
•f- 1

A HEN ADAPTIUE FILTER SIMULATOR

-by Bernie Hutchins

INTRODUCTION

In a previous issue (B. Hutchins, "An Introduction to Adaptive
Filters of Several Types", Electro-notes. Vol. 16, No. 170, Feb. 1988)
we discussed the subject of adaptive filters in some detail. There,
adaptive filter ideas were examined using a simulator. Simulators of
this type are quite easy to write. The simulator used in the
earlier report (having been first developed about 1982) was a bit
awkward graphically, however. In fact, what we did was print the
output samples by plotting the letter O on paper cycling through the
printer. After a good number of photocopy reductions, and
cut-and-paste, we were able to present the examples we wanted to
show.

The new simulator presented here is probably more convenient,
since it runs on BASIC, and presents a display of all four signals of
interest (d, e, x, and y) on a single CGA screen. This means that in
many (if not most) cases we can demonstrate the basic ideas of an
adaptive filter with just a single setup and single screen display.

REVIEW OF ADAPTIVE FILTER BASICS

Recall that the adaptive filter (Fig. 1) has in general two
inputs and two outputs. The most familiar input is the so-called
"desired" signal d(n), while the most familiar output is the
so-called "error" signal e(n). By "most familiar" we mean that these
are the two signals out of the four that relate most closely to our
usual notions of a one-input, one-output filter. Unfortunately, this
means that the terminology "desired" and "error" are apparent
misnomers. If the input signal d(n) is really "desired", then why
are we taking steps to filter it into some other signal. If the
output e(n) is an "error", why is it usually the signal we want to
use. However, don't let the terminology mislead you.

Generally the adaptive filter requires a second input which is
usually called a "reference" signal, here denoted by x(n). The
reference signal is chosen so that it has one or more components that
are related (i.e., correlated with) one or more components of the
desired signal. We intend to use this reference to help us either
cancel or enhance components in the desired (input) signal, before
they are output as e(n) or as y(n), respectively.

The second output y(n) is often thought to be internal to the
filter, and not a true output. It can of course be a second output,
and it is often thought of as an FIR-filtered version of x(n). This
view is approximately correct in some cases. However, it is not in

EN#178 (35)

Reference
x(n) x(n-l) x(n-2) x(n-N)

W o (n)

,

W i C n) WB(

y(n)

Desired
d(n)»

Fig. 1 A Basic adaptive Filter

general a FIR-filtered version of x(n), because the "tap weights" of
the FIR filter are time-varying, at least initially. In fact, y(n)
is given by (see Fig. 1 as well):

N
y(n) = £ Wj(n)x(n-j)

3=0
(1)

We can conveniently write x(n-j) as Xj(n) so that Xj(n) is the sample
at the 3-th tap at time index n, while Wj(n) is the tap weight at the
3-th tap at time index n. This means that equation (1) can be
rewritten as:

N
y(n) ' £

3=0
(2)

The tap weights Wj(n) are determined for each time n by some
calculation involving the signals and parameters. There are a good
number of methods for finding Wj(n). For example, the so-called "LMS
algorithm" gives the tap weights as:

fcMn+1) 2u Xj(n)e(n) (3)

In practice, p. is usually taken to be a very small number
(perhaps 0.01 or 0.001), so in general, Wj(n+l) is little changed
from Wj(n) during any single iteration. In order that Wj(n) changes
over a significant range, over a good number of iterations of
equation (3), it is necessary that xj(n) and e(n) be correlated over
this set of iterations. That is, the small contributions to updating
Wj(n) will tend to cancel unless Xj(n) and e(n) are of the same sign
over the set of iterations.

EN#178 (36)

FEATURES OF THE SIMULATOR

The code for the simulator is given at the end of this report.
It is almost short enough to just type in, although a diskette is
available if you wish one.

