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With this issue, we begin a large series of issues that will form a
comprehen51ve body of material on analog and digital signal processing.
This series has a curious history. BAbout a year and a half ago, the
need for written material on Digital Signal Processing (DSP) at an .
intermediate level became apparent to me. There are more textbooks on
introductory DSP than we probably need, and at the same time, we find
numerous texts on specific topics in advanced DSP (e.g., statistical

'signal processing, multi-rate signal processing). For many years

various people. have noted the absence of material (or courses) at an
acknowledged "intermediate” level in many different fields (the teaching
of physics is perhaps an exception). Perhaps cynically viewed, one
would point owt that introductory text books are easier to do, have a
canonically-well-defined content (often by consulting all the other
texts), are easier to check (again, and perhaps with some risk, by
consulting existing texts), and likely have a much larger potential

market.

The lack of material at an intermediate level often leaves students
without help when they want to go beyond the usual exercises and
applications. At the same time, the advanced treatments may be too

—di-fficutt; —or-more—kikely; -wilkl-not-be -semething -one-can-easily- pick-up — .

and utilize qulckly

Accordlngly, at that time, I conceived of an idea of rewriting the
basic topics of DSP with an eye to going deeper, while at the same time,
providing a brief re-introduction as seemed advisable. My first topics
were what I think of as the major "Elements" of DSP: Sampling, Fourier
Transform (all flavors), and Filtering.  The Sampling and Filtering
elements have been written, and much of the material has been tested in
a "third" course in DSP.  Of course, I had in mind that the material
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would be published in Electronotes, and the sampling element was
intended for EN#191. This material will be along in the not too
distant future, but first, an interesting change of plans occurred.

About 12 years ago I wrote a "text" called Analog Signal Processing
which was never extensively published, and did not appear as part of
Electronotes. Probably most of you have never seen it or heard of it.
{A few of you have it.) In the last year or so, I have had perhaps a
dozen requests for copies, even though it is not widely advertised. It
seems there is still a lot of interest in Analog Signal Processing (ASP)
and very few books still available. (Don Lancaster's redoubtable Active
Filter Cookbook, happily, still seems to be.) To get right to the w
point, I decided to finally publish my ASP text in Electronotes.

The more I thought about it, the more obvious it was that I should
publish the ASP material first, before the DSP. This is particularly
rrue since it is a finished unit, and unlikely to be expanded. On the
other hand, the DSP material will likely go beyond its original
Sampling/Fourier/Filtering basis, for example, into multi-rate and
wavelet material in the future. In the current issue, you will find the
first two chapters of ASP.

ANALOG SIGNAL PROCESSING

—by.Bernie Hutchins

Chapter Headings

Chapter 1 A Basis for Analog Signal Processing

Chapter 2 Active Filter Examples Leading to Complex Conjugate
Poles

Chapter 3 Transfer Functions for Standard Filters

Chapter 4 Additional Filter Types: Notch and All-Pass

Chapter b Additional Configurations

Chapter Integrator Based Designs T

Chapter 7 | Passive and Active Sensitivity

Chapter 8 Voltage—-Controlled Filters

Chaptér 9 Filtering with Analog Delay Lines

Chapter 10 Analog Adaptive Filtering
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Chapters 1 through 4 are fairly traditicnal. In fact, the ASP
collection as a whole might be considered mainly introductory through
about the middle of Chapter 5, at which point some flow-graph
realization methods appear in the form of the "gyrator” (inductance
simulation) and the "supercapacitor" (names which have their own
charm!). The beginning of Chapter 6 is perhaps again traditional,
including the popular state-variable configuraticon, but it too then goes
inte a second round of flow-graph realization. None of the integrator
methods will likely be totally satisfactory at higher frequencies unless
some form of adjustments to allow for "active sensitivity"” are included,

which leads to Chapter 7.

One of the consequences of the transition from analog to digital
filtering, which was very much evident in the academic community from
the early 70's to the mid 80's, was that while a good portion of the
very finest woxrk in analog filtering did get into the academic journals,
it was not adequately included into textbooks (fewer of which were being
written), and certainly not much at all into advisories for practicing
engineers. Here we have in mind mainly the flow-graph methods and the
active compensation ideas. This is not to say that they were completely
ignored, but just that there was not enough exposure that they
automatically came to mind. Instead, we would find such as multiple-
feedback infinite—gain (MFIG) configurations, often poorly implemented,
on analog interface boards for DSP. In fact, many people still used the
Sallen-Key configurations which were known since 1955. In all fairness,
these were perfectly adequate in many applications, but not in all.

- Chapter 7 involwves both passive sensitivity (the R's and C's have
tolerances) and active sensitivity (the op-amps are real, not ideal).
This is a long chapter, and might have been split into two - one on
passive sensitivity, and the other on active sensitivity. Here we have
kept them together, and with good reason. You must consider both
simultaneously. A structure with an excellent score in one of these may
fail miserably in the other. (In fact, there are reasons tec suppose
that this should happen.) Chapter 7 also shows methods of correcting
for active sensitivity problems.

Chapters 8 through 10 are on analog topics, but are likely (almost
certainly) not found in most books on active filtering. Chapter 8 on
voltage-controlled filtering (VCF)} is, however, probably no surprise to
long time readers of this newsletter. 1In fact, the appearance of the
control elements in the VCF's enforce the need to consider active

—_Sensitivity, as they add _phase shift_ which can _destabilize structures. _ _ . _ .

This is particularly true since the active sensitivity is expected to
get worse at high frequencies, and the VCF by its wvery nature needs to
operate over a wide range of frequencies.

Chapter 9 is a strange chapter in that it embraces ideas of
discrete time - the world of DSP. This is in the guise of analog delay
lines. While these analog delay lines are not used much these days, the
notion of using not just "unit delays" but rather composite delays can
be extremely useful in digital filtering, is practical today, and can be
related to multi-rate DSP.
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Finally, Chapter 10 ventures into territory not charted at all in
most books on analog signal processing, although likely not totally
unfamiliar to our readers. This is the area of analog adaptive
filtering. A good part of the presentation does relate to the
correlation cancellation loop (CCL) which is very closely related to the
"LMS algorithm" of adaptive filtering in DSP. There is however,
additional material relating to self-adjusting filter methods, which
perhaps resemble phase-locked loops.

A couple of people who reviewed this manuscript quite a few years
back found it to be "uneven" in its level of presentation, and this is
probably a valid criticism if one is thinking about a text for a one-
semester course., But I never thought of it just like that. 1In the
introduction to the Musical Engineer's Handbook I quote Einstein as
saying "Things should be made as simple as possible, but not simplexr."”
This perhaps at once excuses simplified accounts and high level
developments as being necessary to usefully present material that is
itself useful. Moreover, I have always supposed that some readers might
read parts of our material as high school students and parts as graduate
students, according to needs and motivations. '

CHAPTER 1

A Basis For ANALOG SIGNAL PROCESSING

T-1  Introduction:

1-2 Signals and Signal Processing in General:

1-3  Transfer Function_orJSystem Function:

1-4 . Lap]ace.Transform{..i : : . el e
1-5 Transfer Function by Network Analysis:

1-6  Frequency Response, Poles and Zeros,
and Impulse Response:

1-7 Operational Amplifiers
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1-1 INTRODUCTION:

The purpose of this chapter is to introduce signal processing in general and
analog signal processing in particular, and to provide review and a common basis for
the material that foilows. The essential ideas of transfer function, frequency
response, impulse response, poles and zeros, and the like are reviewed. In- '
particular, we are interested in obtaining a transfer function using network
analysis, and then working with this transfer function to obtain the other network
characterizations we find useful, We find that this can be done by "Ohm's Law"
type relationships with the impedances of resistors, capacitors, and inductors.
The first-order low-pass fiter serves as a common example for much of what we do
here. Finally, we are interested in reviewing the ideal operational amplifier or
"op-amp", since this will be our main active element for the active filtering
techniques that we will use. :

1-2 SIGNALS AND SIGNAL PROCESSING IN GENERAL:

It is possible to take a very broad view of what may be called a signal. Here
however, in the context of analog signal processing, we will generally have in mind
a fairly specific idea that signals are voltages or currents that are functions of
time.*  Further, the signals have a purpose in that they contain and carry informa-
tion that is useful to us. For example, speech and music are anaiog signals that
contain a large amount of information that is of significant importance to us. One
goal of signal processing is to process a signal in such a way that the information
contained is more easily extracted. Typically such a process is termed "filtering."
Processes that enhance useful information, or that reject unwanted information, can
be considered as filters. In this sense (signal processing as filtering), we have a
result that is generally consistent with everyday experience: that filters improve

the quality or the purity of something that is of use to us.

While filtering is a major aspect of signal processing, some related areas are
signal analysis, signal synthesis, and signal detection. In signal analysis, we are
concerned with the way a signal may be represented as component parts. Signal
analysis in terms of a frequency spectrum is perhaps most familiar. Signal synthesis
may be as simple as waveshaping of one waveform to another, but it can also involve
complicated modelings, as for example, when a certain combination of filters is used
to synthesize artificial speech. Signal detection often involves initial enhancement
with filtering, but specific filters that Took for a specific signal element may
also become involved.

In general, signal processing will involve two or more signais, typically
considered in a "before and after" or input/output relationship. In such a case, the
-signals—are-retated -in—terms-of-a-connecting-system;-such as-is -suggested-in-Fig:—l~1+—
We will consider that the system alters the input, thus producing the output. Two
complimentary points of view, one of analysis, and the other of systhesis, are commonly
encountered with this system approach :

*lje must always be aware that sequences of numbers, discrete in time, are also
signals. These are the signals of digital filters, and are therefore of very
great importance. Consideration of a possible "digital fi]tey-a1ternat1ve?_1s
a Togical, usefil, and necessary step in an approach to any signal processing
problem, including those that seem inherently analog in nature.
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From the analysis point of view, we would consider the system as given, and we
need to determine its effect on a known input signal. In such a case (a communication
link for example), it would be necessary to first analyze the system, then determine
the output from the known. input, and ultimately consider if the output is satisfactory,
or if some corrective measures must be empToyed. '

From a synthesis point of view, which essentially represents a filter design
probiem, the input signal and some notion of an acceptable output signal are known to
us. The problem is to design a satisfactory system (filter) to put the output signal
within acceptable bounds. For example, we might want to reduce the level of "AC hum"
from a speech signal by at least 40 db.

