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This issue covers Chapter 4 of Analog Signal Processing.

Much in keeping with the spirit of the Analog Signal Processing
presentation in this series of issues, we also have, mostly by
coincidence, a series of three items relating in analog-like issues, and
familiar persons from the past. 1In this issue, immediately below, we have
a discussion sparked by an inquiry from Ian Fritz, regarding a VCF design
going back to the Musical Engineer's Handbook and even before. Future
issues will show an improvement to a popular VCO design, and a more
detailed active sensitivity study of the state-variable filter. Perhaps
more similar items will surface.

A BUTTERWORTH THAT PEAKS!

- —..-.lan Fritz, long-time designer of electronic music equipment; and— — — — - —
contributor to Electronotes, recently contacted me regarding a voltage-
controlled-filter design that originated with Sergioc Franco [Hardware
Design of a Real-Time Musical System, Dept of Comp Sci, U. of Il1, Urbana,
UIUCDCS—-R-74-677, Oct. 1974, pg 51) and which was also discussed in our
own 1975 Musical Engineex's Handbook, pg 5d (5). 1In his discussion,

Franco says "The circuit realizes a two-pole maximally-flat, low-pass
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programmable filter."  The MEH discussion calls this a two-pole
Butterworth, and mentions a previous MEH circuit, pg 4b {(6), that
realizes a two-pole Butterworth with capacitors in a 2:1 ratio. Ian's
experiment findings were that the response peaks (i.e., was not
Butterworth / Maximally-Flat). A careful theoretical calculation
indicates that Ian's experimental findings are in fact in agreement with

the correct analysis.

Likely some of the confusion comes from the similarity of the
voltage—controlled version (seen in Fig. 2) to the non~-voltage—controlled
version, which is shown in Fig. 1.

1| 2¢
I

Fig. 1 A two-pole Butterworth using capacitors C and 2C

-continued on pg. 22

CHAPTER 4

ADDITIONAL FILTER TYPES:
NotcH AND ALL-PAss:

4-] F11ter Types and Their Po1e/Zero P1ots

4-2 Notch Filtering

4-3 Al1-Pass Filtering, Phase Shifting,
: -and Phase Differencing
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4-1 FILTER TYPES AND THEIR POLE/ZERO PLOTS:

We need to be able to envision the frequency responses of different fiiter
types in terms of their pole/zero plots. As we have seen, the pole/zero plot gives
the filter's transfer function up to an arbitrary multiplicative constant. Further,
we know that the frequency response is proportional to the product of the distances
from the zeres, and inversely proportional to the product of the distances to the
poles. This perspective permits us to look at the types we have already seen, and
the types that will be added in this chapter, in terms of poles and zevros.

In saying that the frequency response is inversely proportional to a distance
from a pole, it is clear that if we are close to a pole, the response should be
Targe. Conversely, if we are close to a zero, the response should be smail. We
can also understand that at any one point in the s-plane (usually a frequency point
on the jw-axis), it is possible that one or more poles or zeros, which are very
close to this point, will dominate the response there. A good example wouid be
a zero on the jw-axis (which is allowed, since zeros do not affect stability). This
would clearly force the response to a null at the frequency of the zero (a "notch®
filter, as we shall see). A second example would be a poie that is very close to
the jw-axis, but in the left half-plane (as it must be for stability). For points
on the jw-axis near this pole, we expect a very large value of freguency response.

We can also understand the "asymptotic" behavior of filters in terms of the
poles and zeros., By this we mean the roll-off rate for very high frequencies.
For frequencies very high as compared to the radii of all the finite poles and
zevros of the filter, the distances from this high-frequency point on the jw- axis
back to the poles and zeros are all approximately the same. If we put this fact
into equation (1-35), any distance factors caised by finite zeros will cancel one
of the distance factors caused by a:pole..  For example, if there are two finite
zeros and three finite poles, and we are looking at a high fregquency w which is
approximately a distance R from all the poles and zeros (Rw), then equation (1-35)
gives the frequency response as:

_ARR _ A
IT(S)]-E‘R'R = '—R— (4—])

which indicates that this filter is asymptotically rolling off as 1/R (as 1/w),
and is a first-order or 6db/octave roll-off. If there were two finite zeros and

two finite poles, then:

T(s |= BRR - (4-2)
which means that the response will come flat to a value of A, which is the case
with a high-pass filter, or with a notch (as we shall see). In general, the
response rolls off at 6db/octave for every "excess pole" that is present. We can
also understand that our transfer functions can not have "excess zeros" or they
would blow up at high frequencies, and that the order of the numerator can not
exceed the order of the denominator.

" We can also understand a good deal about a frequency response by thinking in
terms of |[T(s)| being a sort of "contour map" over the s-plane. In this view,

there should be a very high "mountain" in the vicinity of any pole, and a "sinkhole"
to zero at each zero. Envisioning this, we then contemplate a journey along the
Jw-axis as being what we look at in terms of frequency response. Along this axis,
we cross "contour lines" as we move toward higher and lower ground. We understand
that nearby mountains and sinkholes are more relevant than those that are far away.
UTtimately, we want to read a pole/zero plot and be able to estimate the frequency
response. Conversely, if we know of a response we need, we may be able to
determine if we need extra poles and/or zeros, and approximately where.
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Fig. 4-1 shows some “contour maps" for filter types which we have already Tooked
at, including several low-pass types, high-pass, and bandpass. Fig. 4-la shows a
second-order low-pass where the poles are far enough back that there is no ripple
in the frequency response (Butterworth-1ike). In this view, the jy-axis already
exists as a straight line, and it is desired to make a perfectly flat "road" along
this Tine for as long as is possible. Further, the way to do this is to "move the
mountains® (poles) so that the "roadbed" becomes flat. This means that the contour
Tines shown must run paraliel to the jw-axis for as long as possible, and then the
jw-axis crosses the contour Tines in a downward direction (low-pass roll-off}. In
contrast, Fig. 4-1b shows a corresponding "Chebyshev" case. We can think of this
as effectively moving the jw-axis closer to the poles of Fig. 4-la, and looking at
the map on a slightly different scale. Now in the passband region the juw-axis
crosses the contour lines going up (peaking) before going into the cutoff region.

