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                                                     FEEDBACK AND SENSITIVITY 

 

 

INTRODUCTION: 
 

      Here we will think of a feedback system as a circuit having a signal from some 

output point back to some input point.  The subject is important and fairly well 

understood [1].   The feedback might be accidental (such as a positive feedback from a 

PA speaker feeding back to a microphone) or intentionally built into an audio amplifier 

(such as negative feedback to flatten a gain curve and/or reduce distortion).     It may 

even be part of something like a climate model.   When the path parameters are known 

so that full multiplier factors and phases are known, it is generally possible to determine 

if a gain of some device increases or decreases as a result of the feedback.    

 

     We want to be sure we understand this calculation.   Beyond this, we want to 

consider how to calculate the effects of an inexact knowledge of the feedback 

parameters in an actual case – the so-called sensitivity problem.  The general sensitivity 

problem is also well understood [2a, 2b, 2c].   

 

IT BEGINS WITH AN IDEAL OP-AMP 
 

     Our study begins with 

the op-amp which is short 

for operational amplifier. 

Engineers deal with op-

amps that are real, but also 

often start with op-amps 

that are considered ideal, 

always mindful of the fact 

that reality may well come in 

to change our success.  On 

the other hand, many 

practical circuits are based on ideal assumptions and are near-nominal.  Here we shall 

be using ideal op-amps for theory and for examples, and to model feedback situations. 

Experiments to verify the results are essential, and of course done with real op-amps. 
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     Fig. 1 shows an ideal op-amp and gives its basic equation.  The op-amp is ideally a 

3-terminal device [in practice, it also has two power supply connections, almost always 

not shown for an ideal case, and often omitted (understood to exist) in a practical 

diagram].  Note that there are two inputs, one    being an inverting input and the other 

   being a non-inverting input (essentially a double negative).  The output voltage is 

given by: 

                                                                                                                                                                                                                

 

This is indeed a strange equation since it has a multiply by     Notice that Fig. 1 gives 

the additional stipulation (reality) that the output is limited to the power supply limits, 

usually something like ±15 volts.  Equation (1) is not too useful as such – but it tells us 

that either the output is at +15 or at -15, OR ELSE the differential input          must 

be zero (the strange case of 0•  being a finite value between +15 and -15).  This 

“miracle” of achieving zero differential input is achieved with negative feedback by the 

op-amp itself. That is, this note will be mainly (ultimately) concerned with positive and 

negative feedback added to usual op-amp configurations (amplifiers, summers) which 

are realized with op-amps by well known and time-honored negative feedback methods.   

 

     About the only other properties of the ideal op-amp to note are that the inputs are 

assumed to draw no currents (infinite input impedance) and the output can supply any 

current without changing its voltage (zero output impedance).  Appendix A lists 

corresponding properties of ideal and real op-amps. As suggested, many (not all) real 

circuits are ideal for practical purposes.  The experimental op-amp circuits here confirm 

the ideal op-amp theory.  

 

 

OP-AMP CIRCUITS 

 
     At this point we need to take care to avoid a diversion into a discussion of the 

cornucopia of op-amp circuits that are common in the design art.  In consequence, here 

we assume this is familiar to the reader or is left as an exercise.  The essential point at 

this stage is that feedback is already in use in the configurations we are going to study 

and build with.  In the one sense we may be essentially involved with changing existing 

feedback in the building blocks.  On the other hand, we may be illustrating a feedback 

flow graph.  The emphasis is in making a point.  This often means that the circuits we 

show will not be efficient designs.  A more direct approach might well involve fewer op-

amps and fewer resistors to the same function (perhaps a gain of +3).   That is, the 

somewhat cumbersome networks may be illustrating the points with clearer functional 

blocks (single function) rather than with a circuit we would actually build or even one we 

might consider “clever” to impress the reader.  Basic brute-force stuff here. 
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   Fig. 2 shows what are likely the four most fundamental negative feedback op-amp 

circuits: the follower, the inverter, the non-inverter, and the (inverting) summer. Most 

likely these are familiar, or are easily derived using equation (1); that is           and 

then Ohm’s Law and current summing, etc.  Some hints are offered in Appendix B, and 

full discussions are easy to locate.   