_ Common to both the analysis and the synthesis cases is the need to determine how
a'given system can be analyzed, and how the input and output are related by the
system.  Here the notion of a transfer function for a linear system is of great vaiue.

Input X(v) Output Y(v)
SYSTEM

Fig. 1-1 General Input/Output Concept of a System

1-3 TRANSFER FUNCTION OR SYSTEM FUNCTION: ‘.

In general, it is convenient to have a straightforward characterization procedure
for a system that describes the input/output relationship for all inputs and outputs
of practical interest. Such a relationship is called a transfer function {(or system.
function) of the system. If the input can be described by Xk{v) and the correspond-
ing output by Yg(v), then we would like a transfer function T(v) given by:

T{v) = Yr{v)}/Xk(v) ' (1-1)

which would be true for all Yi(v) and Xg(v) of interest. Under what conditions would
such-a T{v) be obtainable, what is the variable v, and how do we obtain T(v)?

In our signal processing work, we must always be aware of the usefulness of
describing signals hoth in the frequency domain and in the time domain. Indeed,
many filter problems are posed primarily in terms of a needed freguency response _
{such as asking for a Tow-pass filter). Thus in Tooking for a variable for a transfer
function, time and frequency are obvious alternatives, and we are familiar with the
Fourier and Laplace relationships between the time domain and the frequency domain.

- If we choose time t as the variable v in equation (1-1), then it is easy to see
that T(v) = T(t) is time-varying unless Xk(t) and Yk(t) are simply scaled versions
of each other. Of more use is the choice of v as a frequency. Below we will find
the usefulness of the Laplace variable s for frequency, in which case a transfer
function T(s) becomes:

s s sKs) gy

This gives a time-invariant T(s), which is not only simpler to use, but consistent
with our intentions to employ constant valued resistors, capacitors, and inductors
in our filters. Also, T(s) in equation (1-2) is in a form that is a promising step
toward a frequency response function, since it is the ratio of two functions of
frequency. - :

Perhaps the greatest virtue of T(s) as a transfer function is that we will find
below that T(s) can be obtained from usual notions of network analysis. Given a
network, we can determine T(s} from circuit laws using only algebra. From this, we
can obtain the frequency and phase responses, and if desired, the impulse response
of the system as the inverse Laplace transform of T(s). o
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1-4 THE LAPLACE TRANSFORM:

The Laplace transform of a signal f{t) is given by:

F(s) = j?f(t)e_Stdt (1-3)
0

While the Laplace transform and its inverse are fundamental to most of what we do

in analog signal processing, relatively speaking we have 1ittle direct use for the
Laplace transform equations. However, in reducing differential equations to
algebraic ones, the Laplace transform offers us the algebraic transfer function
velationship of equation (1-2). Accordingly we shall find great use for the Laplace
transform variable s, even though equation (1-3) is not often used.

According to our interpretation of T(s) as X(s)/Y(s}, all of T(s), Y{(s), and
X(s) are Laplace transforms as given by equation (1-3). Clearly the corresponding
inverse transforms, x(t) of X{(s) and y(t) of Y(s) are the time functions of the
input and output respectively. Although we seldom need to obtain T(s) except by
network analysis, it is possible to obtain T(s) as the Laplace transform of g(t),
where g(t) is the impulse response of the system. This can be seen since the
Laplace transform of an inpulse input is X(s) = 1, from which we see from equation
(1-2) that the response to this impulse, the impulse response, is Y{s) = T(s) in
the Laplace transformed (frequency) domain. Since it is usually easiest to obtain
T(s) from network analysis, we do on occasion find it useful to obtain g(t) using
the inverse Laplace transform {(or more 1ikely, suitable tables).

The advantage obtained by using the s-domain (the algebraic transfer function
relationship) must be given back if we return to the time domain. This results in
a convolution relationship by which the output time waveform is the input time
waveform convolved with the impulse response g(t) of the system. This is our usual
notion that multiplication in one domain corresponds to convolution in the other
domain.

Inherent to the use of Laplace transform is the idea that we are dealing with
linear systems. That is, the response of the system to the sum of two inputs is
the sum of the responses that would be obtained if the inputs were individually
applied. Thus in total we are concerned with Tinear, time-invariant systems. We
are fortunate in analog signal processing that most of the systems we need to
hecome involved with yield well to this analysis, although at times non-linearities
due to non-ideal system elements may provide interesting complications.

We become very much accustomed to working with the Laplace transform variable
s; s0 much so that we can often omit the (s) functional notation. In general, we
shall use capital letters for Laplace transformed quantities, and omit the (s),
except for T(s). The corresponding time functions wiil be denoted by iower case
Tetters, and usually will include the (t) functional notation.

1-5 TRANSFER FUNCTIONS BY NETWORK ANALYSIS

Above we have suggested that we hope to obtain T(s) by some relatively simple
straightforward procedure, and specifically, by network analysis. In order to see
how this can be done, we need to see how the Laplace transformation applies to each
of the circuit elements we expect to encounter in analog signal processing. These
are the resistor, the capacitor, the inductor, the Tinear amplifier, and the analog
delay line. For each of these, we need to obtain an "Ohm's Law-Like" or- other simple
s-domain notation.

The resistor is governed by Ohm's law in the.time domain:
R = v(t)/i(t) o (1-4)
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and this impedance remains unchanged in the s-domain, and can be denoted as:
Zpls) = R = V(s)/I(s) (1-5)

On the other hand, the capacitor (C) is known to obey a charge(q) to voltage(v)
relationship:

q(t) =Cv(t) (1-6)
or, differentiating charge to current:

i(t) = dq{t)/dt = Cdv(t)/dt - (1-7)
In the s-domain, the derivative becomes a power of s, so equation (1-7) becomes:

I{s) = CsV(s) (1-8)
which corresponds to an impedance relationship:

ZC(s) = 1/sC = V(s)/1(s) | (1-9)
In a similar manner, the inductor (L) is known in the time domain to obey the law:

v(t) = Ldi{t)/dt (1-10)
so in the s-domain we have: '

V(s) = LsI(s) (1-11)
for an impedance relationship:

Z,(s) = sL = V(s)/1(s) | o (1-12)

Thus we have obtained three "Ohm's Law-Like" relationships, equations (1-5),(1-9), and
(1-12) which apply in the s-domain.

We can deal with the analog time delay of delay T by applying equation {1-3)
directly, in which case we can show that:

NS |
Vo,e(s) = TV (s) (1-13)
T Finally, the

so passing through-a delay T is equivalent to multiplying by e S'.
Tinear amplifier of gain K simply scales the Laplace transform as:

Vo (s) = KV (s) E ” | | (1-14)

We will not need relationship (1-13) until Chapter 9, but those familiar with digital
filters will recognize this as the z-1 notation used for a delay there. For easy
reference, the essentials of the s-domain representation are listed in Fig. 1-2.

What we are going to do as we move to active filtering is to first look at the = -
_ way that we can use network analysis on passive networks consisting of R's, L's, and
C's. Then we will introduce the finite gain amplifier K, and show how we can use it
to get rid of the inductors L, which are often too large or too heavy at frequencies

of interest. Basically all that we will do is to apply the "Ohm's Law" relationships
to the circuit voltages and elements in the s-domain. Then as is necessary, we will
use Kirchhoff's current conservation law at unknown notes. Some examples will

follow.
EXAMPLE 1-1 Find the transfer function T(§) of the simple RC network of Fig. 1-3.

Here we assume that the voltage Vipn(s) is supplied by a zero output impedance
source, and that there is no loading at Voyut(s). Consequently we can see that what
remains is a simple voltage divider for T(s) = Vout(s)/Vin(s), and the problem is
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Fig. 1-2 ANALOG CIRCUIT ELEMENTS IN THE LAPLACE TRANSFORM DOMAIN
I{(s)—>R : :
NN Resistor ZR=R I(s) = V{(s)/R
+ Vis) -
I{(s)— ¢
ii Capacitor Z.=1/sC I(s) = sCV(s)
I(s)—>
(s) rnkvn Inductor 7, =slL I{s) = ¥(s)/sL
+  V(s) -
Vip(s ¥ : .
in(s) T out(s) Time Delay T Vout(s) = STVin(s)
Vin(s) [E::>% Yout($)  voltage Amptifier Vv _.(s) = KV, (s)
Fig. 1-3 49 e AR ' —*%
Simple RC | |
Circuit Vin(s) I‘\\l_____c Vout(s)

just to recognize that the lower leg of the divider, the capacitor, is equivalent
to a "resistor” of "resistance" (impedance) 1/sC. Accordingly we can just write
down:
_ 1/sC - ] : _
Ts) = 37970 = T3s@® (1-15)
Note that you can also solve the problem by recognizing that there is one and only
, one current I through the two elements.

In this first example, we have been careful to note that the voltages are
functions of s, and that they are referenced to ground. In general, we will be
able to simplify diagrams and notation by assuming that the node voltages are a]]
in the s-domain, and that they are referenced to ground.

[ EXAMPLE 1-2  Find the transfer function T(s) of the RLC circuit of Fig. 1-4.

