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We are always looking for material contributed by our readers. For one thing,
this makes our publishing efforts considerably easier, but perhaps more importantly,
it adds substantially to the variety of information we present. From time to time
various authors contribute more or less material for various understandable reasons.
However, recently I heard from a potential author who did not want to submit some
material because he felt that it was not up to our standards. Well, actually I was
not aware that we have any official standards, but I guess with so many issues in
print it is understandable that a reader could suppose that there is a certain type
of material that we cover. It also might be supposed that there is a certain
technical level that is required.

In a sense, we are a victim of and a slave to our past 140 issues. Our readers
perhaps feel that each new issue should equal or top the previous one. They do not
take this view in a demanding sort of way, but in an expecting way. We ourselves
perhaps take a similar view in that, say, each six issues taken as a whole should
substantially add to the main thrust of whatever it is we suppose we are doing.

While these points are understandable, we also need to point out that any
degree of success we have achieved is due in large part to the interaction we
enjoy with our readers. Our readers can often write and even phone us. We devote
a good amount of space to reader's questions, and often follow up on reader's
suggestions for articles. And, very importantly, our readers submit materials for
publication. We need these infusions of new ideas by all routes.

It is important that readers feel free to submit material, regardless of whether
they feel it is our usual fare, and regardless of technical level. If the reader
finds his or her own material personally interesting, and also finds Electronotes
interesting, it is logical that other readers will find that material worth looking
at. It is the usual case that some new and different item sparks favorable comments
in reaction.

Do we have any standards? Certainly - integrity in its various forms. Material
should be completely and honestly presented. Speculation is fine, noted as such.
Ideas derived from the work of others should be acknowledged. Circuits presented
should are considered to be built and tested unless otherwise noted. In short,
try to present your ideas and findings in a manner as though you were trying to pass
the information along to a best friend for his maximum benefit, transferring your
mental exercises for his utilization.
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NEWCOMER'S PAGE: STATE-VARIABLE FILTERS: - by Bemie Hutchins

At first sight, the state-variable filter looks like an ideal electronic music
module. It is relatively simple and inexpensive, and it does more than one thing.
We always like our modules to perform several functions if possible. The state-
variable filter offers three (sometimes four) filter functions simultaneously. It
has a single input, and three outputs corresponding to high-pass, bandpass, and low-
pass functions, all second-order. By summing the high-pass and the low-pass, a
notch response can also be obtained. In addition, the state-variable filter is easily
voltage-controlled, and it's Q can be controlled independently of its frequency. If
you were only going to have one filter in your system at first, you would probably
choose the state-variable. The only major competitor to the state-variable in
electronic music is the four-pole low-pass. Low-pass filters have found a good deal
of use in imitative (of acoustic instruments) synthesis. For this reason, some users
use mainly a low-pass function, and they may prefer the sharper cutoff of the fourth-
order four-pole low-pass.

The structure of the state variable filter is
as sketched at the right. It contains three basic
elements: two integrators and a summer. The summer
is usually represented by a z sign and the integrator
by an / sign. Numerous variations on the basic state-
variable filter are known, but in the usual form
shown, the high-pass is the output of the summer
while the bandpass and low-pass are integrated and
double integrated versions of the summer output.
There are two feedback loops around the chain of
three elements. From the bandpass, there is a
feedback path -D, while from the low-pass, it is
a feedback -1. The center frequency of the filter is determined by the time-constants
of the integrator, while the Q is determined (nominally) as 1/D, In order to make the
filter voltage-controlled, we have only to make the integrator time constants voltage-
controlled, and this is usually done with an operational transconductance amplifier.

Unlike with many other filter structures, we can often work with a very general
model of the state-variable filter and derive performance parameters from the model. We
do not always have to do a full analysis with R ' s , C ' s , and op-amps. For example, we
have related above the equivalence of the Q of the filter to the reciprocal of the
feedback path from bandpass to the summer output. Thus, if we can determine this
path value, we can get the Q without an analysis of the structure.