 

     An interesting notion is whether or not any one of these op-amps “knows” it is in a 

feedback configuration.  Like, doesn’t the op-amp in the follower recognize (meaning, I 

guess, behave in a particular way) because its own output is also its (-) input?  Like – 

doesn’t it “catch on” to what is going on!   Absolutely not.  It just obeys equation (1) at all 

times. 

 

     These circuits are important because we have amplifiers, inverters, scalars, and 

summers here – all we need for feedback loop studies.  These “building blocks” all use 

negative feedback just to function, but the subject of feedback, as is under discussion 

here, has not been intruduced yet. 

 

 

A BIT ON OP-AMPS WITH POSITIVE FEEDBACK    
 

     Bare op-amps with positive feedback also are common, but for application as 

comparators or Schmitt triggers – things we need, but distinctly different from the 

negative feedback devices of Fig. 2.  And the positive feedback ideas for these devices  
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are distinctly different from the way positive feedback works to boost gain in the main 

theme of this note.     

 

     Above we said that the differential input needs to be zero or else the infinite gain 

drives the output to +15 or -15.  As noted, the op-amp “has no idea” where its input 

voltages are coming from.  But it is only through negative feedback properly working 

that             This can fail to occur.  (For example, if the output is amplified to exceed 

the supply limits, negative feedback can fail.  Another case is when there is a reactive 

elements (meaning, usually, capacitors) such that a phase shift makes negative 

feedback positive.)  Here we explicitly use the (+) input for a positive feedback.  Three 

cases are shown in Fig. 3.   

 

     In Fig. 3 (left) we have a curiosity where the output is fed to the (+) input with the (-) 

input grounded.  Clearly the op-amp is happy if the output is +15 or -15, causing the 

differential input (non-zero) to have the correct sign.   Which is it?  It depends on how it 

comes up when power is applied.  Note that if you take a wire and briefly touch the 

output to +15 or to -15, and that forces the choice.  Fig. 3 (middle) is a classic 

comparator.  There is no feedback here but the circuit is useful and leads to the Schmitt 

trigger. The output is +15 if the input is above zero and -15 if the input is below zero.  

What if it is zero?  Well, we don’t usually expect to achieve this, but we can suppose  

that it might cause the output to “chatter” back and forth.  The Schmitt trigger adds 

some “memory” or “hysteresis” to the comparator, so that once it flips self-reinforces the 

flip until some large enough and defined change of input occurs.  

 

     So we have practical and simple op-amp circuit using both negative and positive 

feedbacks.  The main theme here is the case where we want illustrative blocks with 

known finite gains between loops.    

 

 

FEEDBACK ALTERING THE GAIN OF A FINITE GAIN AMPLIFIER 
 

     When it comes to feedback around some loop, positive or negative, we need to pay 

close attention to signs and where a signal is being put in and where it is taken out.  A 
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major stumbling point is trying to look at some one textbook feedback diagram as being 

“universal” (along with a corresponding equation) rather than just simply working out the 

existing circuit and equation.  That is, derive anew (trivially) instead of adapting existing 

examples. 

 

     Fig. 4 shows just four of perhaps a dozen variations on a feedback network, along 

with input/output equations. The flow-graph in (4a) is probably the most classis, a 

negative feedback of β around an amplifier of gain A.   We simply write down the 

equation for Vout.      

                                                                                                                  
which is solved for 

                                 
    

   
  

 

    
                                                                                                                                                                                          

 

This is trivial of course.  It could get complicated because A and/or β might be not just 

constants, but function of frequency.  In this note, we will take both to be constants.     