Ry - |
Vir,oh-——qr—JVWANvIovout e e
u |
¢ L
Fig. 1-4
RLC Circuit Ro
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There are several ways of solving this network, incTuding a voltage divider approach
based on parallel and series impedances in the legs. Here however we can use the
method of just summing currents at the output node. Note that according to our
assumptions, no current flows from the output node. Current conservation then gives
the following equation:

Yin = Yout N Yin = Vout - Vout (1-16)
R 1/sC Ry + sL
1 2
T?i§ involves only Vi, and Vout along with the passive elements, and can be solved for
T(s) as:
il e il B
T(s) = 1 - 1 (1-17)
2+ f 1 R2 ] 1+ R
5 5[———-+ 4+
CRy 7L LCRy

This §s obviously a somewhat more interesting equation that the simple one of equation
b (1-15).

Note that in setting up the current equation (1-16) we assumed that current flow
from + to -. If we happen to choose a different polarity, the current is reversed, a
sign changes in the sum, and everything still comes out the same in the end. More
will be said about selecting current directions in the examples of Chapter 2.

Another point that can be made here is that we of course wonder if equation (1-17)
is correct, or if there may be some mistake. One check that we can make, which won't
prove we are right, is to check dimensions. If a dimensional error is found, we surely
have something wrong. In fact, it is good practice to check dimensions not Just at the
end, but as each and every term is written down. With some practice and experience,
d1mens1ona] checking becomes automatic, and very productive at early detection and
subsequent correction of algebraic errors. How do we do this?

T(s} is a ratio of voltages, and must therefore be dimensionless. In fact, we

see in equation (1-17) that it is the ratio of frequency-squared terms, judging by the
leading sZ2 terms. A1l the remaining terms should be squared frequenc1es, or
equivalently, inverse time squared. Now, we know that an RC product is an RC "time
constant” so the dimensions of RC are inverse frequency. Later we will find this

sufficient, since we will be doing mainly RC active filters. However, for the moment,
can we also check the inductance? We probably remember the RCL resonance circuit from
phys1cs where the product LC is time squared. If this is true, than R/L = RC/LC must
be inverse time, or frequency. This done, we see that the dimensions of equation (1-17)
are all correct frequency-squared terms, top and bottom.

One final warning about dimensional checking can be made "It is not unusual to-
encounter a procedure called "normalization” that can be useful at times. This
involves setting some of the component values to 1 or to other simple numbers,
thereby simplifying algebra. However, this can make dimensional checking much more
difficult. - Thus while algebra may be simpler, you give up an important checking tool.

Many more network analysis examples could be given. In part1cu1ar we have not
_ used our voltage amplifier in an example yet. This will come in Chapter 2. = _

- 1-6 FREQUENCY RESPONSE, POLES AND ZERGS, IMPULSE RESPONSE

As mentioned above, often we are interested in knowing how much a given system
enhances or rejects signals of various frequency at the input. This is what we call
the frequency response of the system. So far, we have arrived at a notion of a
transfer function, and a means of obtaining the transfer function. We saw that the
transfer function Tooked Tike a step in the right direction for obtaining a frequency
response, since it was a ratio of output to input voltages, and was a function of
frequency (complex frequency s in this case).  We will shortly show that the
frequency response is given by the magnitude of the transfer function T(s). Thus we
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will find it convenient to just use the notation |T(s)| for frequency response.
It will be further understood that we are to evaluate [T(s)| only on the jw-axis
of the s-plane, as will be discussed below. Since T(s) is a complex function, we
find its magnitude by multiplying the function by its complex conjugate and then
taking the square root. Thus [T(s)| evaluated at s = jw s given as:

IT(s)] = [T(jw)eT(-ju)]/? | (1-18)

This gives us a means of going from a network, to a transfer function T(s), and
ultimately to a frequency response |T(s)}|. However, we need to see how this .
relates to our taboratory notion of frequency response. In the lab, we measure

a frequency response by applying sinusoidals of different freguency to the input
of a system, and then measuring the output amplitude relative to the input .
~amplitude. This seems to us to be a time-domain process rather than a frequency-
domain process. However, we must keep in mind that we always do this with
sinusoidals, and we always wait for the transient to die down (although in fact we
don't usually make an issue of this). We will now show that this apparently
time-domain medsurment - the ratio of the amplitude of output and input sinusoidals -
is the same as the calculation of equation (1-18).

Fig. 1-5 Frequency Response "Test"

Vin(t)=ASin(wt) vout(t) = BSin{wt) + C Cos{wt)
- T(s) ‘ o
- _hw _ _Bw Cs
V1'n(s) T s H? Vout(s) SZ+w* S%+w?

Fig. 1-5 shows a system T(s) being subjected to a frequency response "test".
T(s) is a Tinear system with a sinusoidal input, and the output must be a sinusoidal
of the same frequency, although the phase and amplitude will in general be changed
across the system. We can choose as the input test signal:

Vin(t) = ASin(mt) - {1-19)

The output can be represented in general as a sinusoidal with a different amplitude
A' and a different phase ¢:

' = A'Si 1-20
vout(t) A'Sin(wt + ¢) | ( }
However we can also write vout(t) in terms of sine-and cosine components as:

= B Si ' : | 1-21
Vout(t) B Sin{wt) + € Cos(wt) { )

[Here as a matter of simple trig identities, B = A'Cos ¢, :C = A'Sin¢ , A'=/B%(Z,

and ¢ = Tan-1{C/BY.]  Sinceé the sine and cosine components are 90° out of phase, ~
the output amplitude divided by the input amplitude, A'/A, our measured frequency
response, is given by:

. VB*+(C -
|T(S)lmeasured B A : (1-22)

What we have guaranteed about T(s) is that it is the ratio of the Laplace
transform of the output to the Laplace transform of the input. Consulting tables
(see end of chapter or other source), the Laplace transform of the input vin(t)

is: ‘
Vin(s) = Aw/(s2+w?) - (1-23)

EN#191 (11) ASP 1-7




while the Laplace transform of the output, equation (1-21) is:

V.. (s) = Bw/(s2+w?) + Cs/(s2+w?) | (1-24)

out
Since we agree that T(s) is Vout(s)/Vin(s), using equations (1-23) and (1-24), we have:

. _ Bw+ Cs _
T(s) = —EG (1-25)
If we take the magnitude of T(s) using equation (1-18), we obtain:
+
T(s)] = gt (1-26)

which is the same as equation (1-22).

The significance of the above is that if we desire to know the frequency response,
as the ratio of output to input sinusoidal amplitudes, we can.obtaini-it by first obtaining
T(s) using network analysis, and then by simply solving for [T(s)| using equation '
(1-18). Later we shall find additional ways of obtaining the frequency response in
cases where equation {1-18) is algebraically inconvenient.

We are also at times interested in the phase responsé, and not just the magnitude
response of T(s). The phase response can be obtained as: '

=1 ImlT(Gw))
¢{w) = Tan -R"Eﬁ%m (1-27)

This can easily be'deve1oped by considering that from equations (1-20) and (1-21) it
was seen that:

4(0) = Tan"1(C/B) | (1-28)

from which equation (1-27) results from use of equation (1-25). Thus to find the
phase response we first obtain T(s), then we take T(jw) and find its real and
imaginary parts, and then take the inverse tangent of the ratio of the imaginary part
to the real part. Note that by "imaginary.part" we do not mean to include the j, but
rather the real number that multiplies the j. For example, the imaginary part of

6 + 143 is 14, and not 14j].

EXAMPLE 1-3 Find the frequency respdﬁse'and'phase'response of the RC low-pass of -
Fig. 1-3, Example 1-1. :

We have already determined T(s) = 17(1#sCR) so T(jw) = 1/(1+jwRC) and:

_ [ I 1 172
O e o M S o RECE ] (1-29)

To find the phase response, put T(jw) in the form:

Sy i L1 - JwRC - 1 = juwRC .

from which'equation (1-27) gives:
o(w) = Tan" | (<wRC)= ~Tan™ (wRC) (1-31)

Fig. 1-6 shows plots of the magnitude response and the phase response corresponding
to equations (1-29) and (1<31) for the case RC=1, and plotted for w= 0 to 10. Note
that at w = 1, the magnitude response is 1//2 while the phase response is -45°. As
the frequency gets higher and higher, the magnitude response approaches 0 while the
phase response approaches -90°. -
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In addition to using T(s) directly to relate Laplace transforms, and to
obtaining the frequency and phase response from T(s), we also understand our
system in terms of its poles and zeros, as they occur in the s-plane. Specifically
we are interested in transfer functions T{s) that are ratios of polynomials in s,
which comes naturally from our use of realizable (or already realized - to be
analyzed) networks. For analog systems we have a numerator polynomial of an order
that does not exceed the order of the denominator polynomial. These polynomials
in s can be factored down to first-order terms, and from these, the roots of the
polynomial are obtained. The roots are the values of s for which the polynomial
becomes zero. For T{s)}, the roots of the numerator are called the zeros of the
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network while the roots of the denominator are called the poles of the network. It
is evident that if the numerator becomes zero, T(s) itself must also become zero.
In the case of a pole, the denominator becomes zero, and T(s) blows up.

Probably no single piece of information about a system is of more significance
than the positions of its poles. Note that the roots of a polynomial in s are in
general complex numbers in a complex "s-plane.” The Laplace variable, or complex
frequency s, in general has a real part o and an imaginary part w, or:*

s =0 + jw (]'32)

Thus we have the notion of a complex number plane for s, the so-called "s-plane.”

We can discuss the Tocation of the poles and zeros of a system in the s-plane with
particular regard for their proximity to the jw-axis, the line in the s-plane where
we evaluate the frequency response [see equation (1-18)].

It is probably well-known to the reader from linear system theory that poles of
stable systems must be in the left half of the s-plane. That is, if op + jwp is a
pole of T(s), then T(s) being stable implies that op is negative. This is easily
shown by considering that a positive op will result in an exponentially growing
component in the inverse Laplace transform of T(s) (see problems at end of chapter).
Poles on the jw-axis, incidentally, correspond to oscillators as long as the poles
are only first-order.

EXAMPLE 1-4 Find the poles and zeros of the RC low-pass of Fig. 1-3, Example 1-1,
and plot them in the s-plane .

