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                               WHY NO RANGE-SWITCH WITH HEARING? 

 

INTRODUCTION: 

 
     Many of our studies here involve technical aspects of hearing, as necessary in some 

application such as audio, speech, and music.  It is common to take the “receiver” 

portion of our considerations (i.e., the ear) as a given.  Indeed we will often be told that 

the details of how the hearing system works is “beyond the scope”, or is relegated to 

many excellent references [1-3].  Often we are asked to approximate something like the 

way hearing apparently works (like “assume the ear is a Fourier analyzer”).    

     Among the many elements of hearing that tend to be ignored are those that relate to 

ways in which the hearing mechanism is DIFFERENT from its nearest engineering 

counterpart.  Our perception of loudness is unlike an (pressure) amplitude measure-

ment for a physical vibration.  Our perception of pitch is unlike a simple spectrum 

analyzer.  (Often we see laments about how evolution has failed to give us exactly the 

corresponding mathematical device.)   In one important comparison, the ear has a wide 

range, and reports this wide-ranging parameter without need of a “Range-Switch”. 

 

BACKGROUND: 

     Actually, engineers are very comfortable with the so-called “dual-descriptions” of 

phenomenon in the “dual-domains” of time and frequency.  That is, mathematically we 

describe something like sound as a mathematical function of time, s(t); or as an 

alternative, a mathematical function of frequency, S(f).  We envision the ear as using 

either or both – somehow.  Engineers jump back and forth between domains as a 

means of making a problem easier to solve, for insight, or just for entertainment.   By in 

large, they do not even bother to warn their reader/listeners what they are doing.   

     Perhaps 30 years ago, I gave a colloquium at Cornell on music synthesis.  I began 

by saying that musicians used frequency-domain descriptions – they just wrote their 

spectrograms in a strange way – simultaneously putting up an overhead slide of a page 

from an orchestral score.   It got the predictable good laugh, and everyone got the point.  

I went on to insist that this meant that music (indeed, sound in general) was 

parameterized.  We could describe a sound denoted s as a function of time, s(t).  We  
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will get further, faster, by saying s(t) is described by parameters that vary (relatively 

speaking) slowly in time (perhaps once during a “note” of say 1 second duration).  Such 

parameters would involve the loudness, duration, and frequency (more generally, a 

fuller description in terms of a “spectrum”), and so on.    That is, the sound is 

characterized into an efficient set of quantitative attributes.   

     Often, alternatively, we get things basically right by saying that the sound has a 

spectral description S = S(f)  [where the upper case is the corresponding frequency-

domain variable].   The two descriptions are often said to be related by a “Fourier 

transform”.   Many (likely most) sounds fit better with a spectral description (recall the 

orchestral score).                                                               

     In a real sense, s(t) and S(f) are complete, equivalent descriptions.   Yet, the signal 

s(t) is still actually a physical pressure variation.  That is, a vibration of air molecules 

creating regions of over- and under-pressure; bumping about (as longitudinal waves).  

We could compare the sound wave to changes or atmospheric pressure as on the 

weather report!  However, the variations in barometric values, while tiny (a few percent), 

are very huge compared to the variations that constitute sound, which may be as small 

as two ten-billionth of an atmosphere!   [Keep in mind that the pressures are extremely 

small, but the area of the eardrum is very large on this scale, and force is pressure 

times area.]  Barometric variations are also many orders of magnitude slower in time.  

Further, the total audible dynamic range for pressure variations for the normal ear may 

be a million to one (threshold of hearing to threshold of pain!). Thus the sound 

pressures are from about 2×10-10 to 2×10-4 atmospheres.  If you get the impression that 

the ear is an extremely sensitive instrument of nearly unimaginable capabilities, 

something an engineer could only dream of, you are right.   

     The “take-away” at this point is that sound is a vibration that propagates through the 

air (molecule bumping molecule) but only creates tiny, quite local variations from normal 

pressure.  The ear (human or otherwise) is remarkably well evolved to accommodate 

pressures from the lowest levels, to the highest that is useful to a given critter (the 

1000000:1 ratio).  Later we note that pitch perception has a 1000:1 ratio.   