     

       For example, suppose A is 100 and β=0.05.  In this case, we have negative 

feedback around an amplifier A and G becomes 16.67.  That is, the gain is reduced 

(from 100) to a somewhat smaller value.   G is called, appropriately, the “closed-loop 

gain”.     Note that if β = 0 the feedback loop is broken, and G becomes A, the original 

gain, called the “open-loop gain”. To complete the terminology, Aβ, is called the “loop 

gain” (the total gain around the loop).  (See Appendix C ). 
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     So we just fit this model?  Then what happens if a (+) rather than a (-) input is used 

for the loop?  Equivalently, what if β becomes negative?   What if A is just a “piece of 

wire”; so A=1.  What if A is negative?  What if A is outside the loop?   So many options 

suggests the wisdom of drawing a correct flow-graph and calculating from it, the correct 

equation.    

 

     Fig. 4a, which assumes A is positive and negative feedback is employed, is thought 

of as the starting point because traditionally, negative feedback allows for a well-

controlled gain, a flatter response, less non-linear distortion, and more favorable input 

and output impedances.  The classical advantages of negative feedback in modern 

amplifier designs.   Kind of like giving up a high gain so that everything else gets better.   

 

     The first obvious variation is to consider positive feedback.  What if A = 100 and  

β=-0.05  [still using the (-) input in Fig. 4a].  If we plug into equation (3) we get G=-25.  

Nothing is obviously wrong.  It does look however like an inversion and a severe 

attenuation, something we are not likely to favor.   To see why it’s worse than just being 

not useful, consider that we reduced β from 0.05 through 0 (G=A) and on to β=-0.05 

giving a negative G.  Note that for a particular value of β=-0.01, G in fact went to infinity 

as Aβ=1.  The function G has a singularity as it goes negative. This is more clear if we 

let A go to 1 and call Aβ=g (Fig. 4c or 4d with α=1).  This gives simply (note the positive 

polarity of the feedback summer paths here): 
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This equation is plotted in Fig. 5.  Note the singularity at g=1 and the unstable regions 

when g>1.  In agreement with the corresponding calculations using equation (3), values 

of g up to, but not including 1 (which would be an oscillator) are stable.  For example, in 

Fig. 5, the blue lines show g=2/3 (positive feedback greater than 0 but less than 1) 

giving a gain G=3.  Equation (4) will be easiest to work with going further.    

 

 

CLASSIC SENSITIVITY AND TUNING EQUATIONS 

 
     In many (most?) design problems, various components that determine specific 

performance are not exact.  For example a resistor in an electrical circuit may have 

specifications that say that its value is a certain nominal value to within a certain 

manufacturing uncertainty (tolerance) such as 5% or perhaps 1%.  When one actually 

builds the circuit, are the performance parameters off by this same  tolerance?  Not in 

general.  They might be off by the specified tolerance, or by a larger value, or even by a 

smaller value, or even not at all.  For example the “Q” of a filter might not depend at all 

on the value of a component that determines cutoff frequency, and vice versa. Getting 

control over (at least knowledge of) this “Classic Sensitivity” problem is important, 

particularly in cases of very high sensitivity.   

       

    The first useful notion is to make choices (such as among alternative realizations - 

configurations) and choose one that has generally low sensitivities to passive 

components (resistors and capacitors).  It is not unexpected that the best passive 

sensitivity results are often associated with high negative feedback gains, with their own 

“active sensitivity” consequences as a trade-off.   

 

    In addition, and very usefully, this mathematical procedure of “Classical Sensitivity” 

generally permits us to write down “tuning equations”.  For example, if the filter Q is low 

by a measured amount, we can calculate quite accurately what change is needed, and 

we can achieve this correction with impressive precision, for example with small 

“tweaking” series or shunt resistors (like adding 100 ohms in series to a 10k resistor). 