Since T(s) = 1/(1+sCR), there are no zeros in this system, since there are no
values of s that make the numerator go to zero (the numerator is always 1). The
denominator becomes zero when s = -1/RC, so there is a real pole at -1/RC. Fig. 1-7
shows the pole plotted in the s-plane. We note that the pole has a negative real
part and therefore, the system is stable.

jw

Fig. 1-7 s-Plane
Pole/Zero plot of

RC low-pass shows pole
at -1/RC, indicated by
x mark. There are no -

zeros. A zero would —1;§C 9
be indicated as a

circle.

This simple example has only one real pole. In general, a system would have complex
poles in complex conjugate pairs, and. would have zeros as well. Poles are indicated
by x marks, and zeros are indicated by small circles. For stability, poles are in

-~ the-left—half-plane, but zeros-could appear-anywhere-in-the-s-plane- - — -~ - - - — — — — —o

*Note the incongruous notation in that frequency that is real in the laboratory
" sense {w) is imaginary in the Laplace sense. Actually, very likely:the most
familiar and therefore the most "real® freguency of all is probably frequency
in Hertz (Hz, of formerly, cycles-per-second), which we denote f. Radial frequency
© is related to f by w=2rf, and has units of radians=per-second (which is =
numerically larger than f in Hz). It is well to be aware that errors of 2m
are quite common when doing actual calculations, and results that seem to be off
by about a factor of 6 should be investigated for such 2r errors. The real part
of s (o) is not related to the oscillatory aspect of complex frequency, but
rather to the growth or decay of amplitude of a signal. S
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A better understanding of how pole/zero plots are related to the'frequency
response can be had by considering a more general case of a transfer function:

2 M

..... bms Y
0 (1-33)

bo + bys + bps“ +

‘ 2
8yt ays Fapst k... ays

T(s) =

where M does not exceed N. T(s) can be factored down to first-order terms. If M
or N is greater than two, this can be done numerically by computer and is called
"poot finding" or "pole/zero factoring." Accordingly we can obtain a revised form
of equation (1-33) as: '

JAs=z1)(s-2zp)e . . ... L - (s-zm) )
TspI(s=p,)s - - - - . (s-py) (1-34)

Where the zjy are the zeros, the pp are the poles, and A is an.overall multipiier.

[As a corollary to equation (1-34), note that knowing all poles and zeros gives the
transfer function up to within an arbitrary multiplicative constant.] It is a simple
step now to place magnitude bars on equation (1-34) and arrive at an equation for the
frequency response |T(s)|, alternative to equation (1-18), as:

T(s)=

- |Alls-z1l]s-2zp] » . . . .. + | s-zp| | .
IT(S)I [s-p1]ls-p2]+ . . . . . . .*[s-pnl (1-35)

The interpretation of equation (1-35) is that the magnitudes are the distances, in
the complex s-plane, from the poles or zero, to the point s of interest. For the ,
frequency response, this is a point on the jw-axis where w is the frequency at which
the frequency response is to be determined. Accordingly we see that the frequencCy
yesponse is proportional to the product of the distances to the zeros and inversely
proportional to the product of the distances to the poles. The distances could

even be determined from actual measurement with a ruler on an accurate s-plane plot,
and this general "geometric interpretation" of frequency response is extremently .
useful for estimating and sketching purposes. It can also lead to a numerical '
method of evaluation. Each of the distances in equation (1-35) is of the form [s—x[,
where x is a pole or zero with real part r and imaginary part i. For such a point

x, the distance to a point on the jw-axis is simply:

|s-x| = [{w-1)% + r2]1/2 ' (1-36)
and this can be used for each term of equation (1-35).

EXAMPLE 1-5 Geometrically determine the frequency response of the RC low-pass of
Fig. 1-3, Example 1-1, from its pole/zero plot.

Fig. 1-8 shows the pole plot as found in example 1-4. The frequency response is
inversely proportional to the distance p from the pole at -1/RC, and this gives:
iT(s) - 1 (1-37)
Em2+- (-l/RC)Z].!/Z
“which is in agreement with equation {1-29) to within an arbitrary constant. — = ~

Jjw
o ’,f’w _ Fig. 1-8
{,— /,"’ ' Frequency Response from
)(’/'S $ - o Pole/Zero Plot
-1/RC
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Note that it is clear from this viewpoint why the response for w = 1/RC is down
by 1//2 from the dc value. Further note that the phase can be interpreted as the

angle ¢ in Fig. 1-8

Since equation {1-18) for |T(s)| is algebraically inconvenient at high order,
and since equation (1-35) is only convenient when all the poles and zeros are
known, we need yet a third equation when T(s)} is unfactored as in equation (1-33).
Such a method is available if we write:

[T(s)| = [N(s)] /[D(s)] (1-38)

where the numerator N{s) and the denominator D(s) are unfactored polynomials. Both -
N(s) and D(s) are complex numbers in general, and their magnitudes can be obtained

by taking the square root of the sum of the square of the real part plus the square

of the imaginary part. The problem is thus simple if we can jsolate the real and

the imaginary part of the polynomials. This can be done for T{jw), as we can show

for example for D(s) = D(jw} as:

D(s) = ay * a5+ a252 S aNsN (1-39)
D(jw) = a, + Jaju - a2w2 - Jagw + a4w4 P jNanN (1-40)
- _ 2 4 6
= [ao 07 - a e . ]
+3 e - agw” * agw - ag ... ] (1-47)

which clearly shows isolation of the real and imaginary parts so that the magnitude
can be computed (see problems at end of chapter).

7 Earlier we discussed very briefly the idea that T(s) and g(t) (the impulse
- response) are Laplace transform pairs. Since it is usually easiest to obtain T(s)
by network analysis, we can get g{t) by taking the inverse Laplace transform of
T(s). In almost all cases of practical interest, the inverse transforms needed are
available from tables, although it is often necessary to adapt and/or combine
entries, and to ignore countless entries that are of 1ittle or no practical value
in signal processing work. Another point about using tables is that while the
compilers of tables usually use thé Laplacé variable s (sometimes p), they do not
feel obligated to maintain corresponding time/frequency dimensions, evidently
thinking of variables in both domains as dimensionless. This can lead to some
confusion in electrical engineering work. Some comments on this will follow the
examples below.

EXAMPLE 1-6 Find the impulse response of the RC Tow-pass for Fig. 1-3, Example 1-1.
Here T{s) = 1/(1+sCR) = {1/RC)/(s + 1/RC) so we look for this general form in

tables and find something Tike F(s) = 1/(s-a) paired with f(t) = edt, Using this
—-we-get--the-impulse-response-as a-decaying exponentialiv o oo

g(t) =-£E e H/RC (1-42)

If we consider the dimensions of equation (1-42), we find that g(t) has units
of frequency due to the 1/RC multiplier, while we would expect it to-have units of
volts, or with more thought, whatever units the exciting impulse had. We can
understand this appearance of freguency dimensions. since we have transformed what
we know to be a dimensionless T(s). If we Took at the inverse Laplace transform
integral expression [inverse to equation (1-3)]:
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we see that the ds term automatically gives us the frequency dimension that we
found in equation (1-42). Likewise, the dt in equation {1-3) supplies an extra
dimension of time. Accordingly, in cases where we do both a forward and an inverse
transform, the dimensions will come out correctly, which we will see in later
examples where step response rather than impulse response is desired.

Another point about impulse response is that the concept of an impulse in the
analog case is difficult, having the interpretation of a Dirac §-function which has
infinite height and zero width for a net unit area. Possibly the safest approach
to impulse response is as follows. First, treat g{t) as a mathematical device-[the
inverse Laplace transform of our better- understood T(s}], and not so much as an
observable laboratory waveform. SecondTy, be aware that the general functional form
(waveform if you prefer) of g(t) is essentially correct even if the scaling is
suspect. Finally, most or all of our difficulties will go away if we just consider
a finite height, finite width (but relatively narrow) pulse rather than the idealized

impulse.
EXAMPLE 1-7 Find the impulse response of the bandpass transfer function:

- Aswg _
T(s) = 2, v o 7 L2 (1-44)
T %
Typically tables will give two pairs that Took "close".

— <> esin(bt) (1-45)

(s-a)~ + b
S8 o« eoos(bt) (1-46)

(s-a)~ + b

By combining these to cancel the constant term in the numerator (leaving the first
power of s}, one can show that the desired impulse response is:

Wo .
g(t) = Awoe'?ﬁt [Cos(wo/] - 1/4Q09)t

1
- T T Sin(wyyT - 17407t ] (1-47)

Again we see the confusion with the constant multiplier which has units of
frequency, but it is clear that the waveshape, that of an exponentially decaying
sinusoidal (as long as Q is positive) is correct. This is an example of the
"ringing" of a filter, and will be discussed more in Chapter 3.

So far we have used the inverse Laplace transform to obtain g{t)} from T(s),

" and have seen”this to be of some utility, but also to have somé problems. ~ However™ T

it is also possible to find vout(t) for inputs other than an impulse. We can use
' _ -1
Vot () = LTT(s)-Y; (s) ] (1-48)

. 4% Tong as we can find Vip(s) from vin(t) and know how to invert the product
T(s)-Vipls).

EXAMPLE 1-8 Find the step response of the RC low-pass of Fig. 1-3, Example 1-1.

The problem is depicted in Fig. 1-9 where a step occurs at the input at t=0.
We already know that T(s) = 1/(1+sCR), and the Laplace transform of the unit step
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Fig. 1-9 Step Response
is just 1/s. Thus the output is:

- - 1 -
Yout(s) = Vin(s)T(s) = srrestry (1-49)
We note that Vgut(s) in equation (1-49) has units of time, due to the forward
transform from vin(t) to Vin(s). _ '
In order to invert Vout(s), we need to expand to partial fractions form:

SN A -
Vout(s) = 5% 7Re T s - (1-50)
The two terms are now inverted separately:
(t) = ¥R 412 (1 - VR for w0 | (1-51)

Vout

which is the correct answer according to our knowledge of the charging RC circuit
from physics. Note that the result has no time or frequency units. Instead it has
whatever units we assigned to the step - voltage in this case. Note how nicely
the scaling and unit problems went away when we took both the forward and the
jnverse transforms. Note finally that the Laplace method gave us the same

result we would have gotten by solving the differential equation:

i(t) = dq(t)/dt = C dv(t)/dt = fvin(t) - vout(t)]/R (1-52)

which the reader may wish to solve in the time domain so as to better appreciate
the Laplace method.