In Fig. 4-lc, we have the poles moved back to their "Butterworth" positions
and two zeros have been added at s=0. Here as we move up the jw-axis we first
begin at s=0 crawling out of a "sinkhole." Notice that while our mountains here
are infinitely high at their very peaks (which we never visit anyway), the sinkhole
of the zero is not going to negative infinity, but only to zero. After getting
away from s=0, we note that the contour lines become parallel to the jw-axis.

[Note that this is exactly the case of equation (4-2).1 This makes the response
come level at high frequency, which is the response we want for high-pass.

Fig. 4-1d and Fig. 4-le show two more low-pass cases, in this case 4th and
5th-order Chebyshev type responses, respectively. The rippling of the passband
is caused by the jw-axis crossing over and back across contour lines. Note here
in particular the difference between even and odd order. Even order has an
elevated region at s=0 which corresponds to the real pole.

Finally, Fig. 4-1f shows a bandpass second-order case, which we need to
compare with the high-pass of Fig. 4-Tc. For bandpass, we have only the one
zero at s=0, and this has two effects. First, the "climb" up out of the s=0
"sinkhole" is not so steep. Secondly, after we get over the peak adjacent to
the pole, the contour Tines bend back around and recross the Jjw-axis, and the
response is headed down (which is the run away from one "net" pole). In the
case of the high-pass, the second zero at s=0 held the contours parallel to the
Jw-axis.

Having now reviewed the past filter types within the context of pole/zero
diagrams and contour maps, we want to look at the two new types that will become
the major study of this chapter. These are the notch filter, and the all-pass
filter. Above we saw zeros only at s=0 (or at infinity), and here we wiil look
at cases where the zeros are at finite positions in the s-plane, but not at
5=0. In the notch case, the zeros are on the jw-axis. In the all-pass case,
the zeros are in the right haif-plane (which is stable for zeros), and at
positions that are mirror images of the pole positions, across the jw-axis.

Fig. 4-2a shows the notch filter pole/zero plot. Here the two zeros place
sinkholes on the jw-axis, which the response must dip into. The poles in turn
serve to hold up the region on either side of the notch. Far away-from the
center of the s-plane, the contour lines come parallel to the jw-axis, as in
the high-pass case [again, see equation (4-2)], since there are no net poles.
Fig. 4-2b is the all-pass case, and like the notch, it has no net poles, and
the response comes flat at high frequencies. However, with the zeros placed
exactly across from the poles, for any point on the jw-axis, corresponding
pole and zero pairs are at exactly the same distances. Thus the response is
everywhere flat, and hence the name "all-pass." It is clear that we are not
going to be interested in the all-pass for its magnitude response, but may be
for its phase response.
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Fig. 4-l1a “Butterworth"
2nd-0rder Low-Pass

Fig. 4-1b "Chebyshev"
Znd-0rder Low-Pass

kfic. 4-1c  "Butterworth"
2nd-Order High-Pass
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Fig. 4-1d "Chebyshev"
4th-Order Low-Pass

Fig. 4-le "Chebyshey"

5th-Order Low-Pass

" Fig. 4-1f 2nd-Order
o Bandpass
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4-7 NOTCH FILTERING

Notch filters, like bandpass, must be at Teast second-order. In a notch filter
we are trying to place a pair of complex conjugate zeros on the jw-axis, so that the
frequency response is forced to zero at that frequency. This can be accomplished
with a transfer function:

2 2
s°+ wn (4_3)
s2 + (wo/Q)s + wp?

TN(S) =

which has zeros at:

S21.29 +Jun
plus the usual poles at radius wp. Because we have zeros at frequency wn, the
response must go to zero there. However, usually implicit in the idea that a
frequency component is to notched out, is the idea that all other frequencies should
be passed. Accordingly we are concerned with the passbands on either side of the
notch, and would usually like them to be as flat as possible, equal on both sides,
and to extend up as close as possible to the notch itself. Fig. 4-3 shows a typical
notch in terms of its pole/zero plot and its frequency response, for the case where
wn = wo.

It can be seen from the response that we get a theoretically perfect notch
at w = wg. By placing the poles:.and zeros at exactly the same radii, the gain on
both sides of the notch is the same, as can be seen by taking the 1imiting cases
of equation (4-3), for dc and for infinite frequency. If wy# wy, the high
frequency gain is 1, while the Tow-frequency gain is wy*/we?. (It can be seen that
this case corresponds to a second-order low-pass elliptic ?i]ter for wp>uwp ).

(4-4)
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Thus placing the pole and the zero at exactly the same radius assures that the
passhands are equal, but the Q of the poles also drastically influences the response
shape. Poles that are real or highly damped will produce a wide and gradual notch,
while poles approaching the jw-axis will produce sharp notches. This we can under-
stand in terms of the pole close to the zero in effect "hiding" the notch from all
but the frequencies closest to the notch. The notch then appears suddenly for a
narrow frequency region. In general, we are looking for sharp notches, but this can
also be overdone. This can be seen if we consider that in practice, we do not expect
a perfect notch, but are satisfied with some sufficient measure of rejection. Any
frequency region which is below this response level, and which includes the specific
frequency to be notched out, will be satisfactory.
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In this view, a lower Q notch (poles back from zeros) is more forgiving of
tuning errors than is a higher Q notch (poles up close to zeros), as is illustrated
in Fig. 4-4. We note that an infinitely sharp notch would be infinitely difficult
to tune.

Notch sharpness is measured in terms of the Q of the poles, much as bandpass
sharpness is. In fact, the same "formula" for Q applies to the notch. We can show
this by Tooking at the case of wg = 1, and using equation (4-3), we have a frequency
response of: :

) 1 1/2
1) = (- )| T (4-5)
The 3db points are found by setting this equal to 1//2, which means that:

W D22 - 202 £ 1 = 2 - 42+ 2% (4-6)

This involves only even powers of w, and can be solved using the quadratic equation

to give:
w2 D e va (4-7)
which has the two solutions: _.
o =[5 + Twa (4-8)
(ORI - -
_ l_§-92+24,.v~D‘-~~:.--- e : N
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which are noted on Fig. 4-3. If the formula for Q here is to be the same as that
for the bandpass, then it should be true that: _

Q = wn . = v, g = ...........]-...... = —]— ,
oy T by ey ey oy = uy D (4-10)

It is left to the reader as an exercise to show that if equations (4-8) and (4-9)
are plugged into eguation (4-10), that an identity results. Note however that
the 3db side frequencies are measured down from the passbands, and not up from
the bottom of the notch (as though the notch were an "upside-down bandpass").

We can :now relate notch sharpness quantitatively to previous notions of the Q of
the poles of the network.

No discussion of notch filters should omit the "classical" notch filter called
the "Twin-T" which is shown in Fig. 4-5., This network is entirely passive, as
shown, and yet does realize complex conjugate finite zeros on the jw-axis. [This
can be done - it is compiex conjugate poles that we can't get passively.]. The
Twin-T is named because of the two T networks (one upside down as drawn here) that
compose it.  The transfer function can be found to be:

] 5% + 1/R%?

Nin = =3 3.
' s + 4s/RC + 1/R°C

(4-11)

Tls) = Voue

which is seen to have zeros at %j/RC, and two real poles at -0.268/RC and at
-3.732/RC.  Because of the real poles, this is not a very sharp notch. In fact,
from equation (4-11) it is seen that the Q is only 1/4. In actual use, the
network would probably require an op-amp follower at Vout to prevent loading.

e - Fig. 4:5
v, o LA b Voo
mn T g ' out ;
from 0Q : O S ER 10 o
o jm/Z el A -
” L L ﬁ Passjve .
C vll

c ‘ Twin-T

The Q of the Twin-T notch can be enhanced by using positive feedback, which

gi]] require an active element, at least an op-amp buffer or two. This i
illustrated in Fig. 4-6. The transfer function becomes:
(s) = - s% + 1/R2¢2
' s< + s{4(1-K}J{1/RC) + 1/R4C% (4-12)
' EOr this so-called "Bootstrapped Twin-T", the Q can now be enhanced, and is given'-rm i
Y
Q= 1/[4(1-K)] (4-13)

Thus K=0 gives the passive case, as expected, and K approaching 1 gives Q approaching
infinity. In cases where K is fairly large, the output of AZ might be large enough
to be used as the output, in which case, Al might not be necessary, if R} and.Rp
couTd be made large enough that they do not load down the passive part of the
network. this method of using positive feedback to enhance the Q of a network is. .
actually fairly general, and will be seen again for the case of bandpass filters
(Section 5-2). _ o : ,
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Bootstrapped (Active) Twin-T

We will have a chance to look at more notch filter configurations in Chapters
5 and 6. Here we will look at an additional structure that also illustrates the use
of a simulated inductance, a technique that will also be used in Chapter 5. Fig. 4-7
shows an op-amp structure that can be looked at based on the differential amplifier
structure (Fig. 1-15). Here the inputs are connected together, and this would mean
that there would be no output for any input. However, it is also seen that the
lowest leg of the differential amplifier is not just a resistor R, but rather a
R-L-C series circuit. We know that at the resonant frequency of the R-L-C series
circuit, the impedances of the capacitor and inductor cancel, Teaving only R. Thus
we understand the notching out of the resonant frequency in terms of the R-L-C branch

becoming purely resistive. _ ‘

SHmﬁTatéd
Inductor
‘Notch

Fig. 4-7 has transfer function:
S 2+ 1/LC |
T(s) = = | - (4-14)
s +-(2R/L)s + 1/LC _
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which has a notch frequency of:

fO = 1/2m/ft' (4_]5)
and a Q of: _
Q = (1/2R)/L/C (4-16)

We can understand how the inductance is simulated here by examining Fig. 4-8,
working with the structure below the node marked with a {%). We have three eguations

for the voltage V', as:

V' o= (I+I')R" (4-17)

V' o= y* - IR (4-18)

Vo= y* - 1'(1/sC') (4-19)
Equations (4-18) and (4-19) are solved for I':

I' = IsC'R' (4-20)

which can be put back into equation (4-17) to give:

y* = I(R'+R") + IsC'R'R" - (4-21)
which Teads to an impedance at the V* node of:

Z =V*/I = (R'+R") + sC'R*'R" = R + sC'R'R" (4-22)

This impedance has a resistive and an inductive term, since one term is multiplied by
s. We can write this as:

Z =R+ sLeq (4-23)
where the equivaient inductance is:
~ riplpn _
Leq C'R'R (4-24)

Having found that the circuit below the (*) looks 1ike a series R-L, we find
that Fig. 4-8 is equivalent to Fig. 4-7, and we can plug Leq into the design
equations (4-15) and (4-16}, giving.

f, = 1/2w/R'R°C'C (4-25)
q = é%.JE_%!i_ (4-26)

For example, if R'=R"=R/2, and C'=C, then the Q is only 1/4, the same as the passive
Twin-T. In general, for higher Q's we must have C' greater than C.

Above we have introduced the ideas of notch filtering, and-have shown how a - - -
passive notch works, and how a notch can be achieved with inductance simulation. In
Chapter 5, we will see a notch based on the idea of bandpass subtraction. In
Chapter 6, we will see how a notch can be achieved using a summation of a low-pass
and a high-pass, each having the same denominator, thereby achieving the transfer
function of equation {4-3) directly, which is easily achieved with the biquad approach
presented there, In cases where multiple notches are needed, to remove harmonics
as well as a fundamental, the delay Tine methods of Chapter 9 are useful.
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4-3 ALL~PASS FILTERING, PHASE SHIFTING, AND PHASE DIFFERENCING:

Al1-pass networks have zeros that are placed as mirror images to their poles.
They may be first-order or any higher order. Placement of zeros in this way means
that the amplitude response is constant. The all-pass filter is used only for its
phase properties. They may be used to improve the phase linearity of some other
filter without changing its magnitude response. They are also used in parallel
networks to realize a phase difference over a wide bandwidth.