 

RANGE-SWITCHING - LOUDNESS 

     Builders of instruments for physical measurements most often need to include a 

“range-switch” either as a manually operated rotary switch, or with pushbuttons; or as 

an automatic ranging feature.  A user of a $15 multimeter is familiar with this.   There 

are several reasons for this.  First of all, typically signals are confined in the meter 

electronics to be safely between random noise on the small side and the available 

power supply “rails” on the high side.  You don’t want to clip, or get lost in the noise. 
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     A second reason is more subtle.  If you have a voltmeter (for example) reading 

millivolts, and yet want it to read a power main of perhaps 120 volts, that would be 

120,000 millivolts.  Well, it would not likely be exactly 120.000 volts on the lines, 

perhaps 119.634 volts.  The meter wouldn’t have the precision to reliably report this as 

119,634 millivolts, and there are twice as many digits as you likely need or want 

anyway.  Thus we are delighted to provide a device that cheaply and reliably says 120. 

Either we switched to a 200 volt range, or the meter just did it and reported only 3 digits 

so as not to tell outrageous lies.  Set to other ranges, it might tell us that a battery is 

1.42 volts, for example.  Plenty good enough.  Familiar.  

     Still it goes further.  If we get a sound-level meter, or a frequency-counter intended 

for audio, we may find it strange that the sound level is measured in decibels. A 

frequency meter may have a translation to musical notes (like the famous A4=440 Hz).  

Why logarithms for sound levels, you demand, and how did evolution come to ingrain 

decibels, and octaves?   It didn’t.  Those are man-made and artificial.   

                            What they are are ratios. 

    Much as we saw that a voltage measurement made sense against a background of 

ranges, a critter’s hearing seems to be interested in how much a parameter of the 

hearing differs from a current value or expectations.   While we detect signal with 

pressure variations down to tiny tiny fractions of an atmosphere, if the same pressure 

variations are added to a larger signal, it is ignored.   Why bother!   It is like floating 

point arithmetic.  It is worth an example here. 

     Suppose we have a floating-point format of a three digit mantissa and a one digit 

exponent.  The number 123 would be: 

     a = 0.123 × 103  

while the number 52 would be: 

    b = 0.520 × 102 

 and the number 0.00521 would be: 

    c = 0.521 × 10-2 

We can add a to b to give 

    a + b = 0.175 × 103 
 = 175 

but using the exponent 3 when adding a + c gives: 

    a + c = 0.123 × 103  + 0.00000521 × 103  =  0.123 × 103  = 123 
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Because the mantissa was only three decimal places in this example, the small number 

is lost.  The number c is perfectly fine by itself, but can’t be added to a much larger 

number.   Thus it is the nature of the floating-point arithmetic to show disinterest when 

the ratio due to a small alteration is close to 1. 

     Roughly we think that when it comes to loudness an increase of say 5% to15% 

(0.4db to 1.2db, or ballpark, 1db) is necessary to be significant.  For more discussion of 

db and indeed of hearing in general, see [4].   [ With pitch, something like 3% (half a 

semitone) is significant.]  Indeed, if what is often called a “Just Noticeable Difference” 

(JND) is around 1db, we understand a full range of 120db as being 120 possible “bins” 

for loudness which should leave us quite functional in that regard. The logarithmic 

spacing thus divides a wide range (1,000,000:1 which we need) into a number of 

divisions (120) that is all we need.  Evolution did it. 

     It may be hard to envision a 1,000,000:1 ratio except by imagining a choice between 

$1,000,000 and $1.  But what does this look like on a graph?   Fig. 1 shows that this is 

hard to graph.  We start (left panel) with signal of amplitude 1 (red), two cycles of a sine 

wave just as an example, and divide it by 10 (yellow-green) and then by 100 (blue).  