1-7 OPERATIONAL AMPLIFIERS

Active filtering requires the use of some active device, usually an operational
amplifier (or “"op-amp" for short). The goal is to allow the realization of useful
filters, having complex conjugate pole pairs; using only resistors, capacitors, and
some active device (no inductors). .In order to do this, the active device may serve
to provide voltage amplification, to prevent loading of some circuit point
(buffering), or an op-amp may serve directly. In an effort to understand op-amps,
we will begin in this section with a study of the "ideal" op-amp, which is often
a good and satisfactory model for the real thing. The effects of real op-amps
will be discussed in Chapter 7.

””_“_““'”’”FT@;”T:T0“§H6W§ffﬁé"6bnvent3onaI\trihﬁgUTa?_Symde_fb?“ah_Up;ampff_Tt'T T T

~usually considered a three-terminal device, with two inputs (non-inverting or vi
and inverting or v.), and one output voyt. In the figuré we are actually showing
two other terminals, those for the power supply voltages, which are usually ¥15,

+15
R Fig. 1-10 |
The Ideal Op-Amp : b
Zin™® Zout™0 |
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In cases where we consider real op-amps, design circuits with them, or experiment
with them in a lab, we of course have to deal with the need to supply them with
appropriate power. - However, it is also nearly a universal practice to leave them
off of diagrams - unless they are something unusual.

Here, even in this case of an ideal op-amp, we are showing the power supply
connections. LIn short order we will start leaving them off.] The point is first
to remind ourselves that we always need them in practice, but more importantly, they
will help us realize at this early stage what the op-amp does and how it does it.
Through the power supply lines, the op-amp has access to a source of energy that is
external to the network. By way of its output, it can inject energy into the
network in a controlled manner, as it senses network conditions by way of its two
jnputs. Thus we do not rely entirely on an input terminal from an external source
to}“excite“ the network. The network can have a "self-exciting" aspect to it as
well.

The input and outputs of the op-amp are considered ideal. For an output to
be ideal, it is an ideal zero-output-impedance voltage source. It can't be "loaded
down" by components attached to its output. It will "drive" whatever we attach.
The op-amp output absolutely determines what the voltage at its output node is
going to be. In sharp contrast, the inputs have nothing at all to say about
what the voltages they are attached to are, except as they may be able to influence
theoutput to alter network conditions. They are infinite-input-impedance inputs.
They neither draw nor source current. You can attache them anywhere in the network
and they will sense the voltage that is there, and it will be the same voltage that
would have been there without them. They are perfect "probes.”

This sets the stage for the most important of all the ideal op-amp properties.
The op-amp is a differential amplifier and its output is accordingly given by a
product of a differential input (v+ - v.) and some gain factor A. Thus:
Vout ~ A(v+ -v.) (1-53)
For the ideal op-amp, A is taken to be infinite. It may be a surprise that anything
practical can be accomplished by working with an jdealized element with an assumed
infinite gain. We will see below that it can, mainly in that whether or not A is
infinite matters according to whether or not another parameter, {v+ ~¥.), is
actually zero or just very very small. [In fact, it does not matter much if A is
infinite, perhaps a mere 106, or perhaps only 100. What matters more, as we will
see in Chapter 7, is that in order to build stable op-amps, it is necessary to make
A not just a constant, but a function of s, A(s). Interestingly, we will see that
this function of s is the first-order low-pass that has appeared in so many of our
‘examples already in this chapter. Notice that the assumption that-A is infinite
and a constant automatically signifies that the op-amp has infinite bandwidth as
gillii }he frequency response is infinite because there is no frequency dependence

LE qeed to consider just how the ideal op-amp behaves, and we will begin by
considering cases where the differential input voltage is specifically not equal to

..zero. Fig. 1-11 shows a number of such cases. In Fig._1-1la we show how ordinary_ _ .

pat;eries might be used to bias the inputs for a differential value of +4.5. Now
it is clear from equation (1-53) that if A is infinite, then vyt should certainly
be 1nf1q1te as well. Infinite output voitage is not one of the ideal op-amp
assgmpt1ons however. We will assume that ideal op-amps, 1ike real ones, stop
trying when they clip against their power supply limits. Accordingly the output
of the op-amp of Fig. 1-1Ta would be "clipped" at the positive supply of +15.

[In case you are interested, a real op-amp would c1ip about two diode drops below
the supply level, or at about %13.8 volts.] So if we make the differential input
vo]tagg non-zero, the op-amp just goes to one power supply level or the other,
according to the polarity of the differential input.
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Fig. 1-11 Performance of Op-Amps

However we need not go to the trouble of bringing in batteries, but can just get
reference voltages from a voltage divider as seen in Fig. 1-11b. Here the resistor
values are not important, but only the ratio matters, since no current is drawn from
the divider string by the inputs. Note that this biasing has v+ more negat1ve than
v-, S0 in this case the output is pinned at the negative supply.

These examples point out an important non-linear application of op- amps - that
of the so-called comparator (Fig. 1-11c). The comparator can make a judgement about
the input potential relative to a reference potential, and pin the output at * supp1y
accordingly. When vpef=0, the comparator is appropriately called a "zero crossing
detector." Comparator applications are described here only for purposes of general
information, and to illustrate how op-amps behave. We do not use comparators in
Tinear circuits (not in active filters). Occasionally however we do accidently get
comparator response due to a circuit error. In testing op- amp c1rcu1try, if an op-amp
output is not supposed to be pinned at supply voltage, but is, it is usually not the
case that the op-amp chip is faulty. Rather, as a simple check will test, usually
the input voltages are separated and of a polarity that causes the op-amp output to
pin. The part1cu1ar op-amp is behaving correctly, as far as we know, but something
feeding into it is wrong, and it must be corrected if we are trying to bu1]d a filter

or other linear circuit.

We might now begin to wonder about how we are ever going to obtain a differential
input voltage of zero. Fig. 1-11d shows one obvious approach, or we could just short
the inputs together. Of course, this is just an experiment - we do not anticipate
anything useful happening. With the ideal op-amp, since A is infinite we have a
"zero times infinity" problem to worry about. However, if A is just "very large"
we could suppose that vout=0. If we changed Fig. 1-11d to a real op-amp however,
there would be a voltage offset in the input stage (due to - fabrication tolerances)
and the output would pin at one supply or another. As a curiosity, we can also
consider the circuit of Fig. 1-1%1e which uses a real op-amp. Is it possible to
adjust v+ by hand close enough to.zero so that the output is not pinned at one of
- -the-supply-rails? - Perhaps--for-a -moment-or-two,-with-a very- steady-hand-on the pot - — ——
control knob. It should be clear however that it is exceedingly tough to.get the
op-amp output to take on any voltage between the two supply rails - with what we have
looked at so far. o _

What we have not done so far is to consider the possibility of using any sort
of feedback from the output to an input - the devices we have looked at so far are
what we call "open loop." It is through the use of negative feedback that we will !
achieve useful voltage values at the output, and a zero differential input. Our
design rule with op-amps will then be extremely simple:

vy =V . - (1-54)
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Fig. 1-12 The Unity-Gain
Voltage-Follower
of "buffer"

Fig. 1-12 shows an op-amp circuit called a unity-gain voltage-follower or
“huffer' as it is often called. We will be concerned with this circuit in two ways.
First, we will use it to demonstrate how negative feedback can result in a zero
differential input. Secondly, the circuit itself is one of considerable utility in
circuit work. While it provides no gain, it can be used to "buffer" a network
point, as will be discussed more below.

To see how negative feedback works, let's begin by assuming that equation (1-54)
is correct, and then examine what happens if the op-amp output tries to fluctuate.
In particular, from Fig. 1-12 and equation (1-54) it is clear that the buffer should
give:

Vout = Vin (1-55)
Now, let's assume that vout goes slightly positive above vip. This will result in
v- going s1ightly positive with respect to v4, creating a negative differential
input voltage, which will force voyt downward. Thus negative feedback tries to
correct for the upward fluctuation. It is just as easy to show that a downward
fluctuation of voyt will be corrected in a simitar manner. The only possible
value of voyt in this configuration is vip.

Fig. 1-12, the follower, is unique in that the circuit has full or 100% negative
feedback. Other circuits may have a different feedback path arrangement, but the
principle that v_ = vi remains the same. As long as a negative feedback path is
possible and working, ideal op-amp analysis begins with v_ = v&. [In some real cases,
negative feedback might fail because the output would be asked to supply a voltage
outside its supply Timits, or the input might move too fast for the output to keep

up exactly.]

It is somewhat important to understand the situation at the differential input
from the proper point of view. It is true that v. is forced to take on the same
potential as v4, but it is not true that the inputs themselves "force" this condition.
Indeed, the inputs by themselves have no "influence" on the voltage points to which
they are connected - except as they are able to influence the output to help out.

It is always the case. that the output must do the work, to take on whatever value is
necessary so that v.. becomes the same as v4. However, because it is the usual
starting point to assume that v_=vi, it is somewhat natural to have the impression
that a current flows because of the v_=v; condition, and that this current forces
itself through some impedance and forces the output to take on some value. A more
correct point of view is that the output tries some value, and then adjusts it until

v_=v, through the negative feedback process.