An analysis of most state-variable structures, whether from a basic model or at
the component level, is often similar. For example, in the basic model above, we
can identify an integrator with its Laplace transform equivalent, 1/s, and from this
find the output of the summer. Thus, we would have:

VH ' Vin - VL - DVB

At the same time, the 1/s representation of the integrators relates Vi and VD to Vu,
and we have:

VH ' V1n -Vs2 - "Vs

This in turn gives us the so-called transfer function as:

and the other functions Tg(s) and TL(s) follow from the integrator. In an actual
circuit, the analysis is similar, except, for example we would probably not have just
1/s for the integrators, but 1/sCR or -1/sCR, so the frequency is "denormalized" and
we see how it is set and controlled.

While state-variable filters are easy to analyze in theory, in some practical cases
we need to be careful of subtle effects.
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SOME NEW RESULTS CONCERNING Q-ENHANCEMENT hi OTA-BASED VCF's:
-by Bernie Hutchins

INTRODUCTION:

For many years now we have been using the state-variable Voltage-Controlled
Filter (VCF) controlled by Operational Transconductance Amplifiers (OTA ' s ) as one of
our most important VCF designs. Such state-variable filters show a phenomenon
known as "Q Enhancement." This occurs due to phase shifts across various IC 's in
the circuit, and manifests itself as a higher Q as frequency increases. For example,
the VCF might be set for a Q of 20 at some low frequency, and as the frequency is
then raised into the range of a few thousand Hertz, the Q goes up to say 25 or so,
and this continues until oscillation occurs at some still higher frequency. Thus it
is desirable to compensate for this frequency dependant Q somehow, so that Q is
constant as frequency changes. The control and compensation of Q enhancement in
fixed frequency active state-variable filters is well studied. Similar compensations
in variable frequency filters ( V C F ' s ) is less well understood (because the control
elements also contribute to the problem), but relatively satisfactory methods of
compensation for V C F ' s are available. Here we will take a more careful look at this
problem, and will examine more critically some of the assumptions made in the past.

HISTORY OF THE STATE-VARIABLE VCF:

submitted and published in EN#33 |_3J. At the same time, the voltage-controlled
•integrator based on the OTA was used in a VCO design by Sergio Franco [4] making the
transfer of the ideas to the VCF all the more obvious. Various refinements to the
basic OTA VCF were made, and a four-pole VCF was also developed [5]. The next
important step was influenced by a 1976 paper in Electronic jjesign by Sergio Franco
[6] which discussed the Q-enhancement problem and suggested a compensation method
which we then adopted. This solution, the use of a compensating capacitor across
one of the attenuating resistors of the OTA input, thus producing a phase lead,
appeared in our ENS-76 series of modules [7], and is still used today. In general,
the method is satisfactory, although experimentally determined.

A few more references can be mentioned. Ian Fritz called our attention to an
earlier paper by Sparkes and Sedra [8], which is also referenced by Franco [6]. Th-ic

;ompensatingcompensating state-var iaoie active t itters, ana otner active niters tor finite gain-
bandwidth product is one which continues even today, but it is relatively well under-
stood [10 - 13]. Other papers on VCF design using OTA 's or similar include an earlier
report by Franco [14] and a paper by D. Colin who was then at ARP [15]. After the
ENS-76 series, a reader wrote to suggest that the compensating capacitors we used

RR/JT1J OF BASIC STRUCTURES COMPENSATION PRACTICES:

By way of reminder and review, we show in Fig. 1 the basic structure of a state-
variable OTA-controlled VCF, It consists of two OTA-controlled integrators and a
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summer in the feedback structure shown. Each integrator consists of an OTA such as
the CA3080 and usually one op-amp. Fig. 2 shows an example of an active integrator.
Such an integrator has a transfer function -1/sRC ideally. In the case of a real op-
amp, which is usually modeled as single-pole compensated, the capacitor C' is added to
provide the frequency compensation. The single-pole compensation model of the op-amp
is Vout = ̂ + ~ V-)(G/s) wnere G is the gain-bandwidth product in rad./sec. In this
case, the capacitor C' in parallel with R adds a-zero to the response at -1/RC1. If
C' is chosen so that this zero is at -G, then the overall integrator stage is properly
frequency compensated. Techniques such as this example illustrates are well studied
[10, 13].