 

     The sensitivity calculations begin with design equations (such as for Q and cutoff 

frequencies) as algebraic functions of various resistors and capacitors.  That is, we 

have X = X(Y) where Y is perfectly known in theory.  We know the formula.  The 

Classical Sensitivity is given as (See Appendix D for filter examples): 
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The middle term shows this as the ratio of the fractional change is X to the fractional 

change in Y.  This is the sort of thing you would ask for, even if you don’t study calculus: 

if Y changes by 5%, how much does X change.  If it changes by 5% too, you feel you 

are breaking even:     
 

 = 1 . But it can be more or less, perhaps 4, or 1/2, or -1/2.  But it 

does not always come out to be a constant – it may depend on X (thus on Y by the 

design equation).  That is    
 

 may be a function of X, the particular “operating point” or 

design value.  In that case, you plug the nominal design value into the equation.   In a 

filter, for example, the Q might be insensitive at low values of Q and very sensitive for 

high values.   Where the equation does not give a constant, we need to plug in the 

neighborhood where we intend to use the device.  

 

 

     As an example, suppose X = 5Y.  Simple enough.  That is, considering that 

derivative       (or the partial derivative 
   

  
 ) = 5, (the slope), it might appear that the 

error would be 5 times worse.  But clearly the percentage changes will be the same, as 

we see from: 

 

                                      
  

 

 
 
   

  
   

 

  
                                                    

 

However, you can see that if X = Y2, 

 

                                         
                                                                              

 

which is more sensitive, or if X =   , then 

 

                                  
  

 

 
                                                                         

which is less sensitive.  

 

     A case where the sensitivity is not constant is illustrated by X = 5 – Y (a straight line 

of downward unity slope going through Y=0, X=5).  This has: 
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It is going to blow up at Y=5.   It is large (well -4) around Y=4 but back around Y=1 it is 

 -1/4. 

 

     If we are not in the mood for partial derivatives, we can just estimate the sensitivity 

as: 

                                      
    

  

 
  

  

                                                                                             

 

For example, suppose we are designing with X = 5-Y in the vicinity of Y=1.  We 

calculate  

                 X(1) =  5 – 1 = 4 

 

and then we jiggle Y a bit, say Y = 1.01 so that X = 3.99.  Thus ΔY = +0.01 and ΔX = -

0.01, so: 

                    
       

  
          

  
    

      
 

 
                 

which in this case comes out exactly what we had with the partial derivative. 

 

     The notion of a tuning equation [2b, 2c] is likely clear at this point.  We build 

something, an actual instance or a designed circuit and perhaps it is supposed to have 

a Q of 10 but we test it as having a Q of 9.3.  We have a design equation of Q as 

related to some resistor RQ (perhaps nominally 27k) and have calculated      
 

and 

evaluated this at Q=10, and suppose this came out at 2.   How do we change RQ?                                   

  

               
  

 
  

 

     
      

   

  
  

 

 
                                                                 

    

So, we would add a 910 ohm 5% resistor.  Why is this better than a 27k 5% resistor?  

Well, the measurement of Q is effectively a measurement of RQ, and the correction 

should be to the accuracy with which we measured Q. 

 

 

APPLYING SENSITIVITY TO THE POSITIVE FEEDBACK GAIN 
   

   Above we solved for the gain G with feedback g, then went on to look at the general 

issue of classical sensitivity.  While we generally thought of sensitivity with respect to 

some passive component, it can be done with respect to any parameter, including g. 
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Equation (4), just G = 1/(1-g)  gives us G as a function of g, and thus the sensitivity of G 

to g is: 

 

                                        
      

 

 
 
  

  
   

 

   
                                                    

                                  
This is remarkably simple and easily confused with G itself (the sensitivity is gG), and is 

plotted in Fig. 6, which we need to compare carefully with Fig. 5.  Note that at g=2/3, the 

sensitivity is 2 (while G=3).  Is this correct 

 

     To illustrate the validity we can set up an experimental circuit, and this is shown in 

Fig. 7 where a circuit with the gain of 2 has a positive feedback around it with a gain of 

2/3.  This should give: 

 

                     
 

     
                                                                                                                                         

 

Note the three-position switch, and the table that gives theoretical values and 

experimental observations (with experimental error to keep in miind).  With the switch in 

S0 position, the feedback loop is broken, and the gain is just 2.   In the S1 position, the 

positives feedback of 2/3 is working, and indeed, the gain of 6 is now seen. The trick  
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next is to switch in a small series resistor.   We 3.9k as about a 2% addition to the red 

200k resistor.  (This  is a perfectly valid ploy even though we have not accurately 

measured the 200k.).  This decreases the feedback gain by about 2%.  Note that the 

feedback gain is set by the ratio (100k/150k) at 2/3 which is then inverted and fed back 

by the ratio of the two 200k resistors.  The 100k resistor in the input merely sets the 

open loop gain at 2.   

