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                                                                    INVERTING A DTFT ? 

INTRODUCTION 

 

     Three popular transforms are the z-Transform of a length-N time sequence x(n) as 

given by:  

                        
   

   

                                                                                                       

the Discrete-Time Fourier Transform given by: 

                            

   

   

                                                                                                

and the Discrete Fourier Transform (DFT or FFT) given by: 

                     
  
 

    

   

   

                                                                             

                                                                                                                                                           

     The development here is that the z-transform is evaluated on the unit circle in the z-plane 

giving the DTFT, and the DTFT is then evaluated at N equally space frequencies on the unit 

circle giving he DFT.   Note that the DTFT is probably the least known of the three – at least 

until we consider that if we substitute h for x (H for X) we are talking “FILTER” and we recognize 

the DTFT as a “frequency response” of the filter.  Each of the three transforms has an inversion 

[1].   Here we will mention the inverse DFT: 

              
 

 
         

  
 

    

   

   

                                                                       

Our reason for comparing (3) and (4) is their near-perfect symmetry and the fact that both 

represent N independent linear equations in N unknowns.  A matrix inversion will solve these.  

In the case of the DFT, the FFT is a fast algorithm to the solution.  Note that for the DFT, it is the 

case (and a requirement) that the samples (for forward or inverse) are equally spaced.  What 

happens if we drop this requirement and agree to bring back the matrix? 
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TWO VIEWS OF THE DTFT EQUATION 

     The DTFT equation is valid for all ω, but since this is a discrete time device, we think 

in terms of values of ω between 0 and π as being of the most interest.  But even though 

time is discrete, ω is continuous.  Let’s suppose we have in mind a particular frequency 

ω1.  Equation (2) is certainly valid for our choice of ω1:  

      

                              

   

   

                                                                                  

This shows the computation of the DTFT based on N values of x(n).  We can do this for 

one value of ω or for as many value of ω as we desire.  It is a computation of the 

“spectrum” or frequency-domain description of the time sequence x(n).   As said above, 

this is much more familiar if we substitute h(n) for x(n) and H(ejω) for X(ejω).  [I guess we 

should always write out the complete notations H(ejω) and X(ejω), although H(ω) and 

X(ω) are often seen as a shortcut, without confusion.]  So X(ejω) is in a familiar sense 

the frequency description of x(n) while the “filter case” has H(ejω) as the frequency 

response of h(n).  Mathematically exactly the same notion.  Thus equation (5) is used to 

compute the DTFT.  In Matlab a convenient function freqz can compute the DTFT.  

Often a DFT=FFT program can also be used, quite possibly involving zero-padding, as 

will be discussed below.  Thus the forward version of equation (5) is out first of two 

views. 

     When we consider “inverting” equation (5), we in turn get two interpretations of the 

inversion.   We want x(n) from X(ejω).   The approach we must choose likely depends on 

how well (in what form) we know X(ejω).   

     For example, if we are doing filters, we might well have in mind something like a low-

pass filter where we specify a desired (ideal) passband and stopband.  That is, a 

continuous function on ω=0 to ω=π (quite likely both magnitude and phase).  In such a 

case, the direct mathematical inversion of the continuous frequency function is in order 

[2]. 

                     
 

  
        

 

  

                                                                                          

 

where we have used the filter notations h and H.  This is nothing more than inverting a 

“Fourier Series” with the roles of time and frequency reversed.      

     Equation (6) (using x and X) does us no good if we don’t have an expression for 

X(ejω).   In such a case, perhaps we only have some isolated samples of X(ejω).  That is,  
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we have perhaps samples for frequencies ω0, ω1, ω2, …. ωN-1.  We can then write N 

versions of equation (5), each one being one equation in N unknowns [x(n) are 

unknown] for a total of N equations in N unknowns.  If we have fewer equations than we 

need, or more, some least square fits can be considered.  Solving for N unknowns from 

N equations is the matrix inversion suggested.  Although not required, if the N frequency 

samples are equally spaced on 0 to π, the inversion can be by DFT=FFT.   

TEST CASE 

     Here we need a test DTFT which we manipulate.  We will take this to be the DTFT of 

a length-12 moving average filter.  Thus the impulse response is 12 values of 1/12 in 

succession: h(n) = (1/12) for n=0 to 11 and is zero everywhere else.  We know at least 

three ways of calculating the DTFT from these h(n).  First, we can use equation (2) 

directly.  Second, we can use Matlab’s freqz function.   Thirdly we can write a closed 

form expression for the result.  Fig. 1a and Fig. 1b show the magnitude responses for 

methods 1 and 2.  We need to see the printouts of the real and imaginary parts to be 

certain the results are identical (see code below).   

     The closed form (method 3) begins by writing the transfer function using well 

documented [2, 3] manipulations:                                                 
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and substitutine z = ejω using the Euler relationship to arrive at trig functions – in this 

case the well-known “periodic sync” or “aliased sinc”: 

               
 
 
    

  
  
 
            

    
 
  

                                                                                           

% AN425.m 

% THREE WAYS OF COMPUTING DTFT 

% Direct Computation of H - Equation (1) of AN-425 

h=ones(1,12) 

Hdc=zeros(1,500); 

for kk=1:500 

   w=(kk-1)*pi/500;  

   for n=0:11 

          Hdc(kk)=Hdc(kk)+h(n+1)*exp(-j*n*w);  

   end 

end 

Hdc=(1/12)*Hdc; 

% 

% Using freqz 

Hfz=(1/12)*freqz(h,1,500).'; 

% Using Closed Form 

w=[0:.001:.499]*(2*pi)  

Hcf=(1/12)*exp(-(11/2)*j*w).*sin(6*w)./sin(w/2); 

Hcf(1)=1; 

%display errors 

e1=max(abs(Hdc-Hfz)) 

e2=max(abs(Hdc-Hcf)) 

e3=max(abs(Hfz-Hcf)) 

% Plot 

figure(1) 

subplot(311) 

   plot([0:.001:.499],abs(Hdc),'r') 

   hold on 

   plot([-.05 .55],[0 0],'k:')  

   plot([0 0],[-.1 1.2],'k:') 

   hold off  

   axis([-.05 .55 -0.05 1.1]) 

   title('Direct Calculation') 

   subplot(312) 

   plot([0:.001:.499],abs(Hfz),'r') 

   hold on 

   plot([-.05 .55],[0 0],'k:')  

   plot([0 0],[-.1 1.2],'k:') 

   hold off  

   axis([-.05 .55 -0.05 1.1]) 

   title('Matlab freqz') 

   subplot(313) 

   plot([0:.001:.499],abs(Hcf),'r')   

   hold on 

   plot([-.05 .55],[0 0],'k:')  

   plot([0 0],[-.1 1.2],'k:') 

   hold off  

   axis([-.05 .55 -0.05 1.1]) 

   title('Closed Form')  
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  Fig. 1c indeed shows the magnitude plot using equation (8).  The code used is printed 

on page 4 for clarity.   Note that the printouts list the three errors e1, e2, and e3 is being 

in the 10-15 range (roundoff only). Thus we have a well defined test object and some 

practice with our mathematics. 

 

SETTING UP AND INVERTING THE EQUATIONS 
 

     Here we are pretending that we have done nothing above that involved actually 

knowing that we had a length-12 moving average.  We just have some data – say 12 

frequency samples each of which can be written in terms of equation (5) as: 

                        

   

   

                                                                                                    

 

where we have set T=1 so that frequencies ω are on an interval of 0 to π.  Here we will 

take samples starting at π/8 and proceeding at intervals of 0.1.   These samples are 

found using equation (8) and appear as in Fig. 2, but keep in mind that the samples are 

complex and we are disclaiming we know anything about equation (8) or Fig. 2. 

 

     We now have chosen 12 frequencies and have 12 corresponding (complex) values 

for the DTFT and can write 12 equations in 12 unknown values of x(n).  So we can 

calculate the matrix elements and invert to equations. This is shown in the code on the 

next page. 
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% Form/Invert Matrix 

   k=1:12 

   w=pi/8+0.1*k 

   X=(1/12)*exp(-(11/2)*j*w).*sin(6*w)./sin(w/2)  

   figure(2) 

   plot([0:.001:.499],abs(Hcf),'r')   

   hold on 

   plot(w/(2*pi),abs(X),'bo') 

   plot([-.05 .55],[0 0],'k:')  

   plot([0 0],[-.1 1.2],'k:') 

   hold off  

   axis([-.05 .55 -0.05 1.1]) 

   title('Closed Form with Samples')  

   % 

   for n=1:12 

      for k=1:12 

         M(k,n)= exp(-j*(n-1).*w(k)); 

      end 

   end 

   M 

   x=inv(M)*X.' 

    

(Most of the above code just plots Fig. 2.)  The frequency samples are “stolen” from 

equation (8) and the matrix elements M(k,n) are the evaluation of        on the 

frequency vector ωk for n=0 to 11.  The result is that x is 12 values all equal to 1/12: 

 
x = 

   0.0833+ 0.0000i 

   0.0833- 0.0000i 

   0.0833          

   0.0833+ 0.0000i 

   0.0833+ 0.0000i 

   0.0833+ 0.0000i 

   0.0833- 0.0000i 

   0.0833+ 0.0000i 

   0.0833+ 0.0000i 

   0.0833- 0.0000i 

   0.0833+ 0.0000i 

   0.0833+ 0.0000i 

 

     So we see that we can ”invert” from the frequency domain to the time domain in 

several was.   If we have a closed form for H(ejω), or if we have a data file or even a 

digitizable graph, we can possibly invert by integration as in equation (6), either 

analytically or numerically.   In the case where we have a limited number of samples, 

perhaps from an isolated region of frequency, we may be able to solve N equations in N 

unknowns, or use a least squares procedure.  
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GETTING MORE VALUES OF X(ejω) 

 

      At this point, we assume we already have some length-N time sequence, x(n) so we 

can thus also easily obtain the DFT=FFT, also length-N, X(k), which is a corresponding 

frequency-domain description of x(n) as evaluated at frequencies kfs/N where fs is the 

sampling frequency associated with x(n).   It may be the case that we want a frequency 

description at frequencies other than the available values kfs/N.   In such instances, we 

might think about a general interpolation of X(k) to a somewhat larger number of points 

by using FFT interpolation in frequency.  Then from this larger set we select or reject 

points we want to use.  Or perhaps, we might just think of evaluating the DTFT 

[equation (2)] at just one frequency, or at relatively few frequencies of interest.   Both 

approaches should (must) give the same correct answers.  This we will show. 

 

     Of importance here is the question of whether or not the new spectral point or points 

obtained are meaningful.  If we are looking for increased spectral “resolution”, there will 

be no improvement because there is no information added.  Sometimes we think we are 

better off, because a plot is more comfortable to understand (smoother).   So there can 

be an issue of viewing comfort.  But we don’t find a sharper “bump” of spectral energy 

suddenly appearing inside a more gradual existing bump.  Moreover, there can be 

cases where information other than that in x(n) can be used.   For example, if we were 

specifically told that the samples are, perhaps, those of a single sinusoidal waveform. 

 

   On the other hand, perhaps x(n) is an impulse response like h(n) in which case the 

new frequency point is meaningful. It tells us how the filter will respond to the frequency 

of interest, even though the frequency is not a DFT frequency.  (Typically we measure a 

frequency response with a function generator which has a continuous frequency dial.) 

  

     The conventional wisdom as to how an “FFT-Based” interpolation is achieved may 

well be confusing [4].   It is well established that in order to interpolate in time, we take 

the FFT, zero-pad it in the middle, and then take the inverse FFT of the larger sequence 

[ 5 ].   On the other hand, it is less known perhaps but still conventional wisdom to 

understand that to interpolate in frequency (erroneously sometimes said to increase 

resolution) you zero pad by adding a string of zeros to the end of x(n) and then take the 

forward FFT.  As we have mentioned [ 4 ], while there are differences between the way 

time and frequency are “appreciated”, we really can’t make the case that these two, as 

mathematical “duals”, are mathematically different [6 - note].  In fact, the zero padding is 

always in the middle in both the frequency and the time cases.   

 

     How can this be that putting zeros on the end is actually the same as putting them in 

the middle?  Well – because the sequences here are periodic, any insertion of zeros will 

be in the middle (somewhere).  Any portion we think of as above the middle can be 

thought of as below zero on the negative side.   
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AN EXAMPLE 
 

     We are badly in need of an example.  Let’s suppose we make up a length-12 

sequence as: 
                                x=[1 -2 3 -2 -1 5 5 -4 4 3 -3 2 ] 

 

This we suppose is some time indexed data.  It might be some actual data sequence of 

length exactly 12.  Of it might be the length-12 impulse response of some filter.  Or it 

might be 12 samples snipped out of a much longer sequence.  Note that it is real and 

has no apparent patterns.   We are most familiar with time sequences that are purely 

real. It is plotted in Fig. 3a. 

 

     Now, at the point where we propose to analyze it by a DFT(=FFT), we have given it a 

particular property: it is periodic with length 12.  It might even have been a cycle of 

some longer sequence that was actually length-12 periodic. In any event, it is now!  It 

overlaps periodically at the ends.   

 

     The sequence x(n) has a DFT X(k) as defined by equation (3).  This DFT is also 

length-12.  Unlike x(n), X(k) is complex (in general, we expect a complex result – see 

equation), and it has symmetry about k=0 (constant) and  k=6 (half the sampling 

frequency). In fact, we show in Fig. 3b the real part (red), the imaginary part (blue) and 

the magnitude (black).  It too is periodic.  The dashed lines are just to avoid confusion. 
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                                                              AN-425 (9) 

 

 



 

     At this point, we are going to do some very simple things and if we are careful, we 

should get good results quite promptly.  First we will add zeros to the end of x(n) (the 

conventional wisdom).  In fact, we add 84 zeros making it length 96 in all. Then we will 

take the FFT of the padded sequence.  We anticipate a frequency-interpolated version 

of Fig. 3b.  It is composed of sinusoidal components, so should be smooth and not very 

much like the dashed lines of Fig. 3b.  Fig. 4 shows the results.  Fig. 5 shows the same 

results with dashed lines between the interpolated set of points.  As a check, we will 

also compute the intermediate spectral values (one at a time) using equation (3).  Fig. 6 

is just a re-plot of Fig. 4 with the calculated values shown as green stars.  The 

agreement is perfect.   The methods are equivalent.  (No doubt from the equations, but 

the surprise is always when you do get it work! )   

 

     So Fig. 4, Fig. