enough, at the input of integrators, to
cause the integrator to drift around, and eventually pin at the power supply. (In
fact, an integrator formed from a real op-amp will integrate its own offset voltage,
even if the input resistor is grounded.) What do we do about this?

Qur first thought is to somehow "damp" the integrator. Intuitively we see that
the instability is a matter of the capacitor charging up, and we might suppose that if
we put a very large resistor across the capacitor, it might drain off this excess
charge, and might be large enough to not affect the performance much otherwise. This
is a common practice, and we can understand it in terms of poie placement. We might
suppose that if a pole at exactiy s=0 is a problem, we might be able to back it off
ever so slightly into the left half-plane, and still have something that looks Tike
an integrator in our application. The so-called "damping" resistor across the
integrator's capacitor does precisely this: the pole moves into the left half plane,
and just barely in if the resistor is of a very high value.
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Fig. 6-3

Undamped
Integrator
T;(s) and

Damped
Integrator

Tid(s)

Tig{s) is an
inverting
version of
our familiar
first-order
Tow-pass

if r = R.

Fig. 6-3 compares the damped and the undamped integrators. We note of course
that a single real pole in the left half-plane is exactly a first-order Tow-pass
filter, so a damped integrator and a first-order Tow-pass are mathematically virtuaily
identical. In fact, the transfer function for the damped integrator is:

_ -r/R .
Tigls) = 7575tr (6-5)
so if r=R, the damped integrator is an inverting version of our familiar first-order
low-pass.  The difference is more in that with the damped integrator, r is thought
to be much larger than R. By taking the dc 1imit of equation (6-5), letting s=0,
~we see that this means that the DC gain is large: -r/R., (Note that we can also get

the dc gain simply by observ1ng that the circuit becomes an inverting amplifier
with gain -r/R at dc, where C is effectively removed from the circuit.} Thus the
undamped integrator continues up to an infinite response at dc, while the damped
integrator (first-order low-pass) curves away and levels off at a magnitude r/R.
From Fig. 6-3 we note that as a guide, the two curves are pretty much the same for
frequencies of 5/rC and higher. This is why a damped integrator can be used as a
true integrator for high-enough frequencies.

Not all integrators used in practice must be damped in this obvious manner
however.  Integrators may be effectively stabilized by placement in overall loop
structures, of which the state-variable filter-that we are leading up to is a well-
known example. In some other analog circuits, other means of damping or "reset”
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will be seen, but these are outside of the study of linear circuits which we are
concerned with here.  Consequently, when an integrator is seen in a network, we
must ask what it is that is stablizing it. Thus vecognition that integrators are
unstable until proven stable is our first important point.

The second point relates to the lack of distinction between integrator time
constant and integrator gain. Above we mentioned that there was no characteristic
point on an integrator's frequency response curve - it was just a 45° Tine going
on forever in both directions. We can look at this by considering Fig. 6-4 where
we show two integrator curves on a log-log plot. If we ask how one curve could
be obtained from the other, it is clear that we could use either an up-down move
or a left-right move, or some combination, all with an equivalent result. An
up-down move corresponds to a change of gain factor, while a Teft-right move
corresponds to a change of time constant, and we see that these are equivalent.
This would not be true with the first-order Tow-pass, for example, where a change
of time constant would change the cutoff frequency. Another way to make the same
point is to suggest, for example, a gain factor of 2 be applied to equation (6-1),
which would give:

T(s) = 2/sCR = 1/sC{R/2} (6-6)

from which we see that a gain of 2 is equivalent to cutting the time constant in

haif. This also makes sense in the time domain., If we consider Fig. 6-1b with
R replaced by R/2, the output would go twice as high as it did, which is a gain .
factor of 2. :

N Jog
_ _ amplitude
Fig. 6-4 - AN
Two different. integrators ‘\\ I
differ equiya]ently _
in gain or in frequency. \\<::“> . Tog frequency

AN N

v Nintegrator 2

AN
Nintegrator 1

A third point relates to the conditions under which the output of an integrator
can be a constant., Clearly for such a case, the input must be held at zero. This
of course means that if the output of an integrator is held at zero, its input must
be zero. This observation can often greatly simplify analysis of the dc gain of
filters using integrators. Under dc conditions, all points in the filter must be
dc (constants) and this in turn forces all integrator inputs to be zero (or a net
of zero if there are multipie inputs). '

With the above points in mind, we can go on to consider possible realizations
of integrators, and Fig. 6-5 summarizes the better-known integrators and integrator-
related circuits. Fig. 6-5a is the best known and the simplest, the inverting
integrator. Fig. 6-5b is our well-studied first-order low-pass. As we have discussed,
this circuit lTooks 1ike an integrator at high enough frequencies. (In fact, in some
older references, this is called an integrator.) Fig. 6-5¢ is the damped integrator
which we have also studied above, and we see how this also resembles a perfect
integrator at some high eriough frequencies. Also as we mentioned, Fig. 6-5d gives
an inverting form of the first-order. low-pass. B
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Fig. 6-5 Integrator and Integrator-Related Circuit Collection

Inverting Integrator ﬂ First-Order Low-Pass

(b) ....-__Mﬁm_qj>“———°
TC
T(s) = -1/sCR T(s)} = 1/(1+sCR)=-

1/sCR for high frequencies

4

Damped Integrator Inverting First-Order Low-Pass
— NANAM _ : H
— NN '———‘ 3 : . o NN ANANA
R ~ ‘C : : R R
— ] .
(e ED* | @
T(s) = LR T(s) = -1/(1+sCR)

T+sCr ‘
1/sCR for high freguencies

i

Non-Inverting Integrator o Differential Integrator

S

S

Ill

T(s) = 1/sCR | T(s) =

vout/(v+-v_) = 1/sCR
Differential Ihtegrator Non-Inverting Integrator
(two caps) - : (Generalized Deboo)
V;
Yy
(g) (h) ijfc.
T(s) - Vout/ (V4-V_) = 1/sCR . T(s) = (1+a)/sCR
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The Tower portion of Fig. 6-5 relates to the need for non-inverting integrators
and for differential integrators. Note that if we have a differential integrator,
we can always make it a non-inverting integrator by just grounding the (-) input
and using only the (+)}.input. Fig. 6-5e shows a simple idea about obtaining a non-
inverting integrator from the inverting one - just add on an inverting stage. This
inverter need not use resistors R, which is why we denote them by R', a value of
convenience. It is also true that the inverting stage could follow the integrator.
Here we have put it first so that it more easily converts to the differential
integrator of Fig. 6-5f. Here we have used the idea that the (-) input of the
integrator op-amp is a summing node, so we can just put back an inverting input
on Fig., 6-5e. Here both the resistors marked R must be the same, unless a weighted
summation is needed. (In such a case, one might suppose that the two inputs would
have different time constants, but the remark about the interrelationship between
gain and time constant should be kept in mind.). It will turn out that neither
Fig. 8-5e or 8-5f is a particularly good idea if we are at all concerned with the
effects of real op-amps at high frequencies (see next chapter)}. However, both
offer simple and usable circuits at lower frequencies.

Fig. 6-5g is an alternative approach to a differential integrator. Note that
this one uses two capacitors, while its competitor Fig. 6-5f uses one capacitor
but two op-amps. In deciding which is better, one should keep in mind that
capacitors may be more expensive, and perhaps larger than op-amps. Finally,

Fig. 6-5h offers a non-inverting integrator with only one capacitor, and with some
"gain" if desired. The circuit is interesting in that there is a 50-50 chance
that due to resistor tolerance, it may already be damped, even though it is not
damped intentionally (see problems at end of chapter).

We now have a good idea what integrators are, and have examined some important
points with regard to stability and gain/time-constants. We have also looked at
some practical circuits. Once we go over to considering real instead of ideal
op-amps, we will find that integrators often have serious Timitations at higher
frequencies. The beauty of it though (see next chapter) is that we can fix or
"compensate” our circuits so that they look much more ideal. Thus we can go
ahead with integrator based filter design with confidence that we can arrive at
some excellent practical circuits.

6-2 THE STATE-VARIABLE FILTER AND RELATED STRUCTURES:

We have in mind that a state-variable filter is a configuration of a summer
and two integrators in series, with feedback from the integrators to the summer.
This particular configuration offers us low-pass, bandpass, and high-pass
outputs (with others available), and typically uses three, four, or possibly
five op-amps in the attempt. Fig 6-6a shows the usual configuration in block
form. The integrators are represented by 1/s, and we have feedback paths of -1
and -1/Q as shown. The three internal voltage sources are denoted V4, VB, and
Vi in anticipation of the eventual transfer functions at these points.

The analysis of all state-variable filters is much the same, whether they are
in block form, or as one of the configurations using op-amps which are also shown
in Fig. 6-6. We will begin with the block form, and find the voltage VH, which
is the output of the summer:

Vy = Vg, -(1/Q)Vg - Y, (6-7)

Next we note that the relationship between Vp and Vy, or between V| and Vg, is a
matter of a single integration {muitiplication by 1/s), and we can write:

Vg = VH/s (6-8)
and V= Vy/s = VH/52 | (6-9)
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Fig. 6-6 Basic State-Variable Filter and Some Standard Configurations
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We can substitute equations (6-8) and (6-9) back into equation (6-7), and then solve

for the transfer function:
' 2

Tyls) = Vy/v, = : (6-10)
H H "in s2 +(1/Q)s + 1

which is a nice second-order high-pass vesponse. Again applying equations . (6-8) and
(6-9), we can get the transfer functions at Vg and VL as:

To(s) = Vg/Vy = > (6-11)

N2 1/Q)s + 1

which is bandpass, and

1
T, {s) =V, /V. (6-12)
L L “in 52 F(1/Q)s + 1

which is low-pass.

From these results we see that we have a "three for one" filter. Even more so,
we can do a weighted sum to obtain an arbitrary numerator as:

2 .

T(s) = =
s©+ (1/Q)s + 1

Equation (6-13) is quadratic in both the numerator and the denominator, and is
accordingly referred to as "Biquadratic." In general, structures which are capable
of realizing a biquadratic transfer function are called "Biquads," and the state-
variable filter here may be called a biquad (there are others).

The analysis of the block diagram has shown us several things. First, we got
three different transfer functions, all with the same denominator however. We note
that the path we called -1/Q, from the bandpass back to the high-pass, has appeared
in the transfer function exactly where we want "Q" to appear. Thus the Q of the
filter is the reciprocal of the gain from the bandpass back to the high-pass. This
can be a useful shortcut in analysis if we do it correctly. Also, we did take a
shortcut by using 1/s instead of 1/5CR here, but it is clear how the integrator
time constant could be put back into the transfer functions, in each term, so that
the units are correct.

The three configurations of op-amps in Fig. 6-6b, c, and d are examples of how
state-variable filters can be realized. Because the node voltages VH, VB, and VL
are all related by the inverting integrator used (-1/sCR), analysis is not as
involved as it might first appear. Fig. 6-6b is the simplest because it uses an
extra op-amp to simplify the summer. The problem comes in when we consider that the
feedback paths are both negative ones, which suggests that the op-amp inverting
summer would be ideal here. However, we are employing inverting integrators. The
double inversion cancels when we go from VH ail the way to VL, but VB is inverted,
which -is the reason the fourth op-amp (A4) is used.. At this point, Fig. 6-6b
resembles Fig. 6-6a very closely. We can observe that the gain across A4 is -1,
while that across Al, from A4, is -R'/RQ, for a gain from VB to Yy of R'/Rg. This
means that the Q, which is the reciprocal of this gain, is given by:

Q = Rg/R* - (6-14)

which'is a nice simple result. (Note that the extra inversion needed to make this
negative feedback came from the inverting integrator A2.) e can then put the RC
time constant back into the integrators, and write down the correct transfer
functions, for example:

To(s) = V,/V. = . S/RC . (6-15)

B B - Z N _ :15)
in-1 AN (R-/Rq)ﬁ%-+ I/RZCZ
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Here we could have chosen any of the transfer functions, but we chose the bandpass
because we want to lock at the peak gain, and we know how to do that easily (as we
did for equation (3-55)-). The peak gain comes out Rg/R'. We may often want to have
a variable Q bandpass using the state-variable, and if we try to do this, we get a
variable gain as well, since changing RQ affects both. However, this is the purpose
of the second input point in Fig., 6-6b. If we use the point Vi,_p instead of Vin_1»
then the input is subject to the gain factor R'/Rg, exactly as was the Q-determining
gain from VB to Vy. This factor R'/Rq would be agded to the transfer functions, and
in the case of equation (6-15), it exactly cancels the peak gain of Rg/R', resulting
in a unity gain bandpass at all values of Q. Accordingly, Fig. 6-6b might be used
for simplicity, but it is also useful in variable Q cases where we want fixed gain.

Fig. 6-6¢c and Fig. 6-6d shows two commonly seen state-variable configurations
which are somewhat similar. Both use only three op-amps instead of four, achieving
the extra inversion of the bandpass by summing not on the summing node (=):0f the
op-amp summer, but rather on the (+) input. This complicates the summation
calculation somewhat. Some years ago, when op-amps were fairly expensive, it was
important to save an op-amp when possible.  Today, cost is not too important, but
it may still be prudent to save an op-amp because each and every op-amp adds a
pole of its own which compTicates the analysis when high frequencies are involved
(see next chapter). Both these configurations can be analyzed much as we have
handled things above. We know what the integrators do, and we know how to set up
the summer in the ideal case of V- = V4 for Al in both cases. However, there are
simpler ways which can lead to the correct results. This will involve finding the

gain from Vg to Vy, establishing the Q, and finding the dc gain of the low-pass.

We can illustrate these procedures with Fig. 6-6c. To do this, we need to
be clear on the "principle of superposition." The total voltage at VH is the
result of contributions from Vin, VB, and VL. We are interested in what part of
VB gets to Vy. Using the principle of superposition, we can set Vip and V| to zero
and just consider Vg. With Vi, and V| set to zero, the configuration around the
summer is.as seen in Fig. 6-7. The resistor R' that was going to V| is now
effectively grounded, as is the R' resistor that went to the input. . .The upper
R' resistor now forms a non-inverting amplifier with gain of 2, from Vi to Vy.
. At the bottom, we now have a voltage-divider from Vg to Vi, and the voitage V¢
is given by:

- R!
Vp= Vg ﬁT:ﬁa (6-16)
and by the non-inverting amplifier result we have:
- oy = _2R'
VH = 2V+ = ﬁ—':ﬁavB (6"]7)
from which we see that Q is:
Q = (R'+Rq)/2R! (6-18)

- Next we need to determine the dc gain of Fig. 6-6c. To do this, we assume that
if some dc value is input, Vin-g, we get some dc output at the low-pass,Vi_,. Now,
since Vi _o is a constant value, and because V| is the output of an integrator, the

Fig. 6-7 Summer that is working
“to find gain from Vp to V. -
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input to this integrator should be zero, or Vg = 0. (Incidentally, this te]Ts.us
zthat the.dc‘requnse of the bandpass is zero - something we already should have
figured out.)_:§1nce VB is zero, a perfectly good constant (and the output of -
TJntegratOFVAZ);1t.f9110ws that Vy=0. (Again, the response of a high-pass to dc
should be zero.) With VB = 0, the (+) input of Al is: '
. _ R . ) :
Ve = Vino ﬁT%ﬁa | - ~ (6-19)
and the (-) input of Al should be: ' B

Vo=V /2 | (6-20)

-“since Vy=0. For the ideal op-amp, V+ = V., and we get, combining equations (6-19)

- and (6-20), for the dc gain:

2R
I (6-21)

in-o Q

Knowing the dc¢ gain and the Q now, we can write down the Tow-pass transfer function
for Fig. 6-6¢ as:
29— (1/R%C?)

T (s) = .
L 7 R s 32

(6-22)

" The other two transfer functions can then be obtained by multiplying up by -sCR.

Fig. 6-6d yields to the same sort of analysis, the details of which are Teft to
the reader. In this case, a non-inverting gain of 3 is found from the V+ terminal
of Al to Vy, so the Q is given by (R'+Rg)/3R'. The dc gain is found to be -1 for
this configuration, again simply arrived at using the "stalled integrator" method.
In the same way, we can write down the transfer functions. For example, the high-
pass has to be: 5
, ) -5 o

LR A S R L - (6-23)
R'+RQ RC

~Incidentally, these same results can be achieved the "hard way" by direct analysis.

-3 VARTATIONS ON THE STATE-VARIABLE / BIQUAD THEME:

Having now worked with the basic state-variable structure, we can understand
some useful variations, of which there are far more than we can begin to cataiog
here. First, by summing the high-pass and the low-pass, we can achieve a notch
response. We can understand this as a zero placed on the jw-axis, due to the
absence of a middle term {power of s) in the numerator. . In this state-variable case,
. we can also understand it in terms of the 90° phase shift of the integrators. The
integrator produces a 90° phase shift at all frequencies, which we can understand
in terms of the pole at zero aiways being 290° around from from a line drawn out 7
from a point on the jw-axis, parallel to the real axis. Accordingly, at the point -
where the Tow-pass and high-pass curves cross, the amplitudes wiil be the same, and
because the low-pass and high-pass are "two integrations apart," they are 180° apart.
Summing the signals results in cancellation, hence a notch.

. - All-pass networks are also easily achieved with a state-variable based design.
by proper choice of the summation weights in equation-(6-13). For a notch, we
-generally would 1ike A=] and C=1 with B = -1/Q. Thus in achieving an all-pass,
all:three of the low-pass, bandpass, and high-pass should be properly summed, and
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not just with the correct weight, but with the correct polarity. Note that with
the state-variable filters using the inverting integrator, the bandpass node is
fortuitously already inverted with respect to Tow-pass and high-pass, so a simple
inverting summer can be used.

While we can always achieve a general biquadratic response through output
summation, at times different useful vresponses can be achieved by inputting the
signal into different input points, or to several points simultaneously. Fig. 6-8
shows one such possibiTity, which is an "input notch" type of network. The network
looks very much Tike the ones we have already seen, except that the usual input
point (input signal to the summer) is not used. Instead, the signal is input to
two other points (the integrator summing nodes). Note that one of the input components
is a capacitor, not a resistor. The result is that a notch response now appears
where the bandpass did in previous examples. The transfer function is:

$2(C'/C) + (R/R")/RECE

T (S) = T (6—24)
N 2 2R 1 2.2
s+ W R_Cs + 1/R"C
_ | Fig. 6-8
xJih. - vﬁu_qr___E4F_f__qrw_ Input Notch

'__ {standard notch
, when C=C' and
'l' + R"=R)

R
M%S# ' notcg output
¥

| , - o N
i . CI Ru o
. . 'L .

e V_ o,
in

ITY

Probably the most familiar variation on the state-variable theme is a somewhat
different circuit that is often mistaken for a state-variable. This circuit is also
a "biquad" in the sense we have discussed above, but is also a "biquad" in the sense
that this is the term that is often used to distinguish it from the state-variable
filter. It is actually easy to tell the two apart. As we have said, the state
variable has two integrators and a summer in a loop, with feedback from both
integrators.  (In fact, it is this feedback that stablizes the integrators overall.)
The "biquad" consists of a summer, a damped integrator, and an undamped integrator
in a loop. Generaliy, the summation is done on the input of the damped integrator,
while at the same time an additional inverter is required in the Toop. Fig. 6-9a shows
the block version of such a "biquad" while Fig. 6-9b shows a three op-amp realization.
Note the superficial resembalance of Fig. 6-9b to the configurations of Fig. 6-6 for
example,

. It is-fairly easy to analyze the biquad of Fig. 6-9b by any number of procedures,
and the transfer function can be obtained, as:
Tgls) = Vp/Vi = —r 77 - (6-28)
s” o+ (R/RQ)(1/RC)s + 1/R"C

which is a bandpass function. Note that this is integrated to a low-pass response at
¥y, but that here, unlike the state-variable, there is no high-pass response. We can
tell that there can only be two different responses because A2 provides only an
inversion, and no new response of its own. Design equations are easily obtained from
equation (6-25), and we note that the Q is simply controlled by the resistor Rg, as

Q = Rg/R, which is simpler than the three op-amp circuits of Fig. 6-6c and Fig. 6-6d.
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Fig. 6-9a

5 1 The "biquad”
=] -1 : 1/s structure
AT + s = s .
Vin VB _VB VL '
e Fig. 6-9b

NN . _ Realization of
the "biquad"

in

-1/(1+sCR) -1 ~1/sCR

The "biquad" approach may not be as restricted as it first appears, as after all,
we may not be after all three responses simultaneously. Further, it is possible to
have a "biquad" that has high-pass and bandpass instead of bandpass and Tow-pass, and
this is Teft as an exercise to the reader {see problems at end of chapter). Another
disadvantage that might be perceived is that in having only low-pass and bandpass or
bandpass and high-pass, it is not possible to sum outputs for notch, for all-pass,
or for a general biquadratic. However, in having the bandpass, we can achieve
notch and all-pass by subtracting the bandpass from unity. To make this point, we
can write:

Tins) = (Vgp/Vyp) =

s2 + (R/RQ)(s/RC) + 1/RECE _ (6-26)
s% + (R/RQ)(s/RC) + 1/R%CP |

This technique of subtracting a bandpass from unity is of course more general, and
can be applied in cases other than the "biquad."

Yet another "biquad" technique is the so-called SAB or Single-Amplifier-Biquad
which is fairly difficult to design, but which uses only one op-amp. Fig. 6-10 shows
the general idea. Basically, this is an extension of the multipie-Feedback Infinite-
Gain bandpass circuit, as was discussed in Chapter 5.

TW— - Fig. 6210

— Nme—qhuﬂ i:\\\\\
; ANy > Structure of the
g ——;t////, Single Amplifier
_ - Biquad
v . e

L

,
W
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6-4 ACTIVE LADDER METHOD NO. 2 - SIGNAL-FLOW-GRAPH REALIZATION:

In Chapter 5, we looked at a method of using a passive ladder as a prototype for
an active filter., The idea was to take advantage of the excellent passive sensitivity
of these ladder networks, so that higher order filters (say 10th - 16th order} can
be realized. 1In Chapter 5, we did this by simulating the inductors with gyrators,
or by using the “supercapacitor" (FDNR) approach. Here we will be simulating the
signal flow graph (SFG) of the network rather than the network itself. The method is
in many ways similar to the state-variable approach.

