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                   A DFT CURIOSITY – INVESTIGATING BOTTOM UP 

   

   The presentation below is overtly about a curious case of using a DFT to estimate a 

Fourier Series [1, 2], with a subtext of suggesting that one can often find an explanation 

by working at the problem from the answer back.  It comes from a real experience in an 

EE teaching lab (at least 25 years ago!).  The same curiosity reappeared to me recently 

as an outright question from a reader of Electronotes.  Originally, it came to me as a 

report of an apparent bug in a Pascal program such that a DFT gave a slightly wrong 

answer.  It was said that no one could explain what was going on (long list of professors 

cited!).  They were not asking me – or maybe they were.  I knew pretty much what was 

going on.  Not that I figured it out on the spot.   It just happened that I had investigated it 

before (perhaps only weeks before) when I found something essentially the same, and 

ran a logical investigation, working back from the answer (bottom up).  Sure I told them 

the cause.   

 

     Here the school was doing a practical exercise in Fourier Series (FS), also using a 

companion lab implementation with a sampling system followed by a DFT.  The task 

was to sample a square wave from a function generator, use the Pascal program 

(written by a TA), and relate the result to the well-known mathematical FS of a square 

wave.  Not much thought had been given to the limitations, and it would be sufficient if 

the spectrum out of the DFT had odd harmonics with the first few falling off as 1, 1/3, 

and 1/5 (1/k), or roughly so.  Stopping there basically avoided the issue of folding 

(aliasing).  This pretty much worked.    

 

     As I recall, the acquisition part of the experiment was not much different from just 

typing in a sequence.  You stopped the hardware part when you caught it right. Only the 

square wave from an analog function generator was retained (no speech for example) 

and the captured data was adjusted to a series of positive samples followed by an equal 

number of negative values – exactly one cycle.  In a few tries, with steady hands, this 

was achieved.  We can thus easily simulate what happens thereafter using Matlab. 

 

      Fig. 1 shows the case of a length 64 sequence of samples with 32 samples of  

value +1 followed by 32 of value -1 (Fig. 1a).  These 64 samples are processed to the 

frequency domain with a DFT (Matlab fft) giving the magnitude (Fig. 1b) and the real 

and imaginary parts (Fig. 1c and Fig. 1d).   This is exactly as we should expect. 
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     Everyone was however expecting a purely imaginary result (odd symmetry), yet this 

has a real part which is a constant value of 2 for odd harmonics, 0 for even harmonics.   

Blaming the error on the hardware and sampling made no sense.  [ For example, a DC 

error would have made X(0) non-zero.]  Because the sampling was “fudged” until a 

“correct” sequence was captured (could have been just typed in), the Pascal program 

for the DFT was falsely blamed.  There was nothing wrong with the DFT.   

 

     I do not know how much effort went into trying to find a program bug.  Evidently, a 

lot.  My approach had been previously, as I show it here: to separate out the real part, 

and invert the DFT of that.   That will tell you, in the time domain, what is messing with 

us here.  This is what I mean by “bottom-up” or working back from the answer.  Fig. 2 

shows the result of the test.  The “offending” component is two non-zero samples, a +1 

at n=0 and a -1 at n=32.   How strange.     

 

     Now, Fig. 1 and Fig. 2 tell the whole story of the finding here, but we will nonetheless 

be redundant and print out a result (in the style of Fig. 1) that corresponds to subtracting 

off the portion of x that caused the constant real part.  In fact this is interesting in that it 

shows that in order to get rid of that real part, we replace the first sample of x (which is 

+1) with a sample of zero.  Likewise the 32nd sample changes from -1 to zero.   So two 

samples go away.  Why!   
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     One thing we have often urged our readers to remember is that the DFT “has in 

mind” a certain continuous-time waveform corresponding to the particular set of 

samples.  This waveform will not in general be a function we might assume.  If we want 

to find out what waveform this is, we can use DFT interpolation [3-5] to get additional 

samples that are between the given samples (usually plenty to get a virtually continuous 

plot).   So what do these interpolations look like for the sequences x (presumed samples 

of square wave) and for x’ (with 1st and 32nd samples removed)?   And how do these 

interpolations relate to the presumed square wave?   Fundamentally different!   

 

    A key to what is involved here is seen for time n=0 (and n=32) of Fig. 4a.  What value 

does the continuous-time waveform (the blue square wave) have at these points?   We 

have shown, in the first case, the sample taken to be +1 at n=0, although there is no 

reason to justify this, as n=0 is a point of discontinuity, as the square wave is there 

drawn.   

 

     There are several things to note:  First, in Fig. 4a, we have shown samples of the 

square wave precisely where most people would first select them relative to the blue 

square wave.  However, suppose we shifted the sampling time relative to the square 

wave by a small amount (say by the diameter of one of the red open circles). We would 

have the same result of 32 positive samples followed by 32 negative samples.  Indeed, 

in a hardware acquisition (as opposed to just typing in values) we would have a hard 

time getting the perfect time alignment of Fig. 4a.  So, exact timing aside, Fig. 4a is 

typical of what we would expect in a lab. 
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     Secondly, in contrast to Fig. 4a, Fig. 4b is specially chosen.  As hard as it might be to 

get a sample at time zero (the discontinuity of the square wave) we would find it quite 

impossible to grab a sample mid transition.  Yet, when we talk about FS, the Dirichlet 

convergence says that the value of the FS reconstruction IS the midpoint of the 

transition.  Thus Fig. 4b is the “Right Answer” when we are talking FS.    

 

     A third point relates to the interpolations, the black-line reconstructions in Fig. 4a and 

Fig. 4b.  These are informative, and absolutely correct.  Note that they go through the 

original data points exactly.  The two zero samples of Fig. 4b serve like transition 

samples and greatly reduce ripple.   Consider also the possibility that the blue square 

wave (our imagination!) might be a zero-cross of the black interpolated curves.   This 

would be true for Fig. 4b, but not for Fig. 4a which is offset by half a sample.   

 

     Yet another clue of what is going on is afforded by considering the imagined square 

wave to be phase shifted, as in Fig. 5 where we have shifted the time samples (Fig. 5a) 

by 21 samples to the left.  Here, we find that the magnitude DFT is exactly the same 

(compare Fig. 1b with Fig. 5b), and any other phase would be the same, except for the 

very special (unobtainable by sampling) case of Fig. 3.  Here we have a real part, but 

not the same real part as in Fig. 1c.   
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     Thus we make the case that both results (Fig. 1 and Fig. 3) are correct and are more 

or less an apples/oranges pairing (closely related, both fruits!, but different).  As we 

emphasize, Fig. 1 is pretty much what one would first try when placing samples, and 

what one would likely aim for (and achieve, with a bit of care) in a lab.  Fig. 3 is 

something that exists as a mathematical object.   

 

     Nonetheless neither is the correct FS result, although both approximate the result for 

low coefficient index. The difference of these from the FS is the bandlimited nature of 

the DFT.  The spectral results are aliased and overlapped, making the components too 

large (making up for those that are truncated).  The first three (odd) FS coefficients, as 

stated, should fall off as 1, 1/3 and 1/5.  In Fig. 1b they fall off as 1, 0.3344, and 0.2019.   

In Fig. 3b, they fall off as 1, 0.3312, and 0.1961.   Not bad.  The results will not be as 

good for higher coefficients and will of course become unavailable about half way up.   

Getting more coefficients is a matter of using many more samples [2]. 
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