Fig. 3 shows how the same technique can be applied (or at least, has been
applied) to the OTA integrator. Here we show the resistor network composed of R* and
R** which attenuates the input signal V-jn to a level E^ needed at the actual input
of the OTA chip (the signal must be small for linearity). The question we want to
consider here is the effect of adding the shunt capacitor C1 to the resistor R*.
This we can conveniently do by examining the transfer function of the input attenuator,

T l c\ -
T(s) -

R*
( T + s C R*)
(l + sC'R")

i ~\ \0)

Thus we see that the input attenuator with C' added results in a zero at s = -1/R*C'
and a pole at s = -1/R**C'. Looking at typical values, we might have R* = 10k, R**=
22n, and C' = 30 pfd. The wide spacing between R** and R* means that the pole will be
very very far out on the negative real axis while the zero will just be far out. We
can choose C' so that it cancels the pole of the op-amp that we want to get rid of
without fearing that the extra pole we get (at -1/R**C') will be of any real
importance.

Thus we set the ?ero to cancel the op-amp pole at -G, then we have C' = 1/R*G.
At this point, we can look at some actual experimental values to see what is used in
actual practice. Table 1 shows a listing of sources and compensation values. We
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should point out right here that these results are difficult to compare for a number
of reasons, but we are just looking for a trend, so the necessary equivocations
will be omitted.

Source

Franco [6]

ENS-76-1 [7]

ENS-76-2 [7]

Sparkes & Sedra

TABLE

Op-Amp Used

MCI 456

CA3140

FET

[8] 741

1

G of Op-Amp

1 MHz

4.5 Hhz
__ _

1 MHz

Zero Placed

0.66 MHz

1.6 MHz

0.53 MHz

0.16 MHz

OTA Used

CA3096

CA3080

CAS080

AD530 multiplier

From the table, we see that the general trend is that the zero is placed much closer
in than would be necessary from the op-amp gain bandwidth product limitations. The
implication would seem to be that the method corrects (or helps to correct) for some
additional phase shift in the loop. Possible candidates for this additional phase
shift are the OTA's and the input summing amplifier. That is, experimentally, the
method that supposedly compensates for op-amp phase shift in the integrators also
seems to compensate for additional phase shift, leveling off the Q. This is
certainly useful information from a pragmatic point of view, but academically, we
would also like to know exactly how this works, and if it is the best possible_w_ay
to compensate the circuit.

AN EXAMPLE OF Q-ENHANCEMENT:

We need to take a fairly careful look at Q-enhancement in a simple active-filter
state-variable filter to see what the problems are there, and how they manifest
themselves. It will be convenient to look at the common state-variable structure of
Fig. 4. The filter gives a transfer function, for ideal op-amps, of:

S2 + 30s/RC + 1/R2C2 (2)

where TH(s) - VH/Vin. Similar transfer functions are obtainable at the bandpass (
and low-pass (V[_) outputs. All of these have the denominator of equation (2), and
from the denominator, poles are found at:

1,2 (1/2RC)[ -3a (3)
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The Q of the filter is nominally:

Q = Q0 = l/3a (4)
We can get a more realistic model, one which is useful for high-Q and high

design frequency, by using the single-pole model of the op-amps:

Vout • (B/S)[V+ - V.] (5)

We need to apply this to both the integrators and to the input summer. The application
of equation (5) to the integrator has been worked out elsewhere [13] and is given
as: _-]

M5' = sCRL 1 + s/G + 1/RCGJ

This equation relates the output voltages VH* VB, and V|_ as:

VB • Ti(s)VH VL - T^fsJVn" (7a,7b)

In the ideal case, T-(s) is given by -1/sCR, but here, it is given by equation (6).
As in the ideal case, we find the input voltages to the leftmost op-amp as:

V. = VH * "3
L * "i" V+ = aVB (Sa,8b)

In the ideal case, we would set V_ = V+, and arrive at equation (2), but here we will
relate V_ to V+ using equation (5). The result is then:

TH(s) " VVin = 3s/G - 3oJ.(s) + T.^
(9)

Equation (9) gives the correct answer allowing for the finite gain-bandwidth
product of the op-amp. For a final answer, we need to plug in for T-j(s). This is a
manner of considerable algebra. Using equation (6), and setting RC = 1, we get:

Vs' ' as* + bs* "+"cs'S| ̂  + es + f <10'

where Di(s) is the denominator of Ti(s), and the constants a, b, c, d, e, and f are
given by:

a = 3/Gn2 (lla)

b = 7/Gn + 6/Gn2 (lib)

c = 5 + 8/Gn + 3/Gn
2 (He)

d = 3a + 2 -i- Gn + l/Gn (lid)

e = 3a(Gn t 1) (lie)

f ' Gn (llf)
with: Gn = G/(1/RC) = GRC (12)

Here Gp is d, normalized gain-bandwidth product, measured in units of 1/RC. Thus if
Gnj's large, we are designing well away from the gain-bandwidth product limitations,
while if Gn is relatively small, we may need to be careful, with the distinction
between large and small depending on the design 0.

