
ELECTRONOTES APPLICATION NOTE NO. 432
1016 Hanshaw Road
Ithaca, NY 14850 August 3, 2017

 SIMPLIFIED DIGITAL NOTCH FILTER DESIGN

Recently [1] we have been involved with an issue of a so-called “Worldwide Hum” which

is what seems like an actual sound of very low frequency (perhaps 50 Hz to 100 Hz)

that is heard by a small percentage of people all around the world [2], but which seems

to strongly evade a technical analysis. Any such low-frequencies (real or apparent) are

in the range where the human ear does not hear well, and we have little experience

even noticing acoustic energy down there. There are of course the frequencies of the

electrical supply lines [60 Hz (US and Canada), 50 Hz (rest of world), along with a few

harmonics], and when we do listen down there, we tend to hear these. Hence a search

for the Hum may well involve electrical filtering to “notch out” these [3, 4].

Fig. 1 shows the (analog) circuit for one such notching scheme (60 and 120 Hz). Don’t

worry about whether or not you understand this schematic diagram. The “design” is in

two parts: the exact arrangements of parts (typically called the “configuration”) and the

exact values of the parts (typically called the “characteristic”). The actual realization

involves a circuit board space of perhaps 5 inches by 5 inches, containing perhaps 3

dozen components. Building and changing the filters can be tedious.

If we were to draw the circuit diagram for a digital filter, to a person unfamiliar with

electronics it would superficially resemble Fig. 1, and be quite equally perplexing. The

realization, however, would not be on a circuit board, but instead quite hidden inside a

computer. Indeed, many and perhaps most electronic devices have digital filters inside.

The “digital filter” would be instead a program, software, (corresponding to the analog

configuration) with numerical parameters or coefficients (corresponding to the analog

characteristic). You would (rarely) rewrite the program, but perhaps frequently change

the coefficients. So instead of unsoldering and changing a capacitor, for example, you

just change a number in a file. More likely, you would have software where you specify

a change of the filter parameter (such as a new notch frequency) and the coefficient file

is automatically updated and applied. Obviously this has many advantages, not the

least of which is the possibility of using trial-and-error extensively.

The really good news here is likely that any audio software you have may already have

notch filtering options which can be adapted to the cancelling of AC hum (fundamental

and harmonics). A study below will show how this sort of thing works.

 AN-432 (1)

Before getting to the actual nuts and bolts it may be necessary to say what we hope to

accomplish and what is realistic. Fig. 2 shows the frequency response (experimental

here) of the analog filter. Perhaps you are disappointed. It does take out 60 Hz and

120 Hz rather exactly, but takes out a lot of the spectrum around these. [Except for

some very sophisticated adaptive techniques, these filters would not discriminate

between something like 120 Hz from the power lines (don’t want) and 120 Hz that might

be there secondarily as a desired component.] In this application, we needed to knock

down the overwhelming power line noise, and this was accomplished. The thought was

that anything away from the notch could at least be observed. The measure of

sharpness of a notch is called the Q. Here the Q is set to 2 and is quite low. Audio

software may offer ranges of Q as well as notch frequency, so it is well to have an idea

what this means. When we get to a custom design below, this notion of sharpness can

be addressed more directly.

 AN-432 (2)

LINEARITY TO THE RESCUE

Most readers here probably are familiar with the so-called “dual” descriptions of a sound

signal in terms either in the time-domain (a waveform) denoted by something like x(t); or

an alternative description in the frequency-domain (a “spectrum”), correspondingly

denoted X(f). Further, probably at least the terminology “Fourier Transform” (FT) is

known to relate the alternative descriptions, uniquely and completely. It is very

important that the Fourier Transform (in its many forms) [5] is LINEAR. That is, the FT

of a sum x1(t) + x2(t) is the sum of the FTs: X1(f) + X2(f) – the principal of

superposition. This gives us permission to build up a desired frequency response

which may be complicated from a set of more manageable pieces. This is much as we

might build a wall from segments and blocks.

We will use linearity in our home-brew approach to calculation custom coefficients.

Right here however we learn that if we have a notch in our software package, we can

notch out two, three, or more frequencies by successively running a signal through

the program, sequentially for each notch. This may be all we need to know.

 AN-432 (3)

 So we see that the linearity of the FT is already potentially very useful, but what is

the FT. Well the FT has four forms [5], of which most filter design involves the DTFT

(Discrete Time Fourier Transform) which relates a filter’s frequency response to its

impulse response. The equations are generally defined/used in the DSP (Digital Signal

Processing) literature [6]. For the DTFT, the frequency response is:

and the impulse response, the inverse DTFT is:

Here h(n) is generally a real (not complex) time sequence, but H(ejω) is generally

complex as it includes a phase as well as a magnitude. For our simplified purposes

here however, we will take H=1 or H=0 (over appropriate ranges), producing a non-

causal linear-phase response, for all n from -∞ to +∞, from which we choose a working

h(n) centered symmetrically about n=0. In return, H will be real, corresponding to the

magnitude of H(ejω), which approximates the input specification that H was 0 or 1

everywhere.

