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                  CASCADING VOLTAGE DIVIDERS – AND FRIENDS 

 

INTRODUCTION: 

 

     Possibly nothing is more familiar to us than the standard resistor voltage-divider (Fig. 

1a).  Indeed one need not wait for an electrical engineering class to encounter this – it 

being a primary example from beginning physics*.  It is so familiar we use it without 

thinking, although at some point there were some essential assumptions involved.  As  

shown, there is a single current (I) through both resistors, and the current is Vin/(R1+R2).                                           
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The output voltage Vout is thus IR2 or Vin[ R2 / (R1+R2) ] and that’s the story. Implicit             

here are two notions**.  First, the voltage (source) has zero output impedance; else that 

impedance needs to be added to R1 and becomes part of the calculation. Secondly, and 

important here, the voltage Vout (output) must be measured by a very high impedance, 

or passed on by something like the input stage of an op-amp which draws only a tiny 

current.  We do not want to steal any portion of the standing current I.  So we have two 

voltages in the diagram, Vin and Vout which are fundamentally different.  The source Vin 

is an imposed voltage (a mathematical known) with zero source impedance (at least in 

theory) while the output Vout is a voltage to be used later (a mathematical unknown), but 

not as anything capable of supplying significant current.   Too often, we automatically 

make allowances for inputs vs. outputs, without explaining.   

 

     Given that we can’t significantly “load” the output of a voltage divider without making 

perhaps significant allowances, we can’t expect to be able to cascade either voltage 

dividers, or more general structures (see below) without changing what happens at the 

first junction.  Any second stage “loads” the first.  Well, we could cascade if we use a 

“buffer” which is shown in Fig. 1b as one of the switched selections (not selected in the 

figure).  That is, the buffer (usually an op-amp voltage-follower) monitors the input and 

supplies a low impedance re-sourcing of its input voltage.  With the buffer, the cascade 

works and the total attenuation is the product of the attenuations of the individual 

stages.  Without the buffer, the second stage will always load down the first, increasing 

the attenuation to some degree. 

 

     We should remark that we are mainly interested in this cascading when the stages 

are simple low-pass and high-pass filters (see below) and in general, there is little 

likelihood or a need for cascaded resistive attenuators.  A cascade may be part of a 

control structures (such as a mixing board).  Or a load equivalent to a second stage 

may be the result of a variable voltage divider (a potentiometer!) feeding a realistic load. 

And, some extremes requiring very large attenuation ratios do occur***.  

 

     One simple approach which would work to some degree is to make the impedance 

of the second stage much higher than that of the first, while maintaining the desired 

attenuation ratio.  For example, suppose in Fig. 1b that (without the buffer) R1 is 10k 

and R2 is 1k (an attenuation of 1/11 = 0.9090…).  If we followed this by the same 

attenuator for R3 and R4, the additional attenuation would be somewhat greater.  If 

however, we used R3=1M and R4=100k, the attenuation of the second stage would be 

1/11 as before, and the 1.1M resistance of the second stage would have little effect on 

R2.  (The difference would be that the output impedance of Vout would be much higher, 

nearly 90k.)  But we really do not expect this to come up.   
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     More to the point, let’s consider the case where these are not resistive voltage 

dividers, but where capacitors are involved as simple low-pass and high-pass filters.   

Fig. 1c shows the divider composed of two unspecified impedances Z1 and Z2. If the 

impedance is a resistance, we write Z=R.  If it is an inductor, we write Z = sL and if it is 

a capacitance, we write Z = 1/sC.   Here we will only consider capacitors.  Here s is the 

familiar complex Laplace variable.   In these cases where the impedances are more 

general (meaning frequency dependent) we describe the attenuation not as a constant 

but as a frequency response, the magnitude of a “transfer function” which has the 

notation T(s) = Vout(s)/Vin(s).   Recall that the mathematical path from T(s) to the 

frequency response, denoted FR= |T(jω)| = |T(2πf)|, is to substitute jω = 2jπf for s.  As 

with any complex number, you then multiply T(jω) by T(-jω), it’s complex conjugate, and 

take the square root.  This is nothing more than the Pythagorean Theorem. 

 

     The transfer function corresponding to [ R2 / (R1+R2) ] is for the general case of  

Fig. 1c: 

                                                                                                                                             

 

For the low-pass of Fig. 1d this becomes: 

 

                                                                                                                                            

 

 and for the high-pass of Fig. 1e it becomes: 

 

                                                                                                                                          

 

equations (2) and (3) are a roll-off and a roll-up of 6db/octave with 3db cutoff  
 

   
  of 

1/2        Nothing new here. 