Equation (10) tells us a good deal. First, note that the denominator is fifth-
order, as we expect, two orders from the filter's capacitors, and three orders from
the op-amp poles. Secondly, considering the coefficient given in equation (11), we
see that higher powers of s are relatively weak, and the equation reverts to second
order as Gn goes to infinity. Thirdly, we see that the zeros of TM(S) are qiven by
the denominator of Ti(s).
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Fig. 5

two near-nominal poles
are not seen on this
scale {see Fig. 6)\̂

-G/3

V00
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G =1000 G »200

Pertubation of Major Poles
Nominal Q = 20

units=l/PX

1.000

0.995

0.990

can find poles and zeros and get a feel for any Q-enhancemenl

effects of the op-amps on the circ
twice the a-axis magnitude to a:good approximation here.

in designing input structures so that summers work at as
possible. [More on this later/

OL s - u \as we ^uuuiuj, ariu une remaining <ieru dt s - -b. Inus pole cancellation at
s = -6 depends on the response function. The numerator will be different for high-pass
bandpass, and low-pass, not only in its power of s, but in that it will have different
associated zeros (or lack of such zeros) in the vicinity of -S. Thus while the most
significant poles move as in Fig. 6, we may expect some quite minor variations in
response shape due to extra zeros way out.
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MODELING OF THE OTA:

The ordinary op-amp is, for the most part, well modeled, and we can use the
single pole roll-off model with good results (or often we can just consider the op-amp
to be ideal). It would be useful if a similar model were available for the OTA. It
appears that things are not so simple. For one thing, this is not found in the OTA
literature. For another, it is clear that the OTA has no intentionally inserted
compensation- [In fact, the OTA is uncompensated, and is often, if not ususally,
used open loop.] Finally, it is very difficult to measure the frequency properties
of the OTA with ordinary equipment due to the high frequencies needed, the small signal
levels, stray capacitance, and a number of other frustrations which the reader can
soon discover by trying to take open loop frequency and phase measurements. What
is clear is that any roll-off poles are somewhat or well above 1 MHz.

For the most part, we will be using the limited amount of data that is available
in the literature as a guide, and will hope to show that the OTA bandwidth is as
stated through the success of Q-compensation. based on these values. The usual
literature on the CA3080 [19, 20] gives us no open-loop data except to state a 2 MHz
bandwidth at a control current of 0.5 ma. Some curves are available for the CA3060
triple OTA device [21] and in the newer dual CA3280 [22] but the information is not
all that clear. What does seem to be true is that the bandwidth does increase with
the control current (as does the gain). The reason for this behavior is perhaps
found in a tutorial paper on monolithic op-amps [23] which shows an example input
that is quite similar to an OTA. Since no intentional frequency compensation is
added to the OTA, it would seem reasonable that limitations are due to the input stage
and possibly to some of the PNP structures. In the reference [23] it is stated that
the poles of the input stage are a linear function of "tail current" which is
equivalent to control current in the OTA. There are two important poles indicated
there, the second pole being about three times further out than the more important
one. Since we can't be sure of the exact OTA model, we will try to keep our
calculations flexible.

ANALYSIS OF OTA INTEGRATOR STAGES:

Two popular forms of of the OTA integrator are seen in Fig. 7 and Fig, 8. Both
integrators are non-inverting, Fig. 7 by virtue of two inverting structures in cascade.
The non-inverting integrator is preferred because it simplifies the summing going back
to the input, and a single inverting op-amp stage can be used there. The stages shown
are standard except for the addition of the components C" and R1 shown. R 1 is used
in place of C 1 of Fig. 3. It is known that the addition of a series resistor R' with
R' = 1/GC gives the same compensating zero that was achieved with C 1 [10, 13]. We
use this R' here for simplicity, and it is assumed that R' is chosen to exactly
compensate the G of the op-amp used, and is not artificially made larger as C' is
in practice (see earlier comments). Thus we isolate and remove the op-amp pole, so
far assuming that C" is zero.