Equation (2) is kind of begging us to plug in some H, as since everyone can integrate an

exponential (!) we get h(n), the coefficients of our finite-length filter (hence FIR or Finite

Impulse Response). Thus H disappears from equation (2) and the integration limits now

include only the range (or ranges) where H=1.

Let’s consider an idealized low-pass filter (because of superposition, we can construct

notches from that). We want to give specifications in actual frequencies (Hz), not in

terms of the normalized digital frequency ω, where ωs=2π is the sampling frequency.

Sampling frequency! Where did that come from? Well the complication is that while

we can specify something like 120 Hz in the analog case, in the discrete-time (sampled

or just “digital”) case, frequency responses are periodic. Putting in for H, the value of 1

for f=-fc to f=+fc (fc is low-pass cutoff), and H=0 elsewhere, adjusting the frequency

scaling*, and doing the integration, we get:

 AN-432 (4)

where fs is the sampling frequency in Hz, fs=1/T where T is the sampling interval. It

computes h(n) for all values, and it is true than h(-n) = h(n) (even symmetry). Note that it

is a sinc function. Two complications. First, we have to truncate this to a finite length.

Possibly something like -100 to +100 (length 201). Second, when n=0, the calculation

blows up. The correct value is found by limits – it is just (2fc/fs). Deal with this “error” by

overwriting h(0), by using a since function if available, or calculate not at exactly n, but

at n+0.000001 for all n – something like that.

While equation (3) is the result we need going forward, most users will likely want to

compute the inverse of the impulse response to see how well we do with a truncated

sequence h(n). As in the computation from equation (2) to equation (3), we desire to

avoid exponentials. In plugging into equation (1), due to the symmetry of h(n) we can

combine two complex exponentials into cosines (Euler’s relationship**) and:

Here we have achieved a simple summation of cosines in frequency, a real (not

complex) result, and have summed from n=0 to n=N (one side of the sequence is all

that we need). Equation (4) gives H(f) for any f. Generally we would compute it on an

array of values of f from 0 to half the sampling frequency. Something like 500 points is

likely sufficient so that when we plot H(f) as a function of f, it looks like a continuous

frequency response curve.

 The two red equations (3 and 4) constitute our simplified design.

BUILDING FROM PIECES

So we know how to design and plot a low-pass filter. How do we get a notch or several

notches? We use superposition.

Consider the frequency range of f=0 to f=fs/2. We restrict our designs to this range –

obeying the famous “sampling theorem”. Normally we design low-pass filters with a

cutoff above f=0 but short of f=fs/2. Nothing prevents us from setting the cutoff fc to fs/2.

This would mean, equation (3), that hall(0) = 1 and all other h(n) are zero – a direct path

through which makes sense. If we then design a second low-pass with a cutoff fc1, and

subtract this from the first, we get a high-pass with cutoff fc1. Next we design a third

low-pass with cutoff fc2, where fc2<fc1, and add this. We end up with a notch (Fig. 3).

That is, we have:

 AN-432 (5)

 Hnotch = Hall – Hc1 + Hc2 (5)

and by the linearity of the DTFT as mentioned above:

 hnotch = hall – hc1 + hc2 (6)

Additional notches can be added in exactly the same way. Each additional notch adds

two terms to equations (5) and (6).

A TWO-NOTCH EXAMPLE

Here we will do a two-notch example, which will illustrate several things: (a) how to do

additional notches (b) some examples of coding with equations (3) and (4), and (c) how

a truncated result is imperfect due to the necessary truncation. We remind the reader

that we are doing this coding with the supposition that we are going to use the impulse

response for a digital filtering operation. This may be as an input to audio software that

accepts “guest” digital filters. Or it may be the case that we intend to write our own

implementation filter. This is not hard at all (if you are a reasonably good coder) even

lacking significant experience with DSP.