The program is run, and you are offered a three item menu, the
third of which is a return to DOS. To proceed, you will be asked to
select either a N=normal setup, or a S=special setup. The special
setup allows the user to initialize tap weights, and/or to delay the
screen display. If you select S, or if you just choose N, you will
be first asked to enter the number of taps. Something like 10 is a
good start if you have no better choice yet. You will then be asked
to specify the component parts of the reference signal, and then the
component parts of the desired signal. For each of the two signals
you can choose two sinusoidal components by specifying their
amplitude, frequency, and phase. Amplitudes should be 1.0 or less,
and frequencies are specified relative to a sampling frequency of 1,
so all frequencies will be 0.5 or less. Phase is given in degrees.
If you do not need either (or both) sinusoidal components, enter a
amplitude of zero. After specifying (or bypassing) the two
sinusoidal components, you may specify a random component (noise)
with an amplitude of up to about 1.0. Finally, a dc constant
component may be chosen (amplitude up to 1.0).

The last entry for the reference is what is called a delay. If
you choose any value for the delay (positive) other than 0, your
choices above for the reference will be bypassed, and the reference
signal will be the desired signal delayed by the number of iterations
that you have specified for a delay. This is of course the way we
implement a so-called "decorrelating delay" from which a reference
signal is effectively derived from the desired signal (recovering a
one-input filter). Of course, if you were intending to use the
decorrelating delay, you would probably have just entered zeros (or
just pressed enter) for the choices above the delay.

After entering both signals, you will need to enter mu, the
convergence factor. A good choice is something like 0.01 or 0.001
for a starting test. Following the entry of mu, if you have chosen
the special setup, you will be asked to decide if you want to
initialize the tap weights (otherwise they will be set to 0). This
would normally be used only for a special test - for example, to
show that you can get different, but functionally equivalent sets of
tap weights for different initial values.

The second special setup test is to chose a delay for the screen
display. If you choose 0, there will be no delay. [If you choose
N=no for the tap weight initialization, and 0 for the screen delay,
you get the equivalent of a N=normal setup, done the hard way.] The
purpose of the screen delay is as follows. Normally, you will get a
plot of the results for iterations from n=l to n=240. This uses up
most of the screen. Yet, 240 iterations may not be enough to show a
complete convergence to a solution. In such cases, we might want to
wait until later iterations before starting the display. For
example, if you choose a screen delay of 500, you will get a blank

EN#178 (37)

screen for a period of time, followed by a plot of the results of
iterations from 501 to 740.

If during the plotting you see that you have made a setup
mistake, you do not have to finish the plot, but can just press
e=exit. Following the completion of the plot, you will have the
option of running a new test by pressing c=continue, or of looking at
the tap weights with w=weights. Of course, and hard copies of the
results will depend on your own printer setup, but many printers will
give you the printout with just 2nd PrtSc.

EXAMPLES

A classic example of adaptive filtering can be obtained by
setting x(n) equal to some sinusoidal, while d(n) contains this same
sinusoidal frequency (amplitude and phase may be different) plus some
second sinusoidal (or possibly a noise representing an information
bearing signal). Try x=0.6-sin(2u-0.05-n) and d=0.6-sin(2n-0.02'n) +
0.6-sin(2u-0.05-n) with a 10-tap filter and u = 0.02. Fig. 2 shows
the results. Note that the component that is correlated between d(n)
and x(n), the 0.05 frequency, is cancelled from e(n), but enhanced at
y(n). This shows the general notion that correlated components will
appear at y(n) while uncorrelated components will appear at e(n). We
often think of this as an interference cancellation procedure. That

0,020

'if

Screen
Starts
flt

E=exit

C:ney
run

H:
weights

Fig. 2

EN#178 (3 8)

is, there is a signal with frequency 0.05 that is interfering with
(mixed with) the one at frequency 0.02. We obtain a reference to the
0.05 frequency, and apply this to x(n). It is then the purpose of
the adaptive linear combiner (the FIR filter structure) to find the
correct amplitude and phase to cancel the 0.05 component in d(n),
producing e(n).

