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                           SIMPLIFIED DIGITAL NOTCH FILTER DESIGN 

 

      

Recently [1] we have been involved with an issue of a so-called “Worldwide Hum” which 

is what seems like an actual sound of very low frequency (perhaps 50 Hz to 100 Hz) 

that is heard by a small percentage of people all around the world [2], but which seems 

to strongly evade a technical analysis.  Any such low-frequencies (real or apparent) are 

in the range where the human ear does not hear well, and we have little experience 

even noticing acoustic energy down there.  There are of course the frequencies of the 

electrical supply lines [60 Hz (US and Canada), 50 Hz (rest of world), along with a few 

harmonics], and when we do listen down there, we tend to hear these.  Hence a search 

for the Hum may well involve electrical filtering to “notch out” these [3, 4].   

 

Fig. 1 shows the (analog) circuit for one such notching scheme (60 and 120 Hz).   Don’t 

worry about whether or not you understand this schematic diagram.  The “design” is in 

two parts: the exact arrangements of parts (typically called the “configuration”) and the 

exact values of the parts (typically called the “characteristic”).  The actual realization 

involves a circuit board space of perhaps 5 inches by 5 inches, containing perhaps 3 

dozen components.  Building and changing the filters can be tedious.   

 

If we were to draw the circuit diagram for a digital filter, to a person unfamiliar with 

electronics it would superficially resemble Fig. 1, and be quite equally perplexing.  The 

realization, however, would not be on a circuit board, but instead quite hidden inside a 

computer.  Indeed, many and perhaps most electronic devices have digital filters inside. 

The “digital filter” would be instead a program, software, (corresponding to the analog 

configuration) with numerical parameters or coefficients (corresponding to the analog 

characteristic).  You would (rarely) rewrite the program, but perhaps frequently change 

the coefficients. So instead of unsoldering and changing a capacitor, for example, you 

just change a number in a file.  More likely, you would have software where you specify 

a change of the filter parameter (such as a new notch frequency) and the coefficient file 

is automatically updated and applied.  Obviously this has many advantages, not the 

least of which is the possibility of using trial-and-error extensively.   

 

The really good news here is likely that any audio software you have may already have 

notch filtering options which can be adapted to the cancelling of AC hum (fundamental 

and harmonics).  A study below will show how this sort of thing works.      
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Before getting to the actual nuts and bolts it may be necessary to say what we hope to 

accomplish and what is realistic.   Fig. 2 shows the frequency response (experimental 

here) of the analog filter.  Perhaps you are disappointed.   It does take out 60 Hz and 

120 Hz rather exactly, but takes out a lot of the spectrum around these.  [Except for 

some very sophisticated adaptive techniques, these filters would not discriminate 

between something like 120 Hz from the power lines (don’t want) and 120 Hz that might 

be there secondarily as a desired component.]  In this application, we needed to knock 

down the overwhelming power line noise, and this was accomplished. The thought was 

that anything away from the notch could at least be observed.  The measure of 

sharpness of a notch is called the Q.  Here the Q is set to 2 and is quite low.  Audio 

software may offer ranges of Q as well as notch frequency, so it is well to have an idea 

what this means.  When we get to a custom design below, this notion of sharpness can 

be addressed more directly. 
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LINEARITY TO THE RESCUE 
 

Most readers here probably are familiar with the so-called “dual” descriptions of a sound 

signal in terms either in the time-domain (a waveform) denoted by something like x(t); or 

an alternative description in the frequency-domain (a “spectrum”), correspondingly 

denoted X(f).  Further, probably at least the terminology “Fourier Transform” (FT) is 

known to relate the alternative descriptions, uniquely and completely.  It is very 

important that the Fourier Transform (in its many forms) [5] is LINEAR.  That is, the FT 

of a sum x1(t) + x2(t) is the sum of the FTs:  X1(f) + X2(f) – the principal of 

superposition.   This gives us permission to build up a desired frequency response 

which may be complicated from a set of more manageable pieces.  This is much as we 

might build a wall from segments and blocks.   

 

We will use linearity in our home-brew approach to calculation custom coefficients.  

Right here however we learn that if we have a notch in our software package, we can 

notch out two, three, or more frequencies by successively running a signal through 

the program, sequentially for each notch.  This may be all we need to know.   
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     So we see that the linearity of the FT is already potentially very useful, but what is 

the FT.  Well the FT has four forms [5], of which most filter design involves the DTFT 

(Discrete Time Fourier Transform) which relates a filter’s frequency response to its 

impulse response.  The equations are generally defined/used in the DSP (Digital Signal 

Processing) literature [6]. For the DTFT, the frequency response is: 

 

                                                              

 

    

                                                                

 

and the impulse response, the inverse  DTFT is: 

 

                                  
 

  
                                                                                            

 

  

 

 

Here h(n) is generally a real (not complex) time sequence, but H(ejω) is generally 

complex as it includes a phase as well as a magnitude.  For our simplified purposes 

here however, we will take H=1 or H=0 (over appropriate ranges), producing a non-

causal linear-phase response, for all n from -∞ to +∞, from which we choose a working 

h(n) centered symmetrically about n=0.  In return, H will be real, corresponding to the 

magnitude of H(ejω), which approximates the input specification that H was 0 or 1 

everywhere. 

 

Equation (2) is kind of begging us to plug in some H, as since everyone can integrate an 

exponential (!) we get h(n), the coefficients of our finite-length filter (hence FIR or Finite 

Impulse Response).  Thus H disappears from equation (2) and the integration limits now 

include only the range (or ranges) where H=1.   

 

Let’s consider an idealized low-pass filter (because of superposition, we can construct 

notches from that).  We want to give specifications in actual frequencies (Hz), not in 

terms of the normalized digital frequency ω, where ωs=2π is the sampling frequency.  

 

Sampling frequency!  Where did that come from?   Well the complication is that while 

we can specify something like 120 Hz in the analog case, in the discrete-time (sampled 

or just “digital”) case, frequency responses are periodic.  Putting in for H, the value of 1 

for f=-fc to f=+fc (fc is low-pass cutoff), and H=0 elsewhere, adjusting the frequency 

scaling*, and doing the integration, we get: 
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where fs is the sampling frequency in Hz, fs=1/T where T is the sampling interval.  It 

computes h(n) for all values, and it is true than h(-n) = h(n) (even symmetry). Note that it 

is a sinc function.   Two complications.  First, we have to truncate this to a finite length.   

Possibly something like -100 to +100 (length 201).  Second, when n=0, the calculation 

blows up.  The correct value is found by limits – it is just (2fc/fs).  Deal with this “error” by 

overwriting h(0), by using a since function if available, or calculate not at exactly n, but 

at n+0.000001 for all n – something like that.  

 

While equation (3) is the result we need going forward, most users will likely want to 

compute the inverse of the impulse response to see how well we do with a truncated 

sequence h(n).  As in the computation from equation (2) to equation (3), we desire to 

avoid exponentials.   In plugging into equation (1), due to the symmetry of h(n) we can 

combine two complex exponentials into cosines (Euler’s relationship**) and: 

 

                                       
    

  
                                                                      

 

   

 

 

Here we have achieved a simple summation of cosines in frequency, a real (not 

complex) result, and have summed from n=0 to n=N (one side of the sequence is all 

that we need).   Equation (4) gives H(f) for any f.  Generally we would compute it on an 

array of values of f from 0 to half the sampling frequency. Something like 500 points is 

likely sufficient so that when we plot H(f) as a function of f, it looks like a continuous 

frequency response curve.   

 

     The two red equations (3 and 4) constitute our simplified design.   

               

    

BUILDING FROM PIECES 
 

So we know how to design and plot a low-pass filter.  How do we get a notch or several 

notches?  We use superposition. 

 

Consider the frequency range of f=0 to f=fs/2.   We restrict our designs to this range – 

obeying the famous “sampling theorem”.  Normally we design low-pass filters with a 

cutoff above f=0 but short of f=fs/2.  Nothing prevents us from setting the cutoff fc to fs/2.  