 

     The happy result is then that in the S2 position the gain drops by 4%. Exactly what a 

sensitivity of 2 should give (2 x 2%).   Excellent agreement. 

 

 

 

                                                      AN-430 (11) 

 



REFERENCES 

 
[1]    B. Hutchins, “Feedback Revisited – Gain Due to Feedback”, Electronotes,  

Volume 23, Number 219 November 2013     http://electronotes.netfirms.com/EN219.pdf 

  

[2a]   B. Hutchins, “Analog Signal Processing, Chapter 7, Passive and Active 

Sensitivity”, Electronotes, Volume 20, No. 195, July 2000   

http://electronotes.netfirms.com/EN195.pdf 

 

[2b]  B. Hutchins, “Tuning Equations Derived from Passive Sensitivity”, Electronotes, 

Volume 20, No. 196, Dec. 2000     http://electronotes.netfirms.com/EN196.pdf 

 

[2c]  B. Hutchins, “Passive Sensitivity and Tuning Equations,” Electronotes Application 

Note AN-361, May 15, 2006    http://electronotes.netfirms.com/AN361.pdf       

 

 

NOTES ON “WATTS UP WITH THAT” WEBSITE 

      

      The following three links from Anthony Watts’ remarkable “Watts Up With That” 

website correspond to Parts 1- 3 (Aug 27, Sept 3, and Sept 6 of 2016) of (Lord) 

Christopher Monckton’s multi-part post which supposedly deals with climate feedback. 

The postings include numerous comments, including some from engineers such as 

myself to inform Monckton that he does not understand feedback the way engineers 

use it, and he is factually wrong.  In addition to being demonstrably wrong, while 

accusing his critics of rudeness, he is himself exceptionally rude.   He insists that his 

critics should wait to attack his presentation on feedback until he posts later 

installments.  What he has already posted is embarrassingly wrong and boorish.  We 

wait for Part 4 (etc?) as of Sept 27, 2016 – perhaps hoping for an apology.   

 
https://wattsupwiththat.com/2016/08/27/feet-of-clay-the-official-errors-that-exaggerated-global-warming/   

 

https://wattsupwiththat.com/2016/09/03/feet-of-clay-the-official-errors-that-exaggerated-global-warming-part-2/ 

 

https://wattsupwiththat.com/2016/09/06/feet-of-clay-the-official-errors-that-exaggerated-global-warming-part-3/ 

 

 

 

 

 

           Note Added March 2, 2017:  To date Monckton has not posted further. Perhaps someone suggested that  

                       HIS LORDSHIP stop making a fool of himself.   Two small typos also repaired this date.   
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Appendix A  Real/Ideal 

 
 

                                         IDEAL OP-AMP                                  REAL OP-AMP 

 

Open Loop Gain                       Infinite                            Very large at DC (perhaps 107)                               

                                                                                        but intentionally set to roll-off (for                             

                                                                                        stability) at higher frequencies. 

 

Input Bias Currents                      0                                 very small – a few picoamps 

 

Slew Rate of Output                 Infinite                            perhaps 10 volts/microsecond 

 

Output Impedance                    Zero                               100 Ohms, reduced by negative 

                                                                                        feedback as used   

 

Differential Input Offset             Zero                               a few mV 
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Appendix B   Op-amp Circuits - Hints 
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Appendix C  Loop Gains 
 

 

 

Here the feedback factor is F instead of β since the figure was created for a blog post 

that used that notation.   Again we emphasize the advisability of working out each 

presentation individually.   
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Appendix D  Sensitivity 
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