Fig., 4-9 shows a first-order low-pass filter, for which the transfer function
is easily obtained as:

T(s) = T (4-27)

which has a pole at -1/RC and a zerc at +1/RC, as shown in Fig. 4-9. It is éasy
to show that |T(s)] = 1. The phase is given by equation (1-27) as:
- s a1 Im{T(Jw)} i}
¢(LL)) Tan Re{T jw } (4 28)
and we need to put T{(jw} in a form with a real denominator, as:

1o JeRC _ 1 .- J6RC, 1 - JoRC _ 1 - 2juRC - w?R*C? )
T{E0) = 755RC ° TFJaRC T = JaRC T+ o?R2C? (4-29)
for which equation (4-28) becomes:
-1 -2aRC 21 26RC B
dlv) = Tan = ierr = TN T ReCe (4-30)

This is the correct answer. However, we would like to relate it to the angle a
shown in Fig, 4-9. Geometrically, the phase shift should be a off the poles, and
a off the zero, for a total phase of -20. Here we see from the pole/zero plot that:

Tan{o) = wRC o ‘ (4-31)
Consulting trig tables we find the useful identity: '
Tan{2a) = 2Tan{a)/{1 - TanZa) (4-32)

from which we establish that:
b(w) = 20 = ~2Tan’ VaRC (4-33)

which is a simpler form than equation (4-30).

o Jjw
— ,BI, | ,?I E}rétfagder: o _;gf\\__ _ _

All-Pass , N

P \

~ / N
R ety / \\
Wl‘h‘ _ + x/‘\o", Q’. 7’ \O 0‘
Cl -1/RC 1/RC
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w
Fig. 4-10
_ _ Phase of
-00°)] _ - _ > s s 1st-order
all-pass
8 (w)
._]800_.‘ __________________ -,__.......¢_.'... - - —

This phase response is shown in Fig. 4-10. Above we have been a bit careless about

the sign of the phase. This is a bit by intention by way of warning that we often

have to specifically examine this issue. Some of the factors involved with determining
phase are discussed below,

First, a pole/zero plot by itself only gives the phase to within an arbitrary
inversion, much as a pole/zero plot by itself only gives the transfer function and
frequency response to witnin an arbitrary multiplicative constant. This is because
we can always put a (-) sign in front of T(s) and still get the same pole/zero plot.
The second point follows directly on this inversion. Just what is an inversion? Is
it a 180° phase shift? In fact, an inversion often Tooks 1ike a 180° phase shift,
and adds an apparent 180° to phase measurements, but they are not the same. This we
can understand since a phase shift must always correspond to a time delay. If we
simply invert a sine wave segment (Fig. 4-11), we get a response immediately. A
device that provides a true 180° phase shift should also require some delay. However,
it can also be seen that a comparision, in the absense of any "marker" that could be
put on the waveform, looks Tike a 180° phase shift. A third factor is that there
are usually different configurations that realize an all-pass of a given order, and
that these often differ by an inversion. For example, we can modify Fig. 4-9 by
switching the resistors R and capacitor C, and obtain a transfer function that is
the negative of equation (4-27). Fourthly, there is often an ambiguity that results
when we use a calculator or computer to calculate the inverse tangent function. —
For example, we may have a phase that exceeds 360°, and know that<it is actually 3959
but” we: still:get 35° from the calculator. Alternatively, we may have discontinuities
of 180° at places. Finally, conventions with respect to geometric interpretation of
phase response may vary from author to author, and may be difficult to remember even

at best.
. SN
C VaggeN \\\\‘_///// : Comparison of
- .1 180°7x _ _ _ : . ,
inversion inversion-and -

N
t phase *, //,f—-\\\\ - 180° phase

v shift u | shift
N / \/ | \_/
A, _ .~ .

With all these possible sources of confusion, what can we rely upon?  First, a
phase shift should always be interpreted as a delay. We should never, for example,
interpret an output as being ahead of an input by 25° for example. It might be
behind by 335°, or by 695°, for example, but never ahead. Secondly, it is often
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useful, and sometimes absolutely necessary to take a careful look at the network
to see what the phase is at zero frequency, to see if it is inverted to begin

- with.  If so, we interpret our phase as starting at a 180° delay, and going from
there. It is then wise to track this phase calculation for higher frequencies.
Since phase can change very rapidly and very suddenly (as for example when we go
by a high-Q all-pass pole/zero pairing), we have to be alert, and take phase
measurement (or make calculations) at very small increments. In particular, we
need to pick up the transitions from 360° back through 0°.

In addition to worrying about whether or not we have calculated, measured, or
interpreted phase correctly, we need to talk a bit about when and why we should be
worried about phase in the first place. This is probably particularly important
at this point since in most other places we have concentrated on the magnitude
response, and ignored the phase response.

Phase is important in that it corresponds to a time delay, and in most cases,
a time delay that varies with frequency, and this can result in phase distortion.
For example, it is not difficult to show that the phase contribution of a pair of
poles, as represented by a denominator factor of (s +-Dwos—+-wg®)-is—given-by {see-— —
problems at end of chapter):

pla) = Tan™ [ o Puon ] (4-34)

for which the corresponding time delay, called the "phase delay”, is obtained by
dividing by w:

= Vo =T Dwow _] -
tp(w) m Tan [ wa‘z—-_—‘—u?- (4-35)

Another useful notion of detay due to phase is the so-called "group delay" which is
given by the derivative dé{w)/dw, or:

N 2 2 )
tylo) = d(u)/do = Doploa ] (4-36)

which gives a better idea how the phase varies with frequency at any particular
frequency. It is easy to see that tp(w) = tg(w) is a condition of Tinear phase.

One problem with phase distortion (see also the discussion of linear phase
at the end of Chapter 3), is that certain sophisticated audio signals, such as
speech and music, can take on what is often called a "muddy" sound. We can under-
stand this if we consider that sounds such as music depend as much or more on
transients as they do on the "steady state.” There is a well-known "Ohm's Law of
acoustics" (as opposed to.the universally known.electronic law by the same scientist!),
which says essentially that the ear is "phase deaf." That is, the ear should hear the
exact same thing regardless of the relative phase of the components making up a sound.
STight variations from this law are found even for steady state, but when it comes
to transients, the Taw breaks down completely (Ohm.of.course_had_no . way to-test . .. . .
this). For example, a musical instrument might have a sound consisting of a
fundamental and some harmonics, each of which are decaying exponentially, all
being excited at the same initial instance, as seen in Fig. 4-12a. We comé to
identify the instrument with this particular "attack transient." If this signal is
subjected to severe phase distortion, the upper harmonic may be so much delayed that
the sound looses its identity (Fig. 4-12b). Accordingly, low phase distortion is
something we often need in music handling circuits.

We thus sometimes need certain phase compensating circuits. These do not
"reverse’ any phase delay that has already occured, as this is not possible.
Rather, they add phase, but in a way such that the total phase is now more Tinear.
The total phase delay is longer, but it is more equal at the frequencies of most
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Fig. 4-12a A Normal “Fig. 4-12b A Phase Distorted
Musical Transient or "Muddy" Musical Transient

fih¢erest to us. Such an improved phase is possible through the use of the various
“multi-curved” phase responses available from different second-order all-pass
mnetworks, which we will look at shortly.

At other times, we are not particularly involved with audio circuits, and the

‘Phase response is less important. However, it must be remembeved that in cases ",

~where signals are brought in reference to each other, as for example, when they are
added or subtracted, the result depends critically on phase. Such a problem appears
for example when one attempts to design an audio "graphic equalizer." The individual
filters in parallel, which sort out the channels of the audio, may all have excellent
phase properties. The assumption is then often made that the level in each of these
channels can be adjusted individually, and the channels then recombined. In fact,
when the signals are added, unless careful attention has been paid to the phase, the
intersecting regions can have amplitude peaks and valleys that are unexpected and
largely unacceptable. At other times, we need to pay attention to phase at summing
points, as it will determine if we have a:summationy or;perhapsﬁa‘subtractiOn;-.An;a
example might be when a Tow-pass and a high-pass are added to form a notch. If the
two are subtracted instead, real rather than imaginary zeros result.

- One additional application of phase shifters or all-pass networks comes up in
the need for phase-differencing networks.  Such a network produces two different
phases for the same input. Typically what is desired is a 90° phase shift that is
~ used in certain modulation schemes, This is achieved with parallel all-pass networks,
as will be discussed below.

As with previous filter types, we are interested in what can be done with second-
order sections. A typical second-order all-pass transfer function is of the form:

2 _ ' 2
T(s) = S—={iwo)s * u0 -~ (4-37)
s? +(Dwo)s + wo? o

for which the numerator and denominator differ only in having middle terms of the
opposite sign. If we just think about the quadratic equation, it can be seen that
the poles and zeros will be mirror images in the case of complex conjugate poles,
since the real part is determined by the middle term in such a case (D<y2). In cases

- where D>v2, where real poles occur, it can also be shown that the poles and zeros- - -
remain mirror images (see problems at end of chapter}. As with the other filter
types, there are several different possible configurations for second-order all-pass.
We will look at one configuration in this chapter. Additional configurations are
presented in Chapter 5 and Chapter 6. ' ‘

Fig. 4-13 shows a second-order all-pass network due to A G. Lloyd which is
capable of producing real mirror image poles and zeros. It is useful in the design
of 90° phase differencing networks where it can replace two first-order networks,. -
but otherwise use the same calculations and calculated component values. The network
is. in the form of a differential amplifier, with resistors R3 and R4 below, and the
" impedances Z] and Zp (as seen in Fig 4-13) above. We can easily write down the
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Fig. 4-13

LTioyd's Second-Order
Al1-Pass - Useful for
real polefzero sets.
jvin

froms:

A.G Lloyd, "Here's a Better Way T Rg
to Design a 90° Phase-Differencing

Network,” Electronic Design, No. 15,
Pg 78 (1971) =

equations for the (+) and (-) inputs of the op-amp as:

V, =V, R/ (RgtR,) = KV (4-38)
and:
Vv = Vinf2 * Vouth (4-39)
4%,
where: Z, = Ry + 1/sC ' (4-40)
and: _
Z2 = Rz/(1+sC2R2) (4-41)

Setting V, = V_, we can solve for T(s) as:

_ K{1-sC3R1)(1-sC2Ro) + [2sKCIR] + 2sKC2R2 - (1-K)sC]R2 _
T(s) (TFSCTRY) (1550282 (4-42)

The term in [ ] in the numerator disappears if:

o : |
2(Ry /R, ) ¥ 2(C,7C) +71 - (4-43)

Equation (4-43) shows that K will always be less than 1, and thus is always realizable
with the voltage divider K = Rg/(R3+Rq)}. With K set according to equation (4-43),
T(s) in equation (4-42) becomes:

K =

_ K{1 = SCIRT)(1 = sC3R2) }
T(s) = S5 SCyR T (1 + SCoRa) (4-44)
What we thus obtain is the equivalent of two first-order all-pass networks in
- series, with an amplitude scaling -(loss, in fact) of K. -Note that-equation—(4-44)- - - -
has a Q given by:

Q = _zﬂlEzﬂlﬂz_. (4_45)

which has a maximum of Q=1/2 when R1C] = R2C2. Accordingly only real poles are
obtained (with corresponding mirror image real zeros) with this network. However,
this is what we want with some applications (90° phase differencing networks). When
complex pole/zero sets are needed, all-pass networks capable of producing Q's greater
than 1/2 are found in Chapter 5 and Chapter 6.
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A variety of phase curves can be obtained once we consider second-order all-pass
networks with Q greater than 1/2, which have complex pole/zero sets, which are included
in the general eguation (4-37). Because of the mirror image zeros, the phase, phase
delay, and group delay, are exactly twice the values given for the poles alone in
equations (4-34}, (4-35), and (4-36). Alternatively, phase curves can be obtained
using the geometric method. 1In the geometric view, you begin at a point on the jw-axis
where you need to know the phase, and measure angles to the poles and zeros. The
reference 1ine for angles is a line, starting at the jw point of interest, and running
paraliel to the real axis in the positive direction. Angles are measured counter-
clockwise, and zero angles are added while pole angles are subtracted.