This idea of y(n) representing correlated components while e(n)
corresponds to uncorrelated components can be demonstrated by two
extreme examples. Fig. 3 shows a case where both x(n) and d(n) are
composed of a single sinusoidal of frequency 0.05. We have chosen
these to be 180° out of phase for a more general example. Note that
the two signals x(n) and d(n) are perfectly correlated if the correct
time shift is achieved. Fig. 3 shows that e(n) (uncorrelated) goes
to 0 while y(n) (correlated) becomes d(n). Thus y(n) is the
component of d(n) that is correlated with x(n).

The second extreme example is shown by Fig. 4. Here x(n) and
d(n) are both random sources, which are uncorrelated. For the most
part, y(n) (correlated) remains very small, while e(n) (uncorrelated)
closely resembles d(n). The small amount of "accidental" correlation
between two otherwise random signals is expected. However, this also
tells us (as we suspect) that any old random noise x(n) is not a
satisfactory reference signal to cancel random noise at d(n). The
noises would have to be correlated.

I ~"iiiii>'' '

laps

Screen
Starts

At

E=exit

C=new
run

weights

Fig. 3

EN#178 (3 9)

I

J

o
-*

Hu
0,i

la:

y .411 1 " Screen
Starts
At

E:exit

fcnew
run

weight;

Fig. 6

Fig. 5 is another useful example illustrating the degree of
correlation detected. Here x(n) is of frequency 0.05 while d(n) is
of frequency 0.02. These signals are basically uncorrelated over
long periods of time, but there are small amounts of correlation
detected in y(n).

Fig. 6 is another interesting case where we have x(n) set to a
constant, while d(n) is of frequency 0.05. If we rely on linear
time-invariant filter theory, the output y(n) of the "FIR filter"
which has input x(n) could be nothing other than a constant (after
any transients, which would be of finite duration in this case). Yet
we find an output that is sunusoidal, of frequency 0.05. This is due
to the time varying nature of the tap weights. Here, the error e(n)
is clearly not zero, but the taps continually try to reduce the
error. Another way to look at it is that the taps are trying to
convert 0 frequency to a frequency of 0.05.

A related example (not illustrated) can be found by making x(n)
a frequency of 0.04 for example, and d(n) a frequency of 0.05. The
tap weights will shift in time, with a pattern moving from right to
left, trying to convert the 0.04 frequency to a 0.05 frequency in a
manner that reminds us of a Doppler shift.

Fig. 7 shows an example of great importance. Here there is no
established x(n), but rather x(n) is a delayed (by 50 iterations)
version of d(n), as can be easily seen. The signal d(n) is composed
of a sinusoidal of frequency 0.05 plus an equal amplitude of noise.
What we see is first of all a separation of signals. The signal y(n)

EN#178 (41)

Taps
H

Screen
Starts

At

E=exit

C=new
run

Ifc
weights

Fig. 7

takes on the sinusoidal component, while e(n) takes on the random
component. Thus we look at this as a signal separation example. It
is common (and sometimes misleading) to look at this type of example
from an application point of view. In one application, d(n) is a
noisy sinusoidal waveform to be cleaned up (i.e., y(n) is the
output). In another example, d(n) is an information bearing signal
(speech as represented by a random sequence for example) that has
been corrupted by a sinusoidal (such as the pick-up of AC "hum") in
which case, e(n) is the cleaned output.

The example of Fig. 7 is of great importance because it is a one
input filter. We do not have to get a separate reference signal, and
in many cases, it is difficult to see how we could expect to have one
available. Here the delay between d(n) and x(n) is called a
"decorrelating delay". The sinusoidal component in d(n) is
correlated over a length exceeding the 50 delays, while the noise
component is not correlated over 50 delays. CIn fact, a delay of 1
would have worked for this illustration!] In this case, y(n)
represents the correlated components of d(n) while e(n) represents
the uncorrelated components of d(n). Note that because the
reference signal is not "pure", some noise appears in the y(n) output
while some of the sinusoidal shape seems to be still present in e(n).