 AN-432 (6)

Here is the code:

% AN432.m

N=400

n=(-N:N);

fs=10000

f0=fs/2

f1=1650

f2=1550

f3=1100

f4=900

h0 = (2*f0/fs)*sin(2*n*pi*f0/fs)./(2*n*pi*f0/fs)

h0(N+1)= 2*f0/fs

h1 = (2*f1/fs)*sin(2*n*pi*f1/fs)./(2*n*pi*f1/fs);

h1(N+1)= 2*f1/fs;

h2 = (2*f2/fs)*sin(2*n*pi*f2/fs)./(2*n*pi*f2/fs);

h2(N+1)= 2*f2/fs;

h3 = (2*f3/fs)*sin(2*n*pi*f3/fs)./(2*n*pi*f3/fs);

h3(N+1)= 2*f3/fs;

h4 = (2*f4/fs)*sin(2*n*pi*f4/fs)./(2*n*pi*f4/fs);

h4(N+1)= 2*f4/fs;

h = h0 - h1 + h2 -h3 + h4

figure(1) % Matlab plot of h

stem(-N:N,h,'r')

figure(2) % Matlab plot of absolute H

plot([0:fs/1000:fs/2-fs/1000],abs(freqz(h,1,500)),'r')

hold on

plot([0 5000],[0,0],'k')

plot([0,0],[0,1.5],'k')

hold off

axis([-fs/20 fs/20+fs/2 -.05 1.2])

f=[0:fs/1000:fs/2];

ff=pi*f/fs;

% direct plot of H (Fourier series with f and t interchanged)

H=h(N+1);

for k=1:N

 H=H+2*h(N+1-k)*cos(2*k*ff);

end

figure(3)

plot(f,H,'r')

hold on

plot([0 5000],[0,0],'k')

plot([0,0],[-0.2,1.5],'k')

hold off

axis([-fs/20 fs/20+fs/2 -.25 1.2])

 AN-432 (7)

Our code here is Matlab. We give the code as an example, and because often it is very

useful to use (inherently unambiguous) computer code in the event that equations and

descriptions may remain unclear. At least you recognize that the code listed produced

the figures displayed. Nothing in this note requires Matlab.

Here the program is first fed specifications. The length of the filter is set to 801 (n=-400

to n=+400) and the sampling rate is 10,000 Hz. One notch is centered at 1600 Hz with

width 100 Hz (1550 to 1650) and the other is centered at 1000 Hz with width 200 Hz

(900 to 1100). Pretty easy to say exactly what you want.

Then five impulse responses (the low-pass blocks), h0 to h4, are computed using

equation (3). Trivially we sum these as h = h0 - h1 + h2 - h3 + h4 to get the

notches. The code for Fig. 1 (in the program) just displays h, because you are probably

curious about it. We used Matlab for the plots here, but any program that plots a data

vector should work. Note that h(n) looks a lot like h0: the hall of our discussion. After

all, there is relatively little taken out by the two notches, so it should look like that.

Moving on, Fig. 2 (program) is a Matlab calculation of the magnitude of the frequency

response and uses the Matlab freqz function. This we do not plot here as it was used

to verify that the hand-code of Fig. 3 (program) is correct. Fig. 3 uses equation (4) so

should be the route for the general user. It’s just a sum of cosines, the DTFT being a

Fourier series in frequency. In this note, Fig. 5 is the plot under discussion.

 AN-432 (8)

How well did we do? Pretty good. The edges of the notches are where they belong

and are reasonably sharp. There is some “fuzziness” in the vicinities of the transitions.

This is the expected “Gibbs Phenomenon”, which can be adjusted if necessary***.

WHAT IF YOU NEED TO PROGRAM THE ACTUAL FILTERING?

Our first choice was probably that some existing audio software that we already have

has a suitable notch option, in which case linearity suggested we could use multiple

passes of that. A second choice might be that we custom design the necessary impulse

response (as we have just done) and the resulting h(n) can be input as a guest to some

filtering software. Here we suppose that we have no suitable software, but we can

program in some language that handles signals (sequences of numbers). After, all, the

boxes we all used are still called computers.

The filtering procedure with an impulse response (FIR filter) is called “convolution”.

Convolving (please – not “convoluting”!) two sequences is a matter or running one by

the other, step-by-step, multiplying together adjacent values for that time interval, and

summing all the multiplies in that overlap. Then the data are shifted by one position and

the next convolution output value, and so on. Study of Fig. 6 will give the correct

understanding. Two points: (1) The filter length will generally be much longer that 3

 AN-432 (9)

(perhaps hundreds) and the signal much much longer than the filter (perhaps tens or

hundreds of thousands). (2) Also, note that the outputs may be untypical until the signal

data fully overlap the filter length. This is called a “transient” and usually is not a large

problem as long as it is recognized. The main filtering is called “steady state”, and an

ending transient is expected as the signal exits the filter.

It may be the case that a data-processing program has a built-in convolution function.

IF you need to write your own, it is not too difficult and even though your code may not

be highly efficient****, it will likely run fast enough to accommodate a few signal.