_1t_should_be.realized.that while the_follower provides no gain, it _does provide

a buffering action of great utility. [Indeed we often don't even want gain for a
certain application.] If we have a point in a circuit which has a voltage that we
would Tike to extract and use elsewhere, we need to be concerned with whether or not
the attached circuitry will "load" the original point and change the original voltage
significantly. If so, we can use a buffer to offer a "refreshed" version of the
‘original voltage. This occurs because the buffer has infinite input impedance and
zero output impedance. Buffers have important uses in active filters and in analog
circuitry in general.

Fig. 1-13 shows a second circuit, the non-inverting.amplifier, which is Tike
a buffgr with added gain as well. In analyzing this circuit, what we need is to find
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Fig. 1-13  Non-Inverting
Finite-Gain .
Voltage Amplifier

the relationship between vout and vin, which is the same as finding the transfer
function T(s) of the circuit. Here however since there are no capacitors or inductors
jnvo]veq,.and since the op-amp is ideal, the transfer function is not a function of s,
gnd it 1s convenient to just consider it a constant K. The procedure in finding it

is similar to that of finding a transfer function, none the less.

}.Ana1ysjs of Fig";1-13 is a matter of réaiizing that a negative feedback path is
available since vgyt is fed back to v. by a simple voltage divider:

V.= Vout R iR (1-56)
but since v. = V4 = vinp 1t follows that:

Vout/Vip = K =1+ Rpe/R | (1-57)

The ¢ircuit is similar to the follower in that it has infinite input impedance and
zero output impedance, but this one has a gain of K that is given by 1 plus the
ratio of resistors as shown. The circuit is a finite-gain non-inverting voltage
amplifier and is aiso sometimes called a VCVS (for Voltage-Controlled Voltage Source.)

Fig. 1-14 Inverting
Finite-Gain
Vo1tage Amplifier

Fig. 1-14 shows a third circuit, the inverting amplifier. Again we want to find
the relationship between vyt and vip, starting with the principle that a negative
feedback path is avaiiable and that v. = v4. However in this case v4 is grounded so
V. = v4 = 0, and in such a case, the v. terminal is often called a "virtual ground."
This means that the (-) input is held at ground potential. However, no current
actually flows to ground at v_. In fact, since for the ideal op-amp, no current
flows into the (-) input at all, only one current I flows in through Rj and out
through Rnf as shown. This suggests an analysis based on this single current. Since
v. = 0, it is clear that:

s e _I=_ V'in-/R e e e R eme e e e e e e s ek ._._( 1._58) e e e e e e e
and this current flowing out through Rnf, from positive to negative, means that:
- - Rnf
| Vout = 0 7 I'Rnf = -vy—=3v (1-59)
S0 we have: |

Thus Fig. 1-14 has an inverting gain equal to the ratio of resistors shown. In
_contrast to the follower and the non-inverter however, the input impedance here is
not infinite, but rather equal to Rij, as can be seen from equation (1-58) since the
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input impedance would be defined as the ratio of the input voTtagé to the input
current. The difference here is that we are not able to take advantage of a
"hare" op-amp input terminal.

. Above we mentioned the need for the correct point of view with regard to the
way negative feedback works, and the analysis of Fig. 1-14, while correct, may
imply the wrong point of view in that the current I seems to be a cause rather than
an effect. An alternative analysis may serve to provide a different point of view
and also to iflustrate that there are usually several valid analysis procedures.

We assume that vip is from a zero impedance source, and voyt 15 also a zero
impedance source since it is the output of our op-amp. Accordingly we have two
resistors in series with the junction "floating” according to (see problems at end
of chapter):

v = Vout R *V

- Ry * Rnf

Now, v. must be equal to zero, so equation (1-61) results in equation (1-60). Here
we more clearly see that vgout takes on whatever values is necessary so that v-
becomes zero.

in'R

nf | (1-61)

. A couple of additional circuits are shown in Fig. 1-15, an inverting summer, and
and a finite~-gain differential amplifier. It is Teft to the reader to apply the
idea that v_ = v+ and to show for the inverting summer that:

Ry Ry
v = -V, =— -V, 5= (1-62)
out 1 Rnf 2 R :
and for the differential amplifier that:
Vout = V2 - Vq | (1-63)

The above illustrate common and important op-amp circuits, but there are many
others, all of which can be solved in the ideal case by starting with v. = v4.
T TtTis important to understand these circuits, as active filters may uSe them — —
directly, or they may be variations on them. For example, none of the resuits
requires that what we have shown as resistors can not be some other impedance.
We could substitute for a resistor the impedance (1/sC) of a capacitor C if we
have a capacitor there instead. Or, the impedance might be the combined impedance
of two or more components in a particular branch. The problems at the end of the
chapter, and the methods and circuits in later chapters will expand on these ideas.
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2-1 INTRODUCTION

Nearly all filters of practical interest will have most or all their poles in
complex conjugate positions in the s-plane, as will be seen in Chapter 3. For
stabijlity, these poles will need to have a negative real part, and because we are
working with real-valued components, complex poles must be in conjugate pairs.*

In order to realize compiex conjugate poles with only passive elements, it is necessary
to employ both capacitors and inductors. Inductors in the RF range of frequencies are
often practical, but at audio frequencies and below, they are usually too large and

too heavy. Consequently, it is the goal of active filtering to achieve complex
conjugate pole pairs while using only resistors, capacitors, and some active device
(usually an operational amplifier). In this chapter, we will see two examples where

- op-amps are used: the Sallen-Key low-pass, and the Multiple-Feedback Infinite-Gain
bandpass. First however, we will look at a passive RLC series circuit, where the
conjugate poles are cbtained with an inductor.

2-2 THE R-L-C SERIES CIRCUIT

Fig. 2-1 shows the classis R-L-C series circuit in three possible arrangements
of the component order which permits us to conveniently output either_the voltage
_across the capacitor (a), the resistor (b), or the inductor (c}. It is easy to see
that the ordering makes no difference at the input, and a current:

I; = vi/(R +sL + 1/sC) (2-1)

flows in all three cases. Further, this same current flows through all three of
the components, and thus generates the output voltage:

(2-2)

where 7o is the impedance in the output leg for the particular case. ACQO(ding1y
we can write down the transfer function for case (a) using the voltage-divider

Fig. 2-1 Three Arrangements of the R-L-C Series Circuit

R L L C
PR VYN YWHIEN ) o ) QEERSS S a..___rWW\-—i
V_ . vV Vi v Vo=
ai ao bi bo ci
4 \=Ec L \ §°
C{a) (b) (c)

*Accordjng]y, if a pole occurs at o+jw in the s-plane, ¢ must be negative for
- “stab111?y,“and“a“second*poTe”must"octur'at'GAJw;“'Tt"is our notational — —
convention to write o with the knowledge that usually ¢ is a negative number,
and not to write -o with the knowledge that o is usually positive. Note that
although a complex conjugate pole pair results in a second-order factor for
the denominator of T(s), the poles are first-order. In order to have a
second-order pole, two poles must occur in the exact same position in the
s-plane.  The order of T(s) is equal to the number of poles. For example,
a fifth-order system might have poles at o;+jwy, 0s+jws, 01-Jw;s0s-jws, and
at oj. Note.that odd ordered transfer functions must have at least one real
-pole.. Multiple order poles occur in the following exampies. A fourth order
T(s) could have two poles at o+jw, and two at o-jw. A fifth order-T(s) could
have poles at o+jw, o-jw, and a third-order poie at o,. ' .
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concept as:

1/5C 1/1.C e
Tals) = voo/Vay = R¥SL+1/5C © 2, K 1 (2-3)
s +ts+ t 1w
| L " LIC
and similarly for cases (b) and (c):
s =
Tols) = Vo Vi = 2 R T L | (2-4)
L R
. 52
Ts) = v /v = TR T (2-5)
L LC

We note immediately that all three transfer functions have the same denominator
s + s(R/L) + 1/LC, with corresponding poles:

=:..B..+....]_B_2__“_-_q;. -
Sp1app T 3L T 2 J[;Z 0c (2-6)
which has non-zero imaginary part if 4/LC>R?*/L?, thus if R<2/L/C. Thus we have
imaginary poles if R is small enough.*

Fig. 2-2 shows how the poles occur in the s-plane as a function of R. Complex
poles occur for values of R between 0 and 2/L/C. We can reverse the terms in the
square root of equation (2-6), thereby bringing a Jj outside as:

- R+ 3 /4 _R

p1.p2 - 2L T TJICT I (2-7)
[Note that equations (2-6) and (2-7) are identical. Equation (2-7) just shows the
imaginary part better, and is more suitable for our purposes here. In the event that
RZ/[* 1is actually larger than 4/LC, equation (2-7) would give real poles once again.]
The magnitude of the comptex poles is, using equation (2-7):

R=0 Ju
1"3\\—— ' '
polese—r3//LC Fig. 2-2 Pole Positions of
R-L-C Circuit for
Various Values of R

0,1, or 2 _
e e ZRYOS- R e e e e

 *In fact, this relates to the classical study of the R-L-C series circuit which -

_ 'is known to have a higher "Q" (“"quality factor"), or higher selectivity if R is -
kept small. Later we will see that a quantative notion of "Q" here yields
Q.= {1/R)/L/C in which case complex poles occur for Q>1/2. -
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Isp1| [szl 1/VIC (2-8)
so complex poles lie on a circle of radius 1//LC. When R=0, the poles are pure
imaginary at %j/vLC, corresponding to an oscillator (an undamped LC circuit - which
is not possible in practice since the inductor has at least some resistance). The
poles move around the circle, backward into the left half plane, as R increases from
zero. The poles come together forming a second-order real pole at -1/v/LC when R
reaches 2y/L/C. _If R is larger than this value, the poles remain real, splitting .
from their -1/vLC position with one moving toward s=0 while the other moves toward
s=» as R goes to «». We note that the poles can not move into the right half plane,
since this would require a negative value of R (or negative values of other
components}. This absolute stability of a network is characteristic of passive

networks, but as we shall see, not of active networks in all cases.