Note that if we divided by 1000 (or more) we would only be overplotting the light blue 

baseline.  So a ratio of 100:1 is about all we can show on an ordinary plot.  In order to 

show more attenuation, we need additional plots, and the middle panel of Fig. 1 shows 
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the plots from 0.01 (blue) to 0.001 (green) and to 0.0001 (purple).  Again, we reach 

baseline.  Thus it is left to the right panel to show the plots for 0.0001 (purple) to 

0.00001 (light green) and finally to 0.000001 (black) to get down by a million.  This red 

to black is the loudness range of the ear.  Impressive. 

     Further, recall that on this scale, we have already started at the 1 = threshold of pain!  

This was already about 2 × 10-4 atmospheres.  Thus we see how tiny the pressure 

levels are, which we can still hear.  A rather astounding number often quoted is that the 

ear responds to a displacement of the eardrum equivalent to 0.02 the diameter of a 

hydrogen atom.  { Sometimes it is 0.03, and Hartmann allows a full hydrogen atom [2, 

pg. 61]. }  Three questions perhaps come to mind: (1) Is this true? (2) How could it be 

true? and (3) Who measured this?   The answers are (1) seems to be ballpark true, (2) 

its because of the relatively immense area of the eardrum and (3) it seems to be a 

calculation, not a measurement.   

     First, the issue with area.   If the news said that an inch of rain fell on a football field 

in Texas, you might envision a challenging mop-up, but still only 28,050 gallons or about 

1/24 of an Olympic swimming pool.  If on the other hand, you heard that an inch or rain 

fell on all of Texas, that would be about 4.46 × 1012 gallons.  So area matters a lot.  The 

eardrum has an area of roughly 0.5 cm2 as compared to the supposed tiny 

displacement of 0.5 × 10-8 cm. 

     I have not been able to find a discussion of the question of measurement vs. 

calculation.  Yet it would be quite absurd to suppose we could even measure the 

position of the eardrum to that precision (roughness, for example), let alone its motion. 

We do however know the acoustic power needed, and the area of the eardrum.  This 

permits the fair estimation of displacement.   That must be what they did.  It is indeed 

tiny.   

 

PITCH IN “BINS” TOO 

     We saw above that when it came to loudness that the ear had a very large dynamic 

range (1,000,000:1) and yet our resolution was such that something like100 levels, 

logarithmically spaced (in decibels), was really enough.  A fortuitous display of the 

analogous situation with regard to pitch is available and familiar as an ordinary piano 

keyboard.  Fig. 2 shows a somewhat extended keyboard.   The famous 88-keys are 

shown in blue.  This is just over 7 octaves.  The actual range of pitch perception 

extends beyond the range of the keyboard to just over 10 octaves to include the keys in 

the green regions on either end. This is 125 “keys” (10.4 octaves) in our range of pitch, 

a number we compare to 120db.  Apparently whomever designed the piano decided 

that about a hundred notes was enough.  More on this below. 
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     Note first here that we again deal with ratios.  As soon as we mention “octaves” we 

are dealing with 2:1 ratios of frequencies.  This again puts pitch on a perceptual 

logarithmic scale.  Note well that we say we can normally hear from about 15 Hz to 

20,000 Hz, a bit more than 1000:1.   (This is less than the range of loudness, but still 

impressive.)   This puts the arithmetic middle of the range of pitch (at about 10,000 Hz) 

which is about a D# just over an octave above the highest note on the piano.  NOT even 

on the keyboard!   What happened to the famous “middle C”?  Well, it’s at 261.63 Hz. 

And the famous “A 440” to which the oboe sounds to tune the orchestra is of course at 

440 Hz.  Ratios of 2 every 12 notes matter.   

     So, we understand ratios.  In addition to a 2:1 ratio (octave) we know there are other 

ratios between the octaves that are of interest, such as a “fifth” (3:2) and four or five 

others.  So, why are there 12 tones in an octave in the standard scale?  Well, it’s 

complicated but well studied [5].  The selection of 12 tones per octave (as opposed to, 

say 11 or 13, etc.) is a balance between enough “density” within an octave and (more or 

less by chance) getting good approximations to low integer ratios.  The compromise is a 

12-tone “equal-tempered” scale.  In this scale, any piano key has a pitch the same as 

that below it (white or black) multiplied by the “twelfth-root-of-2”.   This is: 

          2(1/12) = 1.0594631 

(about 6%) so if middle C is 261.6256 the C# just above it is 277.1826.  The full range 

can be generated, for example in Matlab, as: 

    r  =  -5:(1/12):+6 

    f  =  440*2.^(r) 

which generates from 5 octaves below A=440 or 13.75 Hz to 6 octaves above A=440 or 

28,160 Hz (above audible).   Note that if you have some frequency in mind, the 

standard scale will give you a choice within about 3%.   The value of 3% is roughly the 

just noticeable difference for pitch.   
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LOUDNESS CHANGES WITH PITCH 

     Having looked at loudness and at pitch, we can now combine the two.  It would be 

quite remarkable if, in stating that we hear from 15 Hz to 20,000 Hz, it were true that we 

hear all the frequencies equally well, and that outside this region, we hear absolutely 

nothing.  Indeed we expect some notion of a band-pass frequency response where the 

response tapers at the low and high frequency ends.  Further we expect that, regardless 

of the frequency response, that the actual “detection” or an audible signal depends on 

the loudness (pressure amplitude basically) of the input sound.    

     Recognizing this, way back in 1933 Fletcher and Munson [7] ran experiments and 

obtained a set of curves which pretty much tell us what we need to know today.  They, 

and newer versions, give a set of U-shaped curves (Fig. 3 typical) rolling up below 

about 100 Hz and above about 6000 Hz, with a modest bump down between 3000 Hz 

to 4000 Hz (due to a resonance of the ear canal).  These are unusual (for an engineer) 

due to their orientation (U-shape) and the multiplicity of response curves.  We live with 

them, but perhaps forget that we were first confused by them. 
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     Consider first what Fletcher and Munson (F-M) were trying to measure: Loudness 

(subjective) as a function of input intensity and frequency (objective).  Measuring 

objective parameters was not difficult with equipment available in 1933.  Then, as today, 

however, subjective loudness is a challenge.  It would be hard to take a sound at a 

given level of intensity at a given level of frequency, and say, for example, that at a 

different frequency the result was subjectively “half as loud”.  Instead, F-M allowed the 

subjects of the experiment to move to a different frequency and adjust the sound 

pressure level so that subjectively the sound was of equal loudness to the first 

frequency. Setting a set of intensity levels at midrange, it was possible to find and plot 

how much more pressure was necessary to reach subjective equality.  Hence the 

curves bend upward at the ends of the range.     

     Contrast this to the way an engineer measures the frequency response of an 

electrical filter.  We set a convenient input amplitude, sweep frequency, and objectively 

(like with an AC voltmeter) the output.  This takes out the subjective element.  Further, 

our filter is probably near nominal when it comes to linearity, so we only need one 

curve.  If we have a bandpass-like response (it roll down at the extremes) we have 

smaller numbers on the end, and an inverted U.  With subjective equal-loudness, we 

had larger numbers (the amount of upward adjustment) which was larger on the ends. 

The response of the ear is supposed to roll-off (down) on the ends – what gives!   
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     So it is not really correct to say that F-M and more modern versions are measuring 

the frequency response, but it is still basically the general idea, but applied to a more 

unwieldy item (subjective loudness).  Oh – and we may well flip the curve over.  Fig. 4 

shows a single level (threshold of hearing) for one such set of curves, flipped over, so 

that it more closely resembles a band-pass.  This I find very helpful, in that the response 

rolls-off on the ends. (I don’t know why these curves tip up ever so slightly just before 

disappearing on the high side – they are quite hard to hear at all up there regardless of 

loudness.)  Note that Fig. 4 resembles the “A-Weight” curve of a loudness meter [4].   
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