 

     We argued above that there was little or no reason to ever cascade voltage dividers.  

On the other hand, with the cases of the filters we can consider cascading for different 

filters and/or increased roll-off rates.   This approach may be a dead end.  First, there is 

the loading problem discussed above.   Secondly, and probably far more importantly, 

we can obtain a greater roll-off rate (asymptotically), but no respectable (sharp) 

corners****.   The flaw is that the network is passive.  In order to achieve sharp corners 

we need complex poles.  One way to achieve complex poles is to use inductors (coils), 

which can be large and heavy (iron cores) at audio frequencies.  Accordingly, “active 

filters” which use a power supply and op-amps are generally the choice [1,2].     

 

     So – lots of not so good ideas here.    But there remains a simple case that yields an 

interesting result.  This is suggested as a general 4-element cascade (Fig. 1f) with a 
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specific choice of a cascade of a low-pass and a high-pass (Fig. 1g) to achieve a 

rudimentary band-pass [3].   

 

     We can either solve the general network of Fig. 1f and plug in R’s and C’s, or we can 

solve Fig. 1g directly [3 – third link], both leading to the same answer.  In these cases, 

note that we have the known source voltage, and now two unknown voltages, Vout, and 

the intermediate node voltage called V’ here.  It is still true that Vout is related to V’ as 

(using the general approach): 

                   

                       
     

     
                                                                                                                                 

             

which is one of the two equations (two unknowns) we need.  The second equation is 

obtained by summing currents at the V’ node: 

 

                                                                                                                                                    

where: 

              

                       
     

 

  
                                                                                                                            

 

                   
  

  
                                                                                                                                   

 

                   
  

     
                                                                                                                              

 

Plugging equations (6) into equation (5) and eliminating V’ in favor of Vout using 

equation (4) yields: 

 

          
    

   
  

    

                          
                                                                                            

 

Next, plugging in the elements of Fig. 1g corresponding to Fig. 1f, we have: 
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     Having calculated T(s) as in equation (8b) is the key to everything else: poles/zeros, 

frequency response, phase response, etc. [1].   In the manner outlined above, we could 

write a closed form for the frequency response |T(s)|.  However, we can also just use a 

program function such as Matlab’s freqs directly on the polynomial coefficients of 

equation (8b).  So here, we will cut a few corners.   We know that the low-pass, by itself 

would have a pole at -1/R1C1; and the high-pass, by itself, would have a pole at  

-1/R2C2.  If we use a buffer between the stages, or here, just make sure the impedance 

level of the high-pass is significantly larger than that of the low-pass, we might just 

suppose the poles were uncoupled.  What would the denominator look like in such a 

case? 

            
 

    
       

 

    
             

 

    
 

 

    
  

 

        
                   

 

which is the same as the denominator of equation (8b) except for the addition to the 

damping term (coefficient of s) of 
 

    
 for equation (8b).  Thus the poles were assumed 

purely real, and they are moved even further from ever becoming complex as a result of 

the coupling.  We expected this.  The “Q” (sharpness) of the band-pass (the reciprocal 

of the damping) is very low.  (If we DO need the actual poles exactly, we leave the 
 

    
 

term in the denominator and use the quadratic formula.) 

 

     Using the freqs function (or similar, or functionally equivalent) we can easily 

calculate the frequency response.  The function freqs requires the three polynomial 

coefficients of the numerator [ 0,  
 

    
 , 0 ] and of the three polynomial coefficients of the 

denominator [1 , 
 

    
 

 

    
 

 

    
  , 

 

        
    as well as a frequency vector: samples of  

ω = 2πf, where f is ordinary frequency in Hz.  For example, if we want to calculate on 

the interval 0 to 50 Hz, we might choose ω = 2π [ 0 0.1 0.2 0.3 …… 49.9 50.0 ].  For the 

frequency response magnitude, we just take the absolute value of freqs.   

 

     Here we shall show three example filters, two from the spec. sheet [3 – 2nd link] and 

one as an example of a narrower response with higher cutoffs.  The frequency 

responses are shown in Fig. 2, corresponding to the data in the table below the figure.  