In addition to understanding that the R-L-C circuit is capable of producing
complex poles, we see here that different transfer functions are also possible
[equations (2-3, 2-4, and 2-5)] which differ essentially in the power of s that
occurs in the numerator. This corresponds to there being no zeros, one zero, or
a second-order zero at s=0 in the s-plane (Fig. 2-2). We can consider what this
means for the frequency response function by restricting s to jw, and then look
at the 1imits of |[T(s)| for different values of w. Accordingly we see for Ta(s)
that we have a low-pass function, starting at 1 for w=0, and rolling off as 1/w®
as w gets large. Tp{s) is a bandpass function which starts at zero for w=0,
rolls up as w, and finally rolls off as 1/w at high frequencies. Tc(s) is a
high-pass function, starting at zero for w=0, rolling up as w*, and becoming flat
at a value of 1 for high freguencies. These responses and 1imits can also be
understood in terms of the way in which the individual R, L, and C components
behave at different frequencies. In addition, while we have iooked at Timits of
Tow and high frequency, the behavior in the middie depends greatly on where the
poles are. As the poles move closer and closer to the jw-axis, the responses of
all three transfer functions tend to peak in the center, corresponding to our idea
that the frequency response is inversely proportional to the distances to the poles.
Selecting the correct pole positions for a desired response is a major part of what
we need to consider in Chapter 3. Fig. 2-3 shows sketches of the three frequency
response functions discussed above, for the case where the poles are approximately

as in Fig. 2-2.

ma(s)l Low-Pass "Tb(s)l Bandpaés _ [TC(S)IHigh-Pass
1
1/w? | w?
w 1/w
W W

the R-L-C Series Circuit.

The R-L-C circuit has two poles and behaves like other second-order systems,
including mechanical systems such as the simple spring-mass arrangement of Fig. 2-4.
‘Although we do not show it, we know that frictional forces will always be present to
provide mechanical damping (the resistive component) in a practical case. We can
become interested in mechanical systems in direct analogy with electrical ones.

Here however we want to point out that we can take advantage of the good mechanicai
intuition that most of us already have. Probably we have played with a system
similar to that of Fig. 2-4 (possibly it was something more like a soda can suspended
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Fig. 2-4 A Simple Spring-Mass
L Second-0Qrder System
high-pass (Where is Bandpass?)

lTow-pass

-~ ra rdmws 7 / AR e /

below a string of rubber bands!). Moreover, we can ask certain "What happens if . . 7"
questions, and we can usually think it out based on experience and intuition. Very

Tikely we could not intuitively have answered the corresponding electrical case.

The main point in Tooking at this mechanical analog is to understand the role
played by resonance in a second-order system. In order to consider this properly,
we should identify Tow-pass, bandpass, and high-pass modes in the mechanical system,
if they are present. It is clear that as the finger moves up and down, that the
spring and mass respond.

Let's consider low frequencies first. As the finger moves slowly, the mass
moves up and down with it, with the spring remaining pretty much at its original
(stationary) length. Now if the hand mover rapidly, we recognize that the intertia
of the mass will cause it to stand relatively still while the spring stretches and
contracts to accommodate the finger‘'s motion. Thus we see that the motion of the
mass, relative to a fixed reference, is Tow-pass in nature. Correspondingly, the
elongation of the spring (about its stationary elongation) is high-pass. Is there
a bandpass function here? What is it that happens special at the middle range of
frequencies?

Intuitively or from experience we know that the system can "go crazy" over some
range of middle frequencies. We know that there is a range of middle frequencies for
which we will start to fear for the safety of our teeth or for a nearby window,
because the mass has a good deal of something potentially destructive. What that
something is that there is an alarming amount of is energy - the system is trading
off between potential (spring elongation) and kinetic (mass velocity) energy, and
the total is large. It is probably most convenient to think however in terms of
the peak velocity, the peaks in kinetic energy, as representing the bandpass function.
We recognize this peak region of response as being rescnance - the region where the
forcing frequency is close to the natural frequency of the system - and we tend to
associate resonance with bandpass filters of good selectivity.

Having set up the discussion, we specifically want to point out that resonance,
while associated with bandpass, also occurs in low-pass and high-pass responses, as
suggested in Fig. 2-3. Note that for low-pass at low frequencies, the amplitude of
the motion of the mass is the same as that of.the finger - essentially what we call
unity gain. However, unless the spring is very stiff we also find that there is

_a.region where_ the mass_starts moving_through a somewhat greater amplitude range . _ _ _ _ _

than the driving finger. Likewise in the high-pass case, at high frequency the mass
is standing.still with the spring elongation accommedating the finger's motion. (again
unity gain). For some lower frequencies however, we do find the elongation exceeding
the finger's motion as the mass moves a significant amount (and with the proper phase).
How we view peaking in any response should be regarded in the way -resonance’ manifests
itself. . If the system is highly resonant (high "Q" or poles close to imaginary axis),
peaking will occur in low-pass, bandpass, and high-pass responses. In fact, all three
responses may look very much alike in the middle range.

In addition to considering resonance, we have suggested above that some thoughts
with regard to mechanical analogs are useful to take advantage of our mechanical
intuition. For example, if we are asked what the impulse response of a high-pass
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filter is, we might not have much of an idea from an electrical perspective, and
would have to work out the mathematics. However, we do know what happens if we
apply an impulse to the mechanical system. If we simply move the finger quickly
and restore it quickly to its original position, what does the system do? It is
teft to the reader to think this out. Once you know what the system does, we can
then see how this looks in the response modes we have identified.

2-3 SALLEN-KEY: AN ACTIVE APPROACH TO COMPLEX POLES

_ One notion of a way to achieve a higher order low-pass network might be to
cascade two first-order low-pass filters of the type examined in Chapter 1, in-an
arrangement as suggested by Fig. 2-5. However, it is not difficult to show (see
problems at end of chapter) that complex conjugate poles are not possible here, but
only two real poles are achieved for any values of the components. '

® NAAAM BV o -
V'in RT R2 Vout Fig. 2-5
Cascade of Two
C C Passive Low-Pass
-:Lj L tl: 2 Sections

By a basically unmotivated step, let's consider what happens if we add a voltage
amplifier of gain K to the network cutput, and feed the amplified output back to a
previously grounded resistor, as shown in Fig. 2-6a. The amplifier K is usually
formed from a non-inverting op-amp stage (Fig. 2-6¢) which was studied in Chapter 1.

I
i , .
C] ﬁ C'I VOUt
Vin v! y" \. " v ¢
K 1 ' out/
i Re L Yout — |
(a) L Co sallen-key (b)  Current Summing
= Low-Pass
Fig. 2-6 .
Sallen-Key e }ﬂ-fi-
Low-Pass E;::> == K T*iRnf/R_

(c)

Realization of Amplifier K

Our initial goal is to determine the transfer function of the network using
network analysis., We know Vin, but we do not know Vg4, or the two intermediate
—voltages-V'-or-¥": -We-might Took-at-this-as three unknowns and ook~ for- three — ——
equations. However, it is often possible and more productive to just work your way
through the network, one item at a time. Useful and practical networks usually have
an uncomplicated structure that makes this the best approach. Here we will work
item by item as an example. :

The first thing to do is to note that VYgyut = K-V", and since we do not want
V" for T(s), we can replace it with Voyt/K. This is of course one of the three
equations we would have needed in a formal approach. The idea here is that we get
rid of the equation by just considering this a change of notation for the node V" -
something too obvious to make a big deal about.

The second thing we do is to relate V' to Vour/K (formerly called V"}. If we
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Took carefully, we recognize our familiar first-order Tow-pass here, and can just
write: _

v
Out = VI (2_9)
K 1+ sCZR2

One might initially object to applying the first-order low-pass in this case since V' is
not a zero-impedance source as it was considered to be in Chapter_1" However, the
analysis depends only on the voltage divider ratio, and it works just as well here.*

We have now related Voyut 21l the way back to V', which is our remaining unknown.
We obtain the final relationship we need by summing currents at the V' node:

' (. 1
Yin =V V- Vout + - Yoy /K (2-10)

RT _ 1/sC R2

in a manner illustrated in Fig. 2-6b. **
Solving equations (2-9) and (2-10), we arrive at the transfer function:
K/R{R,C,C
T(s) = 12712 (2-11)

2 [ (1K) , 1 1 ] 1
Ss™ + s + + + —
RoCo  Reby  RyGy RiRyC1Cy

‘Equation (2-11) has 5 variable parameters: Rj,Rp,C7,C2, and K. Yet we are concerned
mainly with setting a pair of complex poles in a desired position, which shou]d require
only two parameters (the real and imaginary parts). Thus we can choose three of the

* V' is Toaded by the Rp-Cp branch in the sense that if it were not there, V'
would surely be a different voltage, but it is the loaded version of V' that
we are relating to Vout/K here, not the unloaded one.

** Here what we are doing is essentially Kirchhoff's current law which says that
currents flowing into a node must sum to zero {conservation of current).
However rather than show all currents flowing into a node, it is often more
comfortable to have the sum of the currents into the node equal to the sim of
the currents out of the node, which is mathematically equivalent. There are
two advantages to the second approach. First, having all currents into a node
is counterintuitive, while having at least one current leaving seems to make
things more plausible. Second, if currents can be directioned mainly left to
right and top to bottom, there is less chance of confusion. Consider for exampie
the current through R2 in Fig. 2-6a. Clearly this current has a magnitude equal
to |V'-V"|/Rp. If we were summing currents to zero into nodes, than this current
would be (V'-V')/R2 at the V' node, and (V'-V"}/Rp at the V" node, opposite in
sign. On the other hand, if this current flows from left to right, then it is
(V'-V")/Ro and is subtracted from the V' node and added to the V" node, exactly

4~ _the way it looks. Because this. is more consistent with intuitive-understanding, - — —— -

there is less chance of setup errors. :

Another point with regard to current summing is that we do not sum currents at
a node which is a voltage source. Rather we sum currents at "“floating“ nodes
as an essential step in determining the voltage at those nodes. The voltage
at a node driven by a voltage source is determined by whatever controls the
voltage source. This node voltage is independent of whatever currents are
flowing to or from this node through impedances from other voltage sources.
The voltage source by definition can source or sink any current necessary to
conserve total current. For example, in Fig. 2-6a, Vout is a voltage source
node. It is controlled by the voltage V", but not at all by the current

through C7.
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five paremeters at our convenience. Recognizing that in many cases it is

difficult to obtain a good variety of capacitance values, we will choose C1=Co=C,
where C is a convenient value of capacitance. Thus we have used two of our three
free choices. Our third choice will be utilized by setting R1=Rp. We will write
this as R1=Rp=R, as we did for the capacitances, but there is a difference here.