This would mean, equation (3), that hall(0) = 1 and all other h(n) are zero – a direct path 

through which makes sense. If we then design a second low-pass with a cutoff fc1, and 

subtract this from the first, we get a high-pass with cutoff fc1.  Next we design a third 

low-pass with cutoff fc2, where fc2<fc1, and add this.  We end up with a notch (Fig. 3).  

That is, we have: 
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            Hnotch = Hall – Hc1 + Hc2                                                                                  (5)  

 

and by the linearity of the DTFT as mentioned above:  

 

            hnotch = hall – hc1 + hc2                                                                                     (6) 

 

Additional notches can be added in exactly the same way.  Each additional notch adds 

two terms to equations (5) and (6).   

 

 

A TWO-NOTCH EXAMPLE 
 

Here we will do a two-notch example, which will illustrate several things: (a) how to do 

additional notches (b) some examples of coding with equations (3) and (4), and (c) how 

a truncated result is imperfect due to the necessary truncation.  We remind the reader 

that we are doing this coding with the supposition that we are going to use the impulse 

response for a digital filtering operation.   This may be as an input to audio software that 

accepts “guest” digital filters.  Or it may be the case that we intend to write our own 

implementation filter.  This is not hard at all (if you are a reasonably good coder) even 

lacking significant experience with DSP. 
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Here is the code:  

 
% AN432.m 

N=400 

n=(-N:N); 

fs=10000  

f0=fs/2 

f1=1650 

f2=1550 

f3=1100 

f4=900 

  

h0 = (2*f0/fs)*sin(2*n*pi*f0/fs)./(2*n*pi*f0/fs)  

h0(N+1)= 2*f0/fs  

h1 = (2*f1/fs)*sin(2*n*pi*f1/fs)./(2*n*pi*f1/fs);  

h1(N+1)= 2*f1/fs;  

h2 = (2*f2/fs)*sin(2*n*pi*f2/fs)./(2*n*pi*f2/fs); 

h2(N+1)= 2*f2/fs; 

h3 = (2*f3/fs)*sin(2*n*pi*f3/fs)./(2*n*pi*f3/fs); 

h3(N+1)= 2*f3/fs; 

h4 = (2*f4/fs)*sin(2*n*pi*f4/fs)./(2*n*pi*f4/fs); 

h4(N+1)= 2*f4/fs; 

  

h =  h0  - h1 + h2 -h3 + h4 

 

figure(1)     % Matlab plot of h 

stem(-N:N,h,'r') 

figure(2)     % Matlab plot of absolute H 

plot([0:fs/1000:fs/2-fs/1000],abs(freqz(h,1,500)),'r') 

hold on 

plot([0 5000],[0,0],'k') 

plot([0,0],[0,1.5],'k') 

hold off 

axis([-fs/20 fs/20+fs/2 -.05 1.2]) 

 

f=[0:fs/1000:fs/2]; 

ff=pi*f/fs; 

 

% direct plot of H (Fourier series with f and t interchanged) 

H=h(N+1);  

for k=1:N 

   H=H+2*h(N+1-k)*cos(2*k*ff); 

end 

figure(3) 

plot(f,H,'r') 

hold on 

plot([0 5000],[0,0],'k') 

plot([0,0],[-0.2,1.5],'k') 

hold off 

axis([-fs/20 fs/20+fs/2 -.25 1.2]) 
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Our code here is Matlab.  We give the code as an example, and because often it is very 

useful to use (inherently unambiguous) computer code in the event that equations and 

descriptions may remain unclear.  At least you recognize that the code listed produced 

the figures displayed.   Nothing in this note requires Matlab.    
 

Here the program is first fed specifications.  The length of the filter is set to 801 (n=-400 

to n=+400) and the sampling rate is 10,000 Hz.  One notch is centered at 1600 Hz with 

width 100 Hz (1550 to 1650) and the other is centered at 1000 Hz with width 200 Hz 

(900 to 1100).  Pretty easy to say exactly what you want.   

 

Then five impulse responses (the low-pass blocks), h0 to h4, are computed using 

equation (3).  Trivially we sum these as h = h0 - h1 + h2 - h3 + h4 to get the 

notches.  The code for Fig. 1 (in the program) just displays h, because you are probably 

curious about it.  We used Matlab for the plots here, but any program that plots a data 

vector should work.   Note that h(n) looks a lot like h0: the hall of our discussion.  After 

all, there is relatively little taken out by the two notches, so it should look like that. 

 

 
 

Moving on, Fig. 2 (program) is a Matlab calculation of the magnitude of the frequency 

response and uses the Matlab freqz function.  This we do not plot here as it was used 

to verify that the hand-code of Fig. 3 (program) is correct.  Fig. 3 uses equation (4) so 

should be the route for the general user.   It’s just a sum of cosines, the DTFT being a 

Fourier series in frequency.   In this note, Fig. 5 is the plot under discussion.   
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How well did we do?  Pretty good.  The edges of the notches are where they belong 

and are reasonably sharp.  There is some “fuzziness” in the vicinities of the transitions.  

This is the expected “Gibbs Phenomenon”, which can be adjusted if necessary***.   

 

 

WHAT IF YOU NEED TO PROGRAM THE ACTUAL FILTERING? 

 
Our first choice was probably that some existing audio software that we already have 

has a suitable notch option, in which case linearity suggested we could use multiple 

passes of that.  A second choice might be that we custom design the necessary impulse 

response (as we have just done) and the resulting h(n) can be input as a guest to some 

filtering software.  Here we suppose that we have no suitable software, but we can 

program in some language that handles signals (sequences of numbers).  After, all, the 

boxes we all used are still called computers. 

 

The filtering procedure with an impulse response (FIR filter) is called “convolution”.  

Convolving (please – not “convoluting”!) two sequences is a matter or running one by 

the other, step-by-step, multiplying together adjacent values for that time interval, and 

summing all the multiplies in that overlap. Then the data are shifted by one position and 

the next convolution output value, and so on.  Study of Fig. 6 will give the correct 

understanding.  Two points:  (1) The filter length will generally be much longer that 3  
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(perhaps hundreds) and the signal much much longer than the filter (perhaps tens or 

hundreds of thousands). (2 ) Also, note that the outputs may be untypical until the signal 

data fully overlap the filter length.   This is called a “transient” and usually is not a large 

problem as long as it is recognized.   The main filtering is called “steady state”, and an 

ending transient is expected as the signal exits the filter.   

 

It may be the case that a data-processing program has a built-in convolution function.  

IF you need to write your own, it is not too difficult and even though your code may not 

be highly efficient****, it will likely run fast enough to accommodate a few signal.  
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Before ending, it may be instructive to show exactly why a filter can notch out (null) a 

particular frequency.  A “moving average” is a simple low-pass filter which just adds up 

M adjacent values of a sequence and divides by M (hence the name).  A length-4 

moving average is thus h(n) = [1/4  1/4  1/4  1/4] as seen in Fig. 7.  Frequency analysis 

of this impulse response shows a “zero” at fs/4. We see this in the time domain (Fig. 7) 

in that if we have a sine wave of frequency fs/4 (exactly 4 samples per cycle), regardless 

of phase (30º, 120º, 210º, and 300º in the figure) the average is 0 in all cases.   

  

 
 

 

 

SUMMARY 
 

We have shown here we can handle notch filter design and implementation with simple 

procedure and need not take a full course in DSP or obtain a specific program.  In the 

simplest instance, we understand that existing audio software may be made to work. 

Moving up, we can custom design an impulse response with simple equations/ 

procedures.  Finally, we may write our own convolution procedures to implement the 

digital filtering.  