Now, concerning C", we have added this with the thought that it might be made
to act much as C' does with the fixed resistor of Fig. 3, except here C" is across the
OTA's equivalent resistor. Ultimately we will need to justify this through a more
complete analysis and an experimental test, but some feeling for it may come as
follows. First, assume an overall bandwidth parameter of the OTA op-amp system and
call this G'(s). In analogy with Fig. 3, we would need to choose C" = l/RG'{s) and
here R = Req = 23.7/Ic. Now, if we further assume that G'(s) has a linear multiplying
factor proportional to Ic, then we can see that a constant value of C" is indicated.
The limited amount of information on the OTA certainly indicates that the bandwidth
is something like a linear function of Ic. While this argument is oversimplified,
it may serve to aid intuition.

In the analysis of the OTA integrator of Fig. 7, we will model the op-amp according
to the usual single-pole model:
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vjhere G is the gain-bandwidth product of the op-amp. We can model the OTA according to:

1 t = '̂+ ~ ^ ^ %^s^ (14)

where gm(s) is the transconductance as a function of frequency. For the moment, we
will be carrying this as an unknown function. Later we will specify that it can be

(15)
written as:

gmvs, - -Bflj-

where M(s) and D(s) are the numerator and the denominator
transfer characteristics. For example, if we are going t
pole roll-off for gm(s), then N(s) /D(s) = up/(s+up). Our

The problem is completely set up by summing currents at the V- node:
I o u t+ I " . I ' (16)

Using equation (14) Iout = -agm(s)Vjn. We also have I" = (Vin - V_)sC" and I
1 =

(V- - Vgu-tJ/fR' + 1/sC). Finally, from equation (13) for the op-amp we have V_=-4vout
so the rest is a matter of algebra. We get:

T-{S) = GEctgm(s)0+sCR') - sC" ]
' ' s[s(C+C") + CG] (17)

where we have thrown out two terms in R 'C " along the way. The final form of T f ( s ) will
depend on our choice of gm(s}, but it is already clear that we have our desired
integrator pole at s = 0, and the expected op-amp pole at approximately s = -G, since
C" is small compared to C. It can also be seen that if equation (15) is substituted
into equation (17), that the poles of <fei(s). from D(s), will become poles of Tifsj
Thus we will be looking to see how well the zeros generated by the numerator of T- j (s )
can be used to compensate for the poles of T - j ( s ) .

i (9)



Analysis of Fig. 8 is quite similar to that of Fig. 7. We use equation (14)
for the OTA, and sum currents I" + lout = * ' > anc' s°lve f°r V+. Then it is a simple
matter to allow for the op-amp follower's response VOL1t/V+ = G/(s+G) [13] to arrive
at T i (s ) for Fig. 8:

- G[agn(s)(HsCR') + sC"]
~~ 7[s+G)(OC") ~

n ,

If we make C" much greater than C, then equations (17) and (18) are identical except
for the sign in the numerator which is (-) for equation (17) and (+) for equation
(18). If we represent this sign by a parameter "a", and use equation (15) for gm(s)
then we can write a general form for the numerator of either case as:

n(s) - ag0N{s)(l + sCR ' ) +• asC" D(s) (19)

Now we need to chose an actual model for gm(s) = goN(s)/D(s) and this we will
take as the single pole, so:

N(s)/D(s) = up/(s + up) (20)

This gives us a second-order numerator n{s) for the OTA integrators, and we can find
the zeros by setting n(s) = 0 as:

n(s} :

where Req = I/ago is our usual ideal of an equivalent resistance for the OTA in this
type of setup. Note how C" has combined with Req to form a time constant. We can
plug in values into equation (21) and solve for the zeros. Here we will assume a
control current to the OTA of O.Sma, and assume that the 2 MHz bandwidth given on
the OTA data sheet [20] refers to the single pole model, in which case wp = 2ir'2*106
and Rgg = 23.7/Ic = 47.4k. We have already discussed that R' should be matched to
the gain-bandwidth product of the op-amp used in the integrator, so if this op-amp
is an LF351 with a gain-bandwidth product of 4.5 MHz, then R' = 1/GC. Typically C
might be 330 pf, so R' would come out l/(2ir-4.5 x 106}(330 x 10-12) = 107n. This leaves
us with the choice of a = ±1 for the structure considered, and a value of C". We
can then see how the zeros move as a function of C".

The results of solving equation (21) using the quadratic formula are plotted
in Fig. 9 for the structure of Fig. 7 and in Fig. 10 for the structure of Fig. 8.
It is evident that there is a significant difference between the two. We need to
develop a terminology for these two non-inverting integrators, and it will be useful
to refer to Fig. 7 as a "dual inverting integrator" while Fig. 8 will be called a
"non-inverting integrator." Note that the dual inverting integrator has been used
more recently in VCF designs [6,7], but the non-inverting integrator is also found
[3,7], A preference for the dual inverter has been suggested, based on the idea
that it is better to drive a current into a constant (ground) potential rather than
into a variable voltage (considering the OTA output), although no hard evicence for
this preference is available.

From Fig. 9, the dual inverter, we see that the zeros that result from the
use of C" are always real, although one is always in the right half-plane. On the
other hand, when the non-inverting integrator is used, Fig. 10, we see that the
zeros are complex and arc in as C" increases from 0. At about 5 pfd, they become
real zeros. In either case (Fig. 9 or Fig. 10), the zeros arrive at s = 0 and at
s = -up as C" becomes very large. This can easily be understood in terms of C"
effectively "shorting" out the OTA, in which case, the OTA pole at -OID should be
gone, and also, since we now have a capacitor input leg {the large C"), the integrator
is gone too (hence the loss of the pole at s - 0). The same conclusion results
analytically by letting C" go to infinity in equation (21), as the reader can verify
Taking the other limit, as C" goes to zero in equation (21), we find a lone zero
remaining, at. i - -1/R'C- This is expected, as we have set 1/R'C - G, and H is
clear that the removal of C" leaves us with our usual integrator compensation for
the op-amp.
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It is relatively difficult to judge the effect of the zeros shown in Fig. 9 and
in Fig. 10. In neither case do'we^ see something nice like a cancellation of both
the offending poles (at - G and at -up). In order to better examine the situation,
we can look at the total phase shift due to the zeros produced by C" and the two
offending poles. In this view, we are not looking for a zero to actually cancel a
pole, but rather to just effectively reduce its phase shift. As a measure of the
effectiveness of this process, we measure the phase angles, with respect to the
positive real axis direction, of the zeros looking to the frequency of interest on
the ju-axis, and then subtract the corresponding pole angles. Fig. 11 shows a set
of phase response curves for the dual-inverting integrator, while Fig. 12 shows the
corresponding set for the non-inverting integrator. Keep in mind that these phases
are undesired additions to any desired phase from the integrator (i.e., 90° is
desired). Each of Fig. 11 and Fig. 12 shows two regimes of frequency and phase, with
the upper portion representing the extreme upper left portion of the bottom part, and
corresponds to the region of audio interest. From the curves, it is clear that the
addition of C" to the non-inverting integrator helps a lot, while the addition of C"
to the dual-inverting integrator hurts the situation. In particular, a value of C" of
about 1.7 pfd in the non-inverting case is an excellent compensation over the audio
range {see upper portion of Fig. 12). The reason why C" helps in the non-inverter but
not in the dual-inverter can be understood in terms of the input to the OTA used in
each case. For the non-inverter, it is the {+) input to the OTA, and the OTA looks
like a "non-inverting resistor." In the case of the dual-inverter, it is the (-}
input that is used, and current through C" is fighting the normal corrective action.
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The placement of C" relative to the polarity of the input of the OTA being used is thus
the central design principle in these and other OTA integrator structures.

It should be pointed out right here that a capacitor as small as 1.7 pfd is very
difficult to work with. The reason is that some stray capacitances are this large or
larger. Thus, for one thing, we may note that in a dual inverting structure, any
stray capacitance, even in the absence of C", may make the Q-enhancement problem worse.
On the other hand, any stray capacitance in the similar position in the non-inverter
is already working to correct the problem. In addition, we can see the need for a
clean and direct layout in the vicinity of the OTA output node.