Fig. 4-14 shows curves for several second-order all-pass networks for a range of
Q. A first-order all-pass is also given for comparison. We see that all the Znd-order
curves begin at 0, and run to 360°, all passing through 180° at w = 1. However, there
is a substantial variation in the curves., In fact, curves for Q less than 1//3 all
bend in only one direction, while curves for Q greater than 1//3 bend one way and then
back. Note that the case Q=1//3 corresponds to the linear phase case (see problems at
end of chapter).

The sudden increase in phase that occurs near the pole/zero radius at higher Q's
can be understood in terms of the very close pole/zero pairs that occur in such a
case. At Tow frequencies, the poles and zeros tend to "hide" each other, and it is
only when the frequency gets very close that they are suddenly "seen" and the major
portion of their 360° phase shifting potential is used up suddenly. Thus a high
Q "sharpens" a phase shift in the same general way it sharpens a bandpass or a notch.
In particular, note the fact that in Fig. 4-14, within the rectangular region of

Frequency in units of w,
1 2 3 4 5 6

2nd-Order
T_go° - All-Pass
we—r_Tirst-order [pole at -1, zero at +1]
- e e e .
""""" :zéﬁf'“ -l T T T
— - e--~ (=0.25
e T T ——
________________ | 4=0.577
Q=10 T T e e Q=2 _

Q=0.,25 Poles at -0.268, -3.464 Zeros at +0.268, +3.464

0=0.50 Poles at -1.000, -1.000 Zeros at +1.000, +1.,000

Q=0.577 Poles at -0.866 t 0,500j Zeros at +0.866 * 0.500j (Linear Phase)
Q=2.00 Poles at -0.250 ¥ 0.968j Zeros at +0.250 f 0.968j5

Q=1 T

0.0 Poles at -0.050 + 0,993j Zeros at +0,050 * 0.999j
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frequency from 0 to 1, and of phase from 0 to 180°, that curves bending in both
directions about linear phase are available to us for making phase corrections for
other filters which use this passband.

An important application of all-pass networks is in the construction of 90°
phase differencing networks. In many applications, we need to have sine and cosine
versions of the same frequency component ("“quadrature” components). With just a
first-order all-pass, we can convert any single frequency component into a 90° phase
shifted version simply by setting 1/2mnRC to the frequency we are interested in. (see
Fig. 4-10). For a small bandwidth around this 90° frequency, the phase shift may
be sufficiently close to 90° for some purposes. In many cases, we need a much wider
bandwidth - perhaps a full audio bandwidth of say 1000:1 range. Integrators and
differentiators can provide 90° shifts at wider bandwidths, but not with a flat
amplitude response. We generally have to settle for a 90° phase differencing
network. This is a network that takes an input and shifts its phase, often through
many full cycles. In parallel with this first network is a second, which also
provides a large shift, but which is adjusted to fall approximately 90° ahead or
behind the first. Fig. 4-15a shows how two parallel all-pass networks are set up,
and Fig. 4-15b shows the general idea of how the phase curves are arranged so as to
produce an approximate 90° phase shift over a suitable bandwidth. Note that the
phase shift from the input to the output is not 90° (in general) for either of the
two networks, but the two outputs are approximately 90° apart.

211-pass ﬁﬂ freq.. fp

network a ““"““"“} Ba | ; ;

\b |

o+t

e gooi.E : - 90 -E :

in ﬁ = I

all-pass l 5 | !

network b + - @ —— !

- b s $ |

e a |

|
CFig. 4-15a \',\ |
— Fig. 4-15b . |

The achievement of a 90°+E phase difference over a certain bandwidth fg.to. fy
is not all that fundamentally different from other approximations that can be done,
except here it is a phase difference that is of interest, and the phase error is
more like the "ripple” in a case of amplitude approximation. A number of methods
are available; and the one developed by Weaver* is widely used.  The calculations
needed for this method will be outlined here.  One begins with the needed bandwidth
ratio B = fy/fg, and then calculates a constant A as follows:

(4-16)

| = 171 -7k - (4-47)
1T +/k (4-48)

A' = L+ 2L% + 15L° - L
2 ' -'-'4?'. '

A=el /LOQEA : ( 49)

From thé vé]ue A; and the maximum error allowed (assumed-herg to be in degrees), the
number of poles n that are required (for both networks) is given by: _

*) K. Weaver. Proc IRF. 42 pg 671 April 1954
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n > &n(E+x/720) / &n A o (4;50)

‘_where E is the error and A comes from equation (4-49).above. .Equivalently;-the error”f
~E 1s given by: .
E = 720A"/n (4-51)

However, we can actually set aside the question of the error for a certain case
as it is only the bandwidth B and the number of poles n that comes into our calculation
of the pole positions. The poles are divided between the two networks, which we can
denote as "a" and "b" by finding angles # and g5’ for network a and angles gp and gy’
for network b, as follows:

g, (r) = (45°/n)(4r-3) for r=1,2,....(n/2) (4-52)

85! (r) = Tan™ {AZ-A)Sin(4a) (4-83)
1 + (A2+A%)Cos(483)

/B Tan[gy - 64'] ) (4-54)

while the corresponding equations for the B network are:

Palr)

Bp(r) = (45°/n) (4r-1) for r=1,2,....(n/2) (4-55)

: . Tan-1 (AZ-A%)Sin(4gb) _ \ (ase)
B {r) = Tan -1+ (A%*+A®)Cos (48p) | A258)

pp(r) = VB Tanl[gp - dp'] (4257

Here we are assuming that n is even, which is the ysual choice so that there are
the same number of sections in each network. If n is odd, then equation (4-52) will
run up to (n+1)/2 while equation (4-55) will run up to (n-1)/2. or vice versa. The -
poles as given in equations (4-54) and (4-57) are relative to fy, so for the actual
pole positions, multiply by fg. Note that the poles are of course negative and real,
and have corresponding zeros in their all-pass realizations.

_ Table 4-1 gives some pole position data for a number of representative cases,
- including the data for the example plot of Fig.4-16, which also plots the error.
Note that the bandwidth_of Fig. 4-16 is 100:1 while the ervor is 1.64°.

| Table 4-1
" Data for 90° PDN's

Bandwidth: 1:10 Bandwidth: 1:100 R O Bandwidth: 1:1500 |
Max Error: T.T° 7 { Fax. Error: 1,640 | [pandwldthe 1:1800° 47 fay “error: 0,260
No. of Poles: 4 No. of Poles: 6 ' ﬁg_’o;r;g1és, 4 No. of Poles: 12
Poles A Poles B | Poles A Poles B Poles A Poles B Poles A Poles.B
0.4788 1.8879 0,5207 - 2.1246 T 3278 5577 .Q.3846 1.3478
~5.2968 - 20.888 . . 6.0332 16.575 115.58 1112.9 3.0076 6.2736

12.977 26,890

47067 192,06

55.782 115,58
: 239.10 498.74
— 1112.9 3899.7

| (example plotted
Cin Fig. 4-16) -
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7100 bandwidth ool
' network from Table 4-1

T L N AR E145 Kag Ak e NENBIL]

Fig. 4-17 shows a realization of the phase differencer using first-order all-
pass networks. The bandwidth needed here is from 100 Hz to 10,000 Hz, so the poles
given in Table 4-1, and the response curves of Fig. 4-16, should be scaled by a
factor of 100. Note that the scaled pole frequencies are listed on Fig. 4-17.

Fig. 4-18 shows a different network. This one is an eight-pole network intended
for a bandwidth from 10 Hz to 15 kHz (an audio bandwidth) with a maximum error of
2.5°. Here, the second-order "Ltloyd" all-pass is employed. Note that here it

is necessary to group the poles into the networks shown for the most convenient
values of K. (note that the Toss is only to about 3/5 of the original signal level).

Fig. 4-17 One Realization of

—rtn

1:100 Bandwidth Network

6-Pole S0°PDN
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j 0.01 100p ,,
| " [5.914Hz) : ) " (669.4Hz)
6029Hz -
21.2¢ O 2.69M 26.4k 0.001 2.38M
o AAAAAL {' '\ { -
(75..24Hzf 10k ———e
+ AAALAR a
'''' . Cos1ne
Vin Lok 16k a5k g 4 18 An 8th- Order ;
90° Phase- D1fferenc1ng R
.__ﬂ»---dwﬂww--—»—-J“MNV—TJQ Network Using Lloyd's
= - an order A]] Pass
10k 45k
6.28k 0.001 :’* > e o =¥ Sine.
(25,363Hz) 798k (22811 ') 6.40M
A JHZ)  p—re—g
wioop | (1994H2) 0.001 | (24.88Hz)
—1i )

- One thing that 15 particularly notable about both the example networks, Fig.
4-17 and Fig. 4-18, is that there is a wide spread of capacitor values in the

overall network, corresponding to the wide bandwidth ahd corresponding spread of

pole radii. This can be a minor inconvenience in some circuit board construction,
but it can be a major impediment to achieving a.monolithic realization. One way to
approach this problem is to group the poles into second-order sections in a particular
way. This particular way is to combine the very lowest freguency pole with the very
highest, the second from Towest with the second from highest, and so on. In this way,
the wo term of these second-order sections becomes relatively constant. It then only
remains to find a way of realizing this very Tow Q.

As an examp]e Table 4-2 gives the pole position data for the
the 12 pole network of Table 4- 1, along with the values of wg and of Q.

network of

Table 4-2
Grouping of Poles for Low Capacitance Spread
Poles Grouped __wo Q
-0.3846, -1112.9 20.6 0.0186
-3.0076, -239.1 26.8 0.1108
-12.977 , -55.782 26.9 0.3913

This problem is a bit unusual first in that we are going to a second-order network
not to obta1n complex conjugate poles, but rather as a convenient means of achieving

TTUréal poTes.
“design problems.
. themselves well to this grouping.

In fact, the usual second-order all-pass networks do not lend
However, a state-variable approach (Chapter 6)
can be used to get the Q low enough. '

This discussion of all-pass networks has prompted a general discussion of
phase and why we are concerned with it. Before leaving the general subject it may
be worth while to comment on how phase is measured. = The Lissajous figure method
is well known, and is rveviewed in Fig. 4-19, Recall that the two phases are .
applyed to the X and Y inputs of a scope, and the resulting figure indicates the
phase. . The most notable Lissajous figures are the straight Tine at 45° (in phase),
the straight Tine 45° backward (out of phase), and the circle (90° phase). e
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Fig. 4-19 [ % ssajous
) Co / Figure _

It is rare to find a phasemeter in a lab, but it is very easy to construct
one. Fig. 4-20 shows a simple phasemeter constructed from three op-amps, a CMOS
Exclusive OR (EXOR or XOR) chip such as the type 4070, and a few other small parts.
Fig. 4-21 shows how the circuit works. The first two op-amps square up the input
waveforms, and the outputs are level shifted by the 10k resistors to a 0 and +15
Tevel needed by the CMOS input. It can be seen by the example, that the difference
in phase at the inputs results in a proportional pulse width at the output of the
XOR gate. The RC Tow-pass then extracts the dc Tevel from this pulse, and this
is proportional to the phase. The phasemeter works over a range of 0 to 180°,
giving 0 volts out for 0° phase shift, and +15 volts out for 180° of phase shift.
Thus the constant is 12° per voit. Carefully done, the setup can be accurate to
1 or 2 degrees.

+15

" Fig. 4-20- Simple Phase Meter

0

12°/volt

XOR Input 1 © Fig. 84-21

T T T 7 Pulse MDuty CycTe
of XOR output 1is
proportigonal to

o phase difference

. : XOR Input 2 - (0-180°) and this

— - - . . 1is proportional to

_ . _ dé level after .
r ' _ . XOR Output
_[if,___ _.Iij _ _{ti_.'_ _,[:‘___'_4;dc Tevel

 Tow-pass filter.
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- A Butterworth that Peaks (Continued from pg. 2)

In the ASP notes, it has frequently been the case that we have noted that
useful network configurations are easy to analyze because they inherently
have recognizable, simpler, sub-networks. Here in the analysis of this
fixed version, we recognize a familiar structure; in this case it is the
first-order low-pass relating V' and Vgy:

Vout = V'/{1+sCR) (1)

We next obtailn the second of two necessary equation (two unknowns, V' and
Veut) by summing currxents at the V' node: '

(Vin=V') /R = (V'_Vout)/(l/zsc) + (V'=Vo) /R : {2)

It is then a simple matter of algebra to write down the correct transfer
function:

T(s) = Vour(s)/Vin(8) = (1/2R%C?) / (s® + s/RC + 1/2R%C?) (3)

This has unity DC gain, as can easily be seen by looking at the limit as
s—>0. By comparing the denominator of equation (3) to the standard form
for a second-order dencminator:

S2 4+ (0o/Q)S + @0l (4

we see that the pole radius is wo=1/Y2RC, and the Q is 1/V2 (damping D =

1/Q = V2) which is Butterworth. Thus the configuration of Fig. 1 is
convenient in offering a Butterworth respeonse at unity DC gain, at the
price of having to find capacitors in a 2:1 ratio (or using three
capacitors!). We only need to note that the 3db cutocff is 1/v¥2RC (not 1/RC}
as in the more familiar Sallen-Key structure}. Of course, also keep in
nind that the Butterworth cutcff, the -3db point, is the same as the pole
radius, ®g, but that this is in units of radians/sec. - when you are talking
about frequencies in Hertz, simply divide by 2n. In summary, this |
particular Butterworth.implementation is a good, well understood circuit.

Fig. 2 shows Franco's voltage-controlled second-order section
(Franco's unity gain buffers are shown here simply by the triangles with
gain 1). The control elements are the popular CA3080 operational
. transconductance amplifiers (OTA's). These bear some.resemblance to. . . .
ordinary operational amplifiers, but must never be confused with them.
'Two things about OTA's that are fundamentally different are that the
output is a current (not a voltage) and that the gain of the device is
controlled by a controlling current I.. Thus, we can use them as analog
multipliers. The output current is obtained as a function of differential

input voltage and control current as:
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220

Fig. 2 A Voltage-Controlled Filter

Tout = 19.2:Ic Ejn = Vgier/Reg (3)

where E;, is the differential input at the chip's pins, Vg 1s the
differential input at the attenuator inputs, and Req=(19.2--L;»ZZO/:LOOOOO)'l
is an equivalent resistance. The 220/100000 term in the expression for Re
reflects the particular voltage divider resistors on the inputs. However,
while we usefully employ the notation of an equivalent resistance, we need
to note that the OTA configuration does not behave exactly like a
resistor. The problem is that the OTA may source (current out) a current
as though it had come through a resistor, but there is no corresponding
current sink (current in) corresponding to the "other end” or an ordinary
resistor. That is, a current must flow through an ordinary resistor, but
the OTA is in general one sided. '

Using equation (5) we can find the currents at the OTA outputs as:
I, = (Vi = v')/Req {6)

and |
I, = (V' - vout)/Req ’ {(7)

These currents drive through capacitors to give:

Vour + I1/8Cp = V° (8a)

11 - (V‘_VM)SCZ S (_él:;) .
and .

Vout = I12/8Cy (9a)

I, = 8C1Veur : (9b)
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Combining equations (6) with (8b) and (7) with(9) we have two equations
in two unknowns (V' and V@m) which can be solved for the transfer function:

T(S) = Vour(S}/Vin{8) = 1/Reg’CiCz / (8* + S/ReqCz  + 1/Req’CiCa) (10)

From equation (10} we see that the pole frequency is:

@ = 1/Req C1Ca ENSE
and the all-important Q is given by:
Q= V& /0 | (12)

This answers our questions. In the original circuit, C;=C and C;=2C.
Accordingly the @ is VY2, and this would correspond to a second-order
section with a peaking at about 1.5 times the DC gain. We might wonder if
making the two capacitors equal might result in a Butterworth response,
but this gives Q = 1 which has a peaking at about 1.15. Clearly, it is
the case where C;=2C and C,=C that give Q=1/V§ that gives Butterworth.

Thus Getting Butterworth in the voltage-controlled case involves a
placement of capacitors C and 2C that 1s exactly the opposite of the
placement in the non-voltage-controlled case.

What went wrong in 1974 and 1975? Who can say for sure? Did Sergio
simply mislabel the capacitors? Was he fooled by the active filtexr case?
Was it the case that the peaking just wasn't noticed in a musical test
(indeed, . the peaking generally has a favorable effect during synthesis ~
witness the Moog four-pole low-pass). As for the repeat of the mistake in
the MEH, I can say for sure that the active version was in my mind, and
that this was probably not tested on the bench. Further, the theoretical
analysis, as done so easily above, was not as automatically exercised in
1975 as it was a few years later as we learned more about using OTA's,

Does it matter? Well, apparently not much - people were using,
almost exclusively, four-pole low-pass and state~variable configurations.
I suppose it is possible that no one tried it, or at least noticed the
peaking, until Ian did. What we can do is make a note that the voltage-
controlled resistors are sometimes one way {as noted above) and that that
makes a difference. Generally, nothing is as easy as it seems at first!
Thanks for reminding us of this, Ian.
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