 

 

NOTES:  (if interested) 
 

*   For many decades in EE, the lower case omega (ω) was an ordinary frequency 

expressed in radians/second instead of cycles/second (renamed Hertz of just Hz).  That 

is, ω=2πf where f is frequency in Hz.  When DSP came along in the late 1960’s, the 

symbol ω was appropriated for a normalized discrete-time frequency in radians (not 

radians/sec). This was confusing at first and still is!   In this view, the sampling 

frequency is 2π radians.  This notion of ω has the one advantage of representing angle 

around the unit circle.  Old timers (and those who no longer study analog – “continuous 

time”) have gotten used to this.  When it is necessary to consider a frequency in 

radians/second, the uppercase omega (Ω) is often found. 
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Steiglitz [N1] has usefully pointed out that the “units” of the discrete-time ω should be 

radians/sample. These are not “physical dimensions” but allow us to keep track of 

proper frequency scaling.   In the DSP case, there is a sampling frequency fs as we 

have used above, and the corresponding sampling time is T = 1/fs.  A sine wave of 

frequency ω advances an angle of ω radians between consecutive samples. In 

summary: 

 

   
       

      
      

       

      
    

       

      
       

       

     
    

      

      
 

 

  

  
      

       
  

 

  
   

  

  
       

      
  

 

**  Euler’s Relationships (after Leonard Euler – pronounced “Oiler”) relates complex 

exponentials to sines and cosines.   Extremely useful.   

 

                                                                                                     

 

which are solved for 

 

              
         

 
                                               

         

  
              

 

When integrating exponentials between symmetric limits (as in the main text) these 

greatly simplify results. 

 

***  Generally if you just say “Gibbs Phenomenon” (J. Willard Gibbs) people will stop 

bugging you about the “fuzzy ears”!    If you apply a Hamming window [N2] to the 

impulse response, the overshooting is nearly completely reduced – at the trade-off that 

the transition rates are somewhat reduced.  

 

****  Convolution is traditionally slow, but the first thing is to get the right answer.  May 

be fast enough and good enough.  Because convolution in time can be achieved by 

jumping to the frequency domain and multiplying, the FFT (Fast Fourier Transform 

algorithm), even with the overhead, can greatly speed things up.   

 

 

 

 

 

 

                                                        AN-432 (12)                            

 



REFERENCES 
 

[1]   “Evidence For Internal Source Of ‘The Hum’ ”, Electronotes Webnote ENWN-47 

2/26/2017   http://electronotes.netfirms.com/ENWN47.pdf  

                                            

                                                            

[2]   Glen MacPherson, “ World Hum Map And Database Project “ 

               http://thehum.info/ 

 

[3]  “Notching to Try to Display ‘The Hum‘ ”, Electronotes Webnote ENWN-38,      

       4/11/2016        http://electronotes.netfirms.com/ENWN38.pdf  

 

[4]  “Calculating/Measuring the Notch”, Electronotes Webnote ENWN-39 4/27/2016  

          http://electronotes.netfirms.com/ENWN39.pdf 

 

[5]   ”Fourier Map”,  Electronotes Application Note No. 410  May 6, 2014  

          http://electronotes.netfirms.com/AN410.pdf  

 

[6]  A extensive series of notes on digital filter design appeared in Electronotes       

           http://electronotes.netfirms.com/EN197.pdf   

           http://electronotes.netfirms.com/EN198.pdf 

           http://electronotes.netfirms.com/EN198.pdf 

 

[N1]  Ken Steiglitz, A Digital Signal Processing Primer, Addison-Wesley (1996),   

            pp65-66 

 

[N2]   Hamming window is discussed in many DSP books.  See also EN#197, 2b-4   

             (Reference 6) and    http://electronotes.netfirms.com/AN362.pdf 

 

 

 

 

 

 

 

 

 

 

 

  

 

                                                           AN-432 (13) 

http://electronotes.netfirms.com/ENWN47.pdf
https://hummap.wordpress.com/
http://thehum.info/
http://electronotes.netfirms.com/ENWN38.pdf
http://electronotes.netfirms.com/ENWN39.pdf
http://electronotes.netfirms.com/AN410.pdf
http://electronotes.netfirms.com/EN197.pdf
http://electronotes.netfirms.com/EN198.pdf
http://electronotes.netfirms.com/EN198.pdf
http://electronotes.netfirms.com/AN362.pdf