In specifying R, we mean only to say that the common value of Ry and Ro is being

. called R. We do not get to choose R freely, but this is usually not a problem.

With these choices, T(s) becomes:
K822
. K/
T(s) = —p—s /REC — (2-12)
S +—R-C*(f3-K) + 1/R°C

which has poles at:

_ 1T =(3-K) 1 e .

These poles are complex when {3-K)% 4, and occur at:
17 -3-K) 4 J } -
o105 RC[ I =94 (2-14)

which 1ie on a circle of radius 1/RC. It is easy to show (see problems at end of
chapter) that stable complex poles occur for values of K between +1 and +3. We now

have complex poles without inductors.

Fig. 2-7 corresponds to Fig. 2-2 for the R-L-C circuit, except here it is
possible for the poles to move to the right half-plane, and stability is not
automatic. Equation (2-12) represents a low-pass filter, and note that we can
control the angle of the poles by using different values of K. In Chapter 3 we
will find out how to select K and the RC time constant for achieving desired
frequency response curves. The circuit of Fig. 2-6a is one of several useful
active filter networks described by Sallen and Key in 1955 [1] and is known as the
Sallen-Key low-pass, or as a positive gain VCVS realization.

Jw
K=3 . ,
ay ™| J/RC Fig. 2-7 Pole Positions as Function -
K=1.586 K>3 ' of K for Sallen-Key Low-Pass

P, Stable complex poles occur for
K between +1 and +3. For K greater .
than 3, the system is unstable.
For K less than 1, the system is.
stable and poles are real.

2-4 MULTIPLE-FEEDBACK INFINITE-GAIN: AN OP-AMP CIRCUIT FOR BANDPASS

This chapter is an introduction to active filtering so we feel compelled to
give more than one example. The second example is a Multiple-Feedback Infinite-
Gain (MFIG) bandpass filter, which we choose for several reasons. First, it shows
an analysis using the op-amp directly (the infinite gain part of the name) and not
used for a finite gain amplifier as in Sallen-Key. Secondly, it is a bandpass rather
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than another low-pass example. Thirdly, the MFIG bandpass is the basis for numerous
other filters which will be described in Chapter 5.

This MFIG structure and the Sallen-Key structure are are examples of what we call
"configurations.” The idea is that we may have in mind a basic type of filter (for
example, low-pass or bandpass or high-pass) and may even have decided on an exact
"characteristic" for it [characteristics are the subject of Chapter 3]. We then need
to choose a configuration that realizes the function we need. Sallen-Key is one
configuration, for which we have looked at low-pass, and MFIG is another configuration
for which we are about to look at bandpass. However, there are Sallen-Key bandpass
filters and MFIG low-pass, and so on. We will see many more examples in later chapters.

Fig. 2-8a shows the configuration for the MFIG -bandpass. A1l active filter analysis
procedures should begin by considering what sort of active device is being used.* Here
it is the op-amp itself, and for ideal analysis, we begin with V_ = V4 = 0. The second
step in the analysis should be to try to recognize something familiar as a sub-network
within the overall network. In this case, it is the inverting structure that is
detailed in Fig. 2-8b.  This we will treat by generalizing the inverting amplifier of
Fig. 1-14 of Chapter 1. We can write the transfer function T'(s) = Vout(s)/V'(s) as:

T'(s) = - = -SCRp (2-15)

Because it multiplies by s, the circuit of Fig. 2-8b is called a differentiator. It is
well to become familiar with this and a fair number of other such simple sub=networks -

as they will greatly simplify and speed up analysis.

Fig. 2-8 The Multiple-Feedback Infinite-Gain Bandpass

Havigg.now related V' to Vout by equation (2-15), we have only one of V' or Vyyut
as a gema1n1ng unknown. We thus come down to a third step of summing currents at the
V' node: :

Vin - V' | v -Vout , V' -0 (2-16)
Ry 1/sC 1/sC
Solving equations (2-15) and (2-16) we arrive at the transfer function:
-s/R]C _
T(s) = 52 N 2 7 : (2-17)

. which is c1ear]y & bandpass response since there is an s in the numerator.

-

. * Here we specifically want the reader to understand the analysis steps that are
- typical. First we look at and understand the active element that is being used.
Second1y, we look for some familiar sub-network within the network. The third
 step:is almost always to sum currents at an unknown node {usuaily the only
“remaining unknown node). After following this example, the reader may find it
useful to go back and identify the same steps in the Sallen-Key low-pass.
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As with the R-L-C circuit and the Sallen-Key, equation (2-17) is capable of
having complex conjugate poles. The poles are complex as iong as R2>Rj7 and are
at:

21__+--“‘:“'“] -
Sop2 " [ 145 7R (2-18)

which lie on a circle of radius 1//RjR2C. Note that these poles are always stable
since the real part is always negative.

In Chapter 3 we shall study the general second-order section, but we want to
introduce some ideas here by way of commenting on some common findings from this
chapter. First we observe that we have put transfer functions in a form where the
leading term in the denominator is s2 [see equations (2-3), (2-12), and {(2-17)]. In
each case, we found complex poles on a circle, and if we check, we find that the
radius of this circle was always the square root of the constant term (last term) in
the donominator. Accordingly, if we denote the pole radius as wp, then we may want
to write the last term as wy’.

Pole positions would be exactly known if we knew the angle of the poles 1in
addition to knowing the radius of the pole pair. Equivalently we need to know any
two of the real part, the imaginary part, or the magnitude (radius) of the poles.
For several reasons we will be Tooking at the real part of the poles and will be
able to relate this to a notion of "damping."

First, the real part is immediately available as -1/2 times the coefficient of
the s term in the denominator (using the quadratic formula and assuming the leading
term in the dendminator as s2). Secondly, the real part tells us about the stability.
Thirdly, the real part leads us to a notion of damping that we will find useful.

[In fact, usually we will find the exact values for resistors and capacitors by
specifying the pole radius and the damping of the poles, and then using appropriate
“design equations"]. Note that the real part in itself is not totally significant -
we must relate it to the pole radius. For example, a pole with real part equal to
-100 Hz is "close" to the jw-axis if the radius is 10,000 Hz, but is not "close"

if the radius is 110 Hz. By the same token, a real part of -100 Hz relative to

a radius of 1000 Hz has the same fundamental placement in the s-plane as one with
-500 Hz real part and 5000 Hz radius.

It is convenient to think in terms of a standard form for the denominator of a
second-order section as:
D(s) = §% + Dugs + wg? T ()

where D is a term we will call damping, which has complex poles at:

sp1spg = -Dug/2 *{Jwo/2)VE& - D¥ | (2-20)

The real part is op = -Dwp/2, so the damping is:

Notice that D, unlike the real part op itself, is "normalized" to the radius wg-
A1l poles on the same radius out from s=0 in the s-plane have the same damping.

The parameters of pole radius wp and of damping D permit us a link between the
transfer function of a configuration on the one hand, and the set of poles and zeros
we want to realize on the other hand. The connection is completed when we are able
to write down a set of "design equations." These design equations aliow us to
compute actual resistor and capacitor values for the response we need in a given
appiication.

Let's obtain the design equations for the transfer function of the MFIG bandpass
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of equation (2-17). We need to have the denominator of equation (2-17} in the
standard form of equation (2-19)}, from which we see that: :

wo = 1/C/RRy (2-22)
It_must also be true that the middle terms agree, or:

Dug = 2/R,C A (2-23)
so that:

D = 2/wpRoC = 2/R7/Ry (2-24)

If we hadwg and D specified for our application, we could choose a conveneint value
of C and then solve equations (2-22) and (2-24) for Ry and Ry, completing the design.
Equations (2-22) and (2-24) are themselves considered design equations, or it may be
useful to soive them for Ry and Rp in terms of D and wy if a more "cookbook" approach
is desired.

Since this particular network is bandpass, it is often the case that the "Q" of
the bandpass rather than the damping D is used. The velationship is simple:

Q= 1/D = (1/2)/Rg/Ry (2-25)
In Chapter 3 we will show that for the bandpass, it is also true that:

Q= wo/lwy - mk) (2-26)
where wy and wy are. the upper and Tower -3db frequencies - the frequencies on each
side of the bandpass response that are 3db down from the peak. Thus we have the usual
(classic) definition of Q as the center frequency divided by the 3db bandwidth. The
characterization of the bandpass response will be covered in more detail in Chapter 3.
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ENDNOTES :

In quite a few places, the text refers to a "problem at the end of the
chapter.” Well, they are not here! These were never typed up.
However, almost without exception the intended problems are highly
evident from the text itself. We have left these references in because
awkward blank areas would have resulted by whiting them out. More to
the point, they are good indicators of places where the reader is
expected to take an active role in "fleshing out" the presentation.

One reader who xecently looked at this manuscript commented that I
should not have said there is no zero in the case of the first-order
low-pass (ASP 1-10). Rather, says the reader, there is a zero at

. Anfinity. .. .This is a valid argument. that can be. made, which takes. some. ..
explaining. We will try to fit this into one of the later issues.

[1] sallen, R.P., and E.L. Key, "A practical method of designing
R.C. active filters," I.R.E. Transactions on Circuit Theory,
March 1955.
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