 AN-432 (10)

Before ending, it may be instructive to show exactly why a filter can notch out (null) a

particular frequency. A “moving average” is a simple low-pass filter which just adds up

M adjacent values of a sequence and divides by M (hence the name). A length-4

moving average is thus h(n) = [1/4 1/4 1/4 1/4] as seen in Fig. 7. Frequency analysis

of this impulse response shows a “zero” at fs/4. We see this in the time domain (Fig. 7)

in that if we have a sine wave of frequency fs/4 (exactly 4 samples per cycle), regardless

of phase (30º, 120º, 210º, and 300º in the figure) the average is 0 in all cases.

SUMMARY

We have shown here we can handle notch filter design and implementation with simple

procedure and need not take a full course in DSP or obtain a specific program. In the

simplest instance, we understand that existing audio software may be made to work.

Moving up, we can custom design an impulse response with simple equations/

procedures. Finally, we may write our own convolution procedures to implement the

digital filtering.

NOTES: (if interested)

* For many decades in EE, the lower case omega (ω) was an ordinary frequency

expressed in radians/second instead of cycles/second (renamed Hertz of just Hz). That

is, ω=2πf where f is frequency in Hz. When DSP came along in the late 1960’s, the

symbol ω was appropriated for a normalized discrete-time frequency in radians (not

radians/sec). This was confusing at first and still is! In this view, the sampling

frequency is 2π radians. This notion of ω has the one advantage of representing angle

around the unit circle. Old timers (and those who no longer study analog – “continuous

time”) have gotten used to this. When it is necessary to consider a frequency in

radians/second, the uppercase omega (Ω) is often found.

 AN-432 (11)

Steiglitz [N1] has usefully pointed out that the “units” of the discrete-time ω should be

radians/sample. These are not “physical dimensions” but allow us to keep track of

proper frequency scaling. In the DSP case, there is a sampling frequency fs as we

have used above, and the corresponding sampling time is T = 1/fs. A sine wave of

frequency ω advances an angle of ω radians between consecutive samples. In

summary:

** Euler’s Relationships (after Leonard Euler – pronounced “Oiler”) relates complex

exponentials to sines and cosines. Extremely useful.

which are solved for

When integrating exponentials between symmetric limits (as in the main text) these

greatly simplify results.

*** Generally if you just say “Gibbs Phenomenon” (J. Willard Gibbs) people will stop

bugging you about the “fuzzy ears”! If you apply a Hamming window [N2] to the

impulse response, the overshooting is nearly completely reduced – at the trade-off that

the transition rates are somewhat reduced.

**** Convolution is traditionally slow, but the first thing is to get the right answer. May

be fast enough and good enough. Because convolution in time can be achieved by

jumping to the frequency domain and multiplying, the FFT (Fast Fourier Transform

algorithm), even with the overhead, can greatly speed things up.

 AN-432 (12)

REFERENCES

[1] “Evidence For Internal Source Of ‘The Hum’ ”, Electronotes Webnote ENWN-47

2/26/2017 http://electronotes.netfirms.com/ENWN47.pdf

[2] Glen MacPherson, “ World Hum Map And Database Project “

 http://thehum.info/

[3] “Notching to Try to Display ‘The Hum‘ ”, Electronotes Webnote ENWN-38,

 4/11/2016 http://electronotes.netfirms.com/ENWN38.pdf

[4] “Calculating/Measuring the Notch”, Electronotes Webnote ENWN-39 4/27/2016

 http://electronotes.netfirms.com/ENWN39.pdf

[5] ”Fourier Map”, Electronotes Application Note No. 410 May 6, 2014

 http://electronotes.netfirms.com/AN410.pdf

[6] A extensive series of notes on digital filter design appeared in Electronotes

 http://electronotes.netfirms.com/EN197.pdf

 http://electronotes.netfirms.com/EN198.pdf

 http://electronotes.netfirms.com/EN198.pdf

[N1] Ken Steiglitz, A Digital Signal Processing Primer, Addison-Wesley (1996),

 pp65-66

[N2] Hamming window is discussed in many DSP books. See also EN#197, 2b-4

 (Reference 6) and http://electronotes.netfirms.com/AN362.pdf

 AN-432 (13)

http://electronotes.netfirms.com/ENWN47.pdf
https://hummap.wordpress.com/
http://thehum.info/
http://electronotes.netfirms.com/ENWN38.pdf
http://electronotes.netfirms.com/ENWN39.pdf
http://electronotes.netfirms.com/AN410.pdf
http://electronotes.netfirms.com/EN197.pdf
http://electronotes.netfirms.com/EN198.pdf
http://electronotes.netfirms.com/EN198.pdf
http://electronotes.netfirms.com/AN362.pdf