The SFG of a network may well be a familiar concept to the reader, but it can also
be learned from the material presented here. Fig. 6-11a shows the same passive network
that was considered in Chapter 5. We will develop the signal flow graph of this
network (Fig, 6-11c) and then realize it with op-amp integrators (Fig. 6-12b). The
analysis of Fig. 6-11a begins by writing down the network analysis equations, which
are listed in Fig. 6-11b. There are seven such equations, corresponding to the seven
unknowns 11, Iz, I3, Ig, I5, V2, and V3, and each is either an "Ohm's Law" relationship
or a current summing relationship. Of course, the equations can be arranged into some
different forms, but if we are only going to solve them, this is not too important. If
we do solve the network analysis equations {by one of numerous procedures that work),
we arrive at the transfer function:

1/C1C2R 1L _
T(s) = (6-27)
34 2 (LIRT + CoR2) L+ RIR2(C14C2)] |, RI+R
R1R2C1Co R1R2C71CoL Ri1R2C1CoL

which is a third-order low-pass which was also seen in Chapter 5.

Y Ry Y2 L ‘ Y3
-— NN rmm Y . Fig. 6-11a
I-, — 13 —_——
] I, I, I Original
o e €., == R Passive
1Tl 21 l 2 l Ladder
Network Analysis Equations Rewritten for Flow Graph
I = (V,-V, Wk Iy = (/R Fig. 6-11b
I, = Vy/ (1/50;) = Vst Vy = L/sC, Network
o _ : Equations
13 = (VZ'V3)/SL 13 = (VZ_VS)/SL
IT = Ié + I3 12 = 11 - 13
14 = V3/(T/SC2) = V3sC2 V3 = 14/502
15 = V3/R2 15 = V3/R2
3=+ g =13~ 15
8] + - Vo
L5
Vi-V2
1/sCq
1/Ry
L
L z <
I \2/-
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Here however we intend to work with the network equations and draw an equivalent
SFG for the network. To do this, we have rewritten the network equations in Fig. 6-11b
on the right side. The basic thing we are trying to do here is to write all equations
that contain an s as integrators, since eventually we want to only have integrators.
Secondarily, we expect that the input to the integrators (the numerators of the
equations that have s in the denominator) will be summations. Accordingly the current
summation equations are rearranged so that this is explicitely seen. We should not
suppose that there is only one way to do these procedures. If we do something backward,
we will 1ikely see a problem when we try to draw the flow graph, and be able to reverse

it then.

Fig. 6-11c shows the signal flow graph that corresponds to the equations of Fig.
6-11b. By going through the entire list, it can be seen that each and every one of the
seven equations is represented. Note that the path multipliers (the arrowheads)
correspond to multiplication by an impedance going up, and division by an impedance
going down. Correspondingly, the voltage variables appear in the top portion of the
graph, while current variables appear in ‘the bottom portion. While it can be easily
verified that the SFG is correct for the network, a couple of points can be made about
how this SFG is actually obtained. The first point is that in general, you will get
a neat and useful graph only after several preliminary sketches and redrawings {or by
mimicking an example such as the one here). Secondly, other general forms are both
possible and common. One such form places all the "state-variables” in a straight
line, such as Vi, I1, V2, I3, V3, with the summers and multipliers in their proper
positions in the line. In such a case, the paths going to the (-) inputs of the
summers appear as backward loops of negative feedback, which is a useful point of view.
Note however that the “topology" is identical for all these variations, and all
realizations will at least be equivalent, differing in efficiency.

Having now obtained a correct flow graph, we need to find a realization of the
flow graph. Note that the flow graph describes the relationship between the "state
variables" (the voltages and currents) of the network. We can think of these state
variables as just numbers, related by the flow graph. However, it is more to the
point here to think of them all, voltages and currents alike, as being voltages. We
can make the flow graph reflect this by multiplying all downward path multipliers by
some resistance R, and all upward path multipiiers by 1/R. This means that the Tower
portion of the flow graph is now also voltage, and no longer current. A1l path
multipliers are now dimensionless, and the integration paths now have actual time
constants showing. This change is seen in converting Fig. 6-11¢c to Fig. 6-12a.
However, there are also other changes that have been made, and these will be
discussed. The additional changes have been made so that Fig. 6-12a serves as a
more natural 1link between the first flow graph (Fig. 6-11c), and the final
realization (Fig. 6-12b).