We see the expected very low-Q band-pass responses with 3db frequencies very close 

to the design values.  We have not discussed how high these responses should be at 

maximum, but it is clear that they approach but do not reach 1, and that the narrower 

response (dashed black) is lower than the other two, and this is as expected.  It is well-

known [4] that the center, max of the band-pass, is the square root of the product of any 

two points at the same level (traditionally the -3db = 0.707, green line, is used).  This 

center frequency is named ω0, and ω0
2  = 

 

        
 is the third term of the denominator 

polynomial of equation (8b). 
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TABLE OF EXAMPLE FILTERS  (resistors in kΩ, capacitors in μF) 

 

Color        R1      C1       R2      C2         HP=1/2πR2C2      LP =1/2πR1C1    max(|T(s)|) 

 

Blue         1.9      6.8      233    6.8             0.10 Hz                12.3 Hz               0.984 

 

Red          1.9      2.2     133     10              0.12 Hz                38.1 Hz               0.983 

 

Dashed     1.9     0.68    200    0.1             7.96 Hz                123 Hz                0.931 

Black 

 

 

     Now notice that if we evaluate equation (8b) at s=jω0, the s2 term becomes  
  

        
 

so this cancels the constant term (ω0), and then the s in the numerator cancels the s in 

the denominator.  This leaves a constant, the magnitude of T(s) at ω0, the peak gain: 

 

                                                  
    

                
                                                            

 

As long as we arrange                , the case here, this peak (plateau) can be 

sufficiently close to 1 for most purposes.  
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Matlab Code for Fig. 2 

 
% AN429.m 

% 

%Filter 1 

R1=1900 

C1=6.8e-6 

R2=233000 

C2=6.8e-6 

P1=1/(2*pi*R1*C1) 

P2=1/(2*pi*R2*C2) 

% 

n1=1/(R1*C1) 

d2=1 

d1=(1/(R1*C1) + 1/(R2*C2) + 1/(R2*C1)) 

d0=(1/(R1*C1*R2*C2)) 

% 

f=[0.01:.01:20]; 

f=[f [20.1:0.1:500]]; 

w=2*pi*f; 

% 

T1=abs(freqs([0 n1 0],[d2 d1 d0],w)); 

T1max = max(T1) 

T1Calc=R2*C2/(R1*C2+R1*C1+R2*C2) 

%  

% Filter 2 

R1=1900 

C1=2.2e-6 

R2=133000 

C2=10e-6 

P1=1/(2*pi*R1*C1) 

P2=1/(2*pi*R2*C2) 

% 

n1=1/(R1*C1) 

d2=1 

d1=(1/(R1*C1) + 1/(R2*C2) + 1/(R2*C1)) 

d0=(1/(R1*C1*R2*C2)) 

% 

T2=abs(freqs([0 n1 0],[d2 d1 d0],w)); 

T2max = max(T2) 

T2Calc=R2*C2/(R1*C2+R1*C1+R2*C2) 

%  

% Filter 3 

R1=1900 

C1=0.68e-6 

R2=200000 

C2=0.1e-6 

P1=1/(2*pi*R1*C1) 

P2=1/(2*pi*R2*C2) 

% 

n1=1/(R1*C1) 

d2=1 

d1=(1/(R1*C1) + 1/(R2*C2) + 1/(R2*C1)) 

d0=(1/(R1*C1*R2*C2)) 

% 
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T3=abs(freqs([0 n1 0],[d2 d1 d0],w)); 

T3max = max(T3) 

T3Calc=R2*C2/(R1*C2+R1*C1+R2*C2) 

% 

% 

% 

figure(1) 

loglog(f,T1) 

hold on 

loglog(f,T2,'r') 

loglog(f,T3,'k:') 

plot([0.001 500],[1/sqrt(2) 1/sqrt(2)], 'g') 

   plot([12 12],[0.001 2],'m') 

   plot([38 38],[0.001 2],'m') 

   plot([.1 .1],[0.001 2],'m') 

   plot([.12 .12],[0.001 2],'m') 

   plot([P1 P1],[0.002 2],'m') 

   plot([P2 P2],[0.002 2],'m') 

hold off 

grid on 

axis([.02 500 0.02  1.2]) 
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Historical Notes Just for Fun 
 

*  I am sure this is taught in a beginning physics course in college – perhaps also in high 

school.  Anyway I knew it in HS through self-study and from explaining electronics to my 

friend, classmate, (and first student!) Jerry DeGraff.    I explained the voltage divider, 

which he understood, and I had already explained to him how a triode vacuum tube 

worked to amplify a voltage. Prefacing a query with the polite qualification that it was 

“probably a silly question”, Jerry asked why, given that I was so intent on amplifying a 

voltage that I was now intending to make it smaller.  I never forgot his question, and the 

need, from time to time, to say why we are doing the things we are.  Too many students 

just don’t ask.  In more recent time, I would teach “Perfect Reconstruction Filters” 

(breaking a signal into parts in an unlikely way – and putting it back together).  I always 

had to prompt the students to ask why we bothered.  It was because we could monkey 

with the pieces, compressing data, before less perfect (but acceptable) reassembly. 

 

**  Attaching an instrument may significantly disturb a proper measurement. In our 

student labs we often saw errors (by students AND instructors) where allowance for the 

output impedances of sources, or the capacitive loading of scope cables, was not 

recognized.  If testing a first-order LP RC such as we have seen here, we might have a 

resistor R= 3k and a function generator adding 600 ohms to it, and find folks wondering 

why they were off by 20%.  In a serious lab we more or less had two op-amp followers 

installed permanently on either end of our experimental breadboards.  

   

The left op-amp buffered the function generator, offering essentially 0 ohms of output 

impedance.  The right op-amp isolated the scope cable from any op-amp outputs with 

the 1k series resistance (little effect on the scope display, but no unstable oscillations).   

It also offered a 1M “probe” to hold down the voltage when the probe wire (red) was just 

floating or being moved.  Trying to connect cables with alligator clips usually meant 

frustration with components pulled out and constant cable repair.  With our setups, we 

generally just moved the green and red wires to different breadboard holes as needed. 

Sure the students needed to learn in lab that the real world was tricky.  But it was a 

good idea to avoid known pitfalls.  There were enough unknown unknowns 

automatically.  
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***  People tend to suppose that there are some limits to resistive voltage dividers – 

some maximum attenuation beyond which any additional cut never is needed.  Perhaps 

1000:1 or something like that.  The idea is related to the notion that if you cut a signal 

too much, it is down in the inherent noise/offset regions.   That is, to a millivolt level; 

down from levels of a few volts. 

   

But what if your signals (voltage levels) were thousands of volts, and you proposed to 

regulate this level with an op-amp loop.   That’s silly!  Op-amps can’t stand thousands of 

volts.  Some 40+ years ago, my friend and fellow student Jim Starbuck, wanted to 

regulate a high-voltage lab supply of some 2000 volts DC (or was it 5000 volts – not 

sure!), and he proposed to do this with an IC op-amp (a 741 – new in those days).  He 

proposed a triac in the AC line, with the op-amp controlling the triac. Then a feedback 

loop from the lab supply output to the op-amp input.    But how in the world do you feed 

2000 volts to an op-amp?  With a voltage divider of course.  The op-amp only sees the 

divider output.  Yes – it was wise to make the upper leg of the divider from several 

series resistors to avoid the possibility of arcing.  

 

**** In my day, every EE student feared going home for vacation and being asked (told) 

to fix the family TV.  Usually you could plead a lack of the right equipment.  A very 

incomplete explanation!  You didn’t know how to fix a TV and never would.  In my case, 

it was more the neighbor’s senior play recording.   The play, late 50’s, had been audio 

recorded with a poorly grounded microphone and was mostly hum.  We all knew this 

was 60 cps (now Hz).  I knew just enough to suppose that a high-pass filter could pass 

the speech while blocking 60 Hz.   I even knew how to make an RC high-pass with 

cutoff above 60 Hz.  I really don’t remember if I had any idea about impedances, but we 

played the original tape and made a new copy.  It was no better!   I even remember 

trying two HP stages, and this didn’t work either.   

 

     Things are usually not as simple as we first suppose, and in this case, there were so 

many things that I might have done wrong that I can’t be sure at all.  Later I learned that 

one fundamental “error” was that “60 Hz hum” is really 120 Hz second harmonic.  That 

was likely the main problem.  Another thing was that I had little idea that filters had roll-

off rates that mattered, and that by using the cascade, the corner kept getting worse.  It 

is unlikely I had a notion of one stage loading the next and thus altering the 

performance.    

 

     Eventually I learned about notch filtering, comb filtering, and even adaptive filtering.  

By the time I salvaged the play, no one really cared!  And by the way, the hum was 

saturating the tape, so that portions of the speech near zero crossings could be heard. 

Somehow the ear/brain made some sense of it.  Here is the reference. 

                                   http://electronotes.netfirms.com/AES5.PDF 
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