There are many more interesting adaptive filter examples, but
here we are illustrating the simulator, and only making a few points
about adaptive filtering. Accordingly we will skip to two final
examples, shown in Fie. 8a and Fig. Bb. which will illustrate the use
of the screen delay feature. Here both the desired signal d(n) and

EN#178 (42)

• Hr "
Hu

k ,

Screen
Starts

At

E:exit

fcnew
run

H:
weights

Fig. 8a

lA,,,,,""', " "I. |

I- I

Fig. 8b

Screen
Starts
At

E:exit

C=neu
run

H:
weight;

EN#178 (4 3)

the reference signal are composed of frequencies 0.01 and 0.05 at
amplitudes 0.6. That is, they are identical, and we might well
expect a complete cancellation (similar to Fig. 3). However, we have
chosen a length of 20 taps and a u of 0.002. In consequence, it is
difficult to be certain how much cancellation will eventually result,
based on the first 240 iterations of Fig. 8a. This is where the
screen delay is useful. Fig. 8b shows the same setup after 5000
iterations. We note that e(n) is very small relative to d(n), but
has not become zero (at least, not yet).

THE PROGRAM CODE

10 REM save "AD"
20 KEY OFF
30 TP=2*3.14159
40 DIM W(50),X(50),DS(100)
50 CLS:SS=0:SCREEN 0:IDS=0
60 FOR M=0 TO 50:X(M)=0:W(M)=0:DS(M)=0:NEXT
70 E=0:D=0:Y=0
80 COLOR 14
90 PRINT:PRINT "
100 PRINT:COLOR 15
110 PRINT:PRINT " N

S
D

OR Z$="D'
s'

120 Z$=INKEY$
130 IF Z$="n" OR Z$="N
140 IF Z$="d
150 IF Z$="S" OR Z$
160 COLOR 11
170 INPUT "
180 PRINT
190 INPUT "
200 INPUT "
210 INPUT "
220 INPUT "
230 INPUT "
240 INPUT "
250 INPUT "
260 INPUT "
270 INPUT "
280 PRINT
290 INPUT "
300 INPUT "
310 INPUT "
320 INPUT "
330 INPUT "
340 INPUT "
350 INPUT "

ADAPTIVE FILTER SIMULATOR"

Normal Setup
Special Setup
Return to DOS"

THEN 160
THEN SYSTEM
THEN SS=1:GOTO 160 ELSE 120

Number of Taps:

Reference Amp #1:
Reference Freq #1:
Reference Phase #1:
Reference Amp #2:
Reference Freq #2:
Reference Phase #2:
Reference Noise:
Reference DC:
Reference Delay:

360 INPUT "
370 PRINT
380 INPUT "
390 PRINT

Desired Amp fl:
Desired Freq #1:
Desired Phase #1:
Desired Amp #2:
Desired Freq #2:
Desired Phase #2:
Desired Noise:
Desired DC:

Mu:

,NT

",RA1
",RF1
",RP1
",RA2
",RF2
",RP2
",RN
",RDC
",RD

",DA1
",DF1
",DP1
",DA2
",DF2
",DP2
",DN
", DDC

",MU

EN#178 (44)

400 IF SS=1 THEN 410 ELSE 450
410 PRINT " Initialize Taps to Other Than 0? (Y,N) "
420 Z$=INKEY$
430 IF Z$="Y" OR Z$="y" THEN 970
440 IF Z$="N" OR Z$="n" THEN 445 ELSE 420
445 INPUT " Number of Iterations to Delay Screen Display ";IDS
450 REM MAIN ALGORITHM
451 CLS
460 SCREEN 2
470 LOCATE 4,2:PRINT "X"
480 LOCATE 4,72:PRINT USING "#.ttttt";MU
490 LOCATE 3,72:PRINT "Mu"
500 LOCATE 8,72:PRINT USING "f#tt";NT
510 LOCATE 7,72:PRINT "Taps"
511 LOCATE 11,72:PRINT "Screen"
512 LOCATE 12,72:PRINT "Starts"
513 LOCATE 13,72.-PRINT " At "
514 LOCATE 14,72:PRINT USING "t#tt";IDS
520 LOCATE 10, 2:PRINT "Y"
530 LOCATE 16,2:PRINT "D"
540 LOCATE 22,2:PRINT "E"
541 LOCATE 17,72:PRINT "E=exit"
550 FOR T=l TO 240+IDS
560 FOR M=NT TO 2 STEP -1
570 X(M)=X(M-1)
580 NEXT
590 IF RD=0 THEN 680
600 FOR M=100 TO 2 STEP -1
610 DS(M)=DS(M-1)
620 NEXT
630 DS(1)=D
640 IF RD>0 THEN 650 ELSE 680
650 IF T>RD THEN 660 ELSE 670
660 X(1)=DS(RD):GOTO 690
670 X(1)=0:GOTO 690
680 X(l) = RA1*SIN(TP*RF1*T + RP1/57.29578) + RA2*SIN(TP*RF2*T +