It may seem strange to the reader that the more unusual of the zero patterns
{Fig. 10) is in fact the more useful here. This is less of a surprise if we compare
this with active compensation of integrators [10, 11, 24] which there uses complex
poles to compensate for the phase of a real zero. In this case, an op-amp follower
is placed in the feedback loop of the integrator. This places two poles at -0.5S
±/3jG/2, and replaces the pole at -G with a zero there. The phase error is virtually
reduced to zero for frequencies up to about n.1G. Note that the zeros in Pig. 10 are
hovering in somewhat the same region as the poles just discussed, although there are
two poles to compensate here. We do understand the good results for about 1.7 pfd
on this basis however.
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EXPERIMENTAL TESTS:
At this point, it is useful to make a few tests of the ideas that we have looked

at above. The experimental state-variable circuit is shown in Fig. 13, and can be
seen to be built around two non-inverting integrators. There are a number of "extra"
components, C', C", C*, and R' which are intended to serve to provide compensation for
Q-enhancement. Not all these will actually be used in the circuit at any one time.
The compensation with C1 would be our "standard" compensation, the one we have used in
the past. The compensation with R', as we have seen, works the same as C', but here
we are assuming that it is exactly what is needed to compensate for the 6 of the LM351
to which it is associated. The capacitor C" is used to compensate for the finite gro(s)
of the OTA in the manner discussed above.

This leaves us with the capacitor C* to be explained. As we found in the example
of q-enhancement with the active state-variab-le filter, the phase shift due to the
input summer was very significant. Thus we can consider using a phase-lead network
with the summing resistor, and this Is what C* does. Note that C* in parallel with
10k should place a zero to cancel the op-amp (summer) pole. The op-amp, being an
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LM351, has a pole at -4.5 MHz, but here it Is working at an effective gain of 3, so
the pole is moved in by that factor, to -1.5 MHz. Thus C* - 1/2*0 Ok) (1.5MHz)
is about 10 pfd. [Note that C', if set to cancel G of the integrator op-amps, would
be only 3.5 ofd.]

Fig. 14 shows some experimental measurements of Q as a function of frequency for
various compensation schemes. Each experimental point is an average of three
separate Q measurements. The curves are labeled with the components that are actually
used. If not listed, that component (C',C",C*, or R 1 ) was omitted for that trial.
The first thing to note is that at the low frequency end, the curves all group around
either Q = 22 or around Q = 17, the lower value of Q corresponding to cases where C"
= 2pfd is used. We can understand the basic reason for this lowering of Q, even at
low frequencies, by isolating the effect of a capacitor C' as in Fig. 2. Considering
the op-amp ideal for the moment, the transfer function of Fig. 2 is:

T,(s) = - 1 + sC'R
sCR (22)

which implies that we could find the effect of C' by substituting s / ( l+sC'R) for s
in a standard state-variable denominator:

D s v (s ) = s2 + Ds/RC + 1/R2C2 (23)

Setting C' = BC, and making the substitution, we find a new damping term, D + ""
substituting for D. If C = 330 pfd and C' = 2 pfd, with D = 1/Q •• ' ' "" " ""1/24 = 0.0417,
then D + 2g corresponds to a Q of about 18.6,

The uncompensated case clearly shows enhancement, reaching a Q of about 31 at
the high-frequency end (•). Simply compensating the integrator op-amps (R'=110,
shown by *) helps, but does not do the whole job. We tried, but did not show in the
figure, the case where R" = 330n, three times its value for a single op-amp, and this
did work to reduce the enhancement. It was very similar to the standard enhancement
(v) which uses 10 pfd for C'. [Note that C' = 10 pfd is about three times the value
needed for one op-amp.] It can also be seen that the use of compensating capacitor
C*=10pfd for the input summer is a help, but still leaves some enhancement (A). [We
dont really need a similar capacitor across the 240k resistor, as this would we
very small (0.4pfd). Finally, note that a combination of C* and R' (a) does work
fairly well. This takes care of everything except the OTA.
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The curves that hover around Q = 17 at the low frequency end all have the OTA
compensated by C" = 2pfd. Note that the use of C"=2pfd only (*} does not help much,
with C" and R' being better (*), and the full compensation case (R1, C*, and C",
shown by the open circle) is quite good.