In anticipation of the use of the simplest possible hardware structures (such as
inverting integrators), we will want to make some sign changes. We can change a
sign at any point we find it convenient, provided we make compensating changas elsewhere
as needed. Hopefully the compensating changes may also improve things, or at least
make them no worse. A full set of such changes have been employed in reaching Fig.
6-12a. Because these changes can be a matter of some confusion, a step-by-step

diagram of these changes js shown in Fig. 6-13 as a matter of reference. Thg overall
goal of the sign changes is to achieve as many inverting integrators as possible, and
to have all summers entered with the same polarity. In Fig. 6-12a, we have been able
to make two of the three integrators inverting, and all summer polarities are {+).
[Note that the center integrator has an extra power of R, top and bottom, so as _to
show a time constant in the denominator. We will see how this works out later.]

Our final step is to convert our flow graph into an op-amp circuit, and we would
like to do this as simply, and with as few components, as possible. Since all the
flow graphs we have drawn are theoretically equivalent, we could jump to the
realization from any one of them. However it is clear that we have been modifying
with some purpose in mind, and this we have done by thinking of the eventual hardware
to come. (Glancing at Fig. 6-12b, we see that we end up with just four op-amps}.
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However, let's suppose that we had not done this simplification already, but
instead started with the first realizable form, which would be Fig. 6-13a. This flow
graph has four differential summers (involving one or two op-amps each), and three
non-inverting integrators (with two op-amps each, or three extra capacitors overall).
- If we go about this blindly, as many as a dozen or more op-amps will be used.

Obviously, this would be a bad place to stop with this approach. What might then
happen would be that the designer, following good engineering practices, would look
at the circuit that is believed to work, and ask if it is possible to simplify it.
In so doing, many op-amp structures could be eliminated as redundant, and it is even
possible that the circuit of Fig. 6-12b would be the final result.

Since we have gone to some effort to reach the best version of the flow-graph for
our purposes, we can begin with Fig. 6-12a. Fig. 6-~12b shows how this is converted to
the op-amp realization. Here we are using current summing nodes ("virtual grounds")
to do our summing - these nodes being indicated by the heavier dots in Fig. 6-12b that
are positioned directly below the corresponding summers of Fig. 6-12a. Note that
the two leftmost summers of Fig. 6-12a are actually one three input summer, and
appear as two separate heavy dots in Fig. 6-12b, although it is only one summing
node in reality. Here the summing nodes of the integrators themselves are being
used, as it would be a waste to use separate summers. The center integrator uses
an inverter, as this one must be non-inverting overall. The order of the two op-amps
in the center branch is arbitrary however.

This probably covers all but two points. The first has to do with the way the
non-unity ratios (R/R1 and R/R2) are realized as path multipliers. Clearly this is
a change of gain, as seen in Fig. 6-12a, while it appears as a change of time-constant
in Fig. 6-12b. We recall however the discussion of integrators where the equivalence
between gain and time-constant was discussed. Accordingly, changing the integrator
resistor from R to R1, for example, changes the time constant from RC to RiC, which
is equivalent to changing the gain from 1 to R/R}, which is what we wanted.

The final point relates to the strange-looking capacitor in Fig. 6-12b, which
has the value L/R2,  What is implied here is that the numerical values are to be
used. In our passive network, we assume that we know all the element values, and
we would plug in the numbers to obtain a capacitor which we might call "C3" for
the center integrator. Incidentally, the units of L/RZ2 are those of capacitance,
s0 the conversion is.completely valid.
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Fig. 6-13 Original signs (a} followed by adding fhﬁerting intégrator (b) with two
compensating changes. Middle integrator is left non-inverting, but two inputs and
two outputs are all changed in sign (c). The two remaining (-) signs on the lower

right summer can then be incorporated into the integrator that follows, making it
inverting (d). Fig. 6-13d is same as Fig. 6-12a. [™> indicates points where
sign changes are being made. ' :
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