RP2/57.29578) + RN*(2*RND - 1) + RDC
690 Y=0
700 FOR M=NT TO 2 STEP -1
710 Y = Y+X(M)*W(M)
720 NEXT
730 D = DA1*SIN(TP*DF1*T + DPI/57.29578) + DA2*SIN(TP*DF2*T +

DP2/57.29578) + DN*(2*RND - 1) + DDC
740 E=D-Y
750 FOR M = NT TO 1 STEP -1
760 W(M)=W(M)+2*MU*X(M)*E
770 NEXT
775 IF T<IDS THEN 830
780 S=2*(T-IDS)+55
790 LINE (S,25)-(S,(25+20*X(l)))
800 LINE (S,75)-(S,(75+20*Y))
810 LINE (S,125)-(S,(125+20*0))
820 LINE (S,175)-(S,(175+20*E))
830 Z$=INKEY$:IF Z$="e" OR Z$="E" THEN 50
840 NEXT

EN#178 (45)

841 LOCATE 19,72:PRINT "C=new"
842 LOCATE 20,72:PRINT "run"
843 LOCATE 22,72:PRINT "W= "
844 LOCATE 23,72:PRINT "weights"
850 Z$=INKEY$
860 IF Z$="W" OR Z$="w" THEN 890
870 IF Z$="c" OR Z$="C" THEN 880 ELSE 850
880 SCREEN 0:GOTO 50
890 CLS
900 SPACE=INT(500/NT)
910 LINE (0,75)-(600,75)
920 FOR M=l TO NT
930 LINE (M*SPACE,75+100*W(M))-(M*SPACE,75)
940 NEXT
950 LOCATE 2,25:PRINT " TAP WEIGHTS"
960 GOTO 850
970 FOR M=l TO NT
980 PRINT " Tap No ";M;:INPUT W(M)
990 NEXT
1000 GOTO 450

Two Roads to Narrow-Band Chaos (Continued from Page 2)

non-linear to a significant degree, at least until this possibility
is ruled out. Further, and perhaps more importantly, there is the
interaction of the processing mechanism with the excitation mechanism
which may have a highly non-linear effect. For example, it might be
the case that a relatively small pressure variation in an air column,
due to a standing wave resonance, is enough to cause a reed to open
fully, and suddenly, from a closed position.

It is useful to make sure we do not get carried away with chaos
in musical-tone synthesis, or in musical composition, or in any
application, for that matter. That chaos occurs naturally in our
experiences is certain. It is also certain that many of us didn't
have a name for what we saw, until very recently, when we learned of
the science of chaos. Yet this does not mean that chaos is important
in all cases. A cup of water filled by a regular drip, a chaotic
drip, or a steady stream drinks exactly the same.

Ultimately we must address questions of practicality and
implementation. It is not enough that narrow-band chaos might be
useful for tone synthesis. Can we do it fast enough? Can we adjust
the pitch to needed values? Here is where driven systems are
particularly attractive. That is, can we use a driven chaotic
system much as we have used conventional animators of the past? In
such a case, the input signal itself determines the pitch.

ELECTRONOTES, Vol. 16, No. 178, July 1991
Published by B. Hutchins, 1 Pheasant Lane, Ithaca, NY 14850
Phone 607-273-8030

EN#178 (46)