The successful cases to compare are the standard compensation (C1 = 10 pfd),
the full op-amp compensation (R' and C*), and the full compensation (R1, C*, and C").
It might be difficult to choose between these three cases from a performance basis,
although the full compensation does come out the best here. Also, the standard
compensation does have some droop, and we would probably want to go back and change
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C' to 9 pfd or perhaps 8 pfd experimentally. Thus it may be the case that by
distributing the compensation among the elements, treating each one individually
and nominally, we may get a leveler Q curve with less trimming. However, this would
need to be verified with more examples. In general, we would be quite satisfied
with the full compensation results.

The state-variable formed from the dual-inverter integrators was studies very
briefly. It was found that the addition of C" (to Fig. 7) did in fact make the
Q-enhancement problem worse instead of better. A value of C" of 5 pfd gave a Q of
183 (nominally 24) at 12 kHz. A value of C" of 10 pfd was unstable for all
frequencies.

CONCLUSIONS AND RELAVANCE TO VCF DESIGN OPTIONS:

Much of what has been done above has led to a better understanding of the
Q-enhancement problem, its cause and cures. While a full model of the OTA based
filter has not been worked out, a good deal of the parts have yielded to analysis.
We can now arrive at some conclusions, and from these, makes some suggestions about
design choices.

1. The standard method of Q-compensation does work in practice, but it does
seem to attack the problem in the wrong place {integrators instead of
summer).

2. The phase shift across the OTA's may be a relatively minor complication
compared to the input summer.

3. The input summer suffers not just as an op-amp of unity gain, but as an
op-amp of a somewhat higher effective gain, moving the op-amp pole in by
a factor of the effective gain [13]. This is why the input summer is a major
phase shift problem with regard to Q-enhancement.

DESIGN SUGGESTION 1: Try to keep the effective gain of the input summer
as low as possible. Avoid multiple inputs to the summing node. If
necessary, use a separate summing stage (Fig. 15a). Also, it is probably
better to use a Q control pot of large resistance in the manner of Fig. 15b
rather than the conventional Fig. 15c. This will help keep the effective
gain down.

DESIGN SUGGESTION 2: A compensating capacitor, as C* in Fig. 13, may be
preferable to the usual (C1) integrator lead networks.

BP

10k

10k j

10k

-f^ i

Try This
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4. It is very difficult to measure the high-frequency amplitude and phase
properties of the OTA. This may indicate that the OTA is not a major
problem.

5. The OTA integrator can be modeled if we do not need to specify exactly the
form of gm(s). Any poles of gm(s) will be transferred to the integrator's
response.

6. Addition of a compensating capacitor across the OTA may be useful. This
would be true where the input signal is applied to a (+) input (Fig. 8).
This can produce complex zeros (Fig. 10) that reduce the effect of the
phase shift of poles already present.

7. The value of C" is quite small, on the order of a few pfd. Consequently we
are also interested in C" as it may exist as stray capacitance, independent
of any intentional inclusion. For example, C" lowers the Q from a nominal
value of 24 to about 17 (see Fig. 14). It may be that the stray C" is the
value of the lowering from 24 to about 22 for the curves where no C" is
intentionally included.

8. The inclusion of a capacitor C" of about 2 pfd can be useful for reducing
the Q-enhancement when used in conjunction with other methods. The use of
distributed compensation (individual nominal compensation at the offending
elements themselves) may be better than the standard compensation which is
basically an "overkill."

DESIGN SUGGESTION 3: Consider using the non-inverting integrator
configuration (Fig. 8) instead of Fig. 7. Consider using partial
compensation in various places (C*, R', and C"}. Try for a clean
layout in the vicinity of the OTA output node. Keep in mind that any
stray C" will help reduce Q-enhancement in the case of this non-inverter
design.

9. Stray capacitance across resistors in integrators can cause a drop in Q
even at very low-frequencies.

DESIGN SUGGESTION 4: Be prepared for some relatively minor but still
measurable variations in actual Q and Q as determined by the feedback
factor from bandpass to the input summer. The resistance ratio itself
will not assure the correct Q, even at very low frequencies.

FINAL REMARKS:
What we have done here is to make some steps in the direction of a better

understanding of the state-variable VCF. If it is a measure of a good research
effort that it asks more questions than it answers, then this is a success. While
a good number of interesting results have been obtained, it still seems that there
are a few missing pieces, and then a whole (rather complicated) picture to be
developed. This however, must be left for another time, or perhaps for an interested
reader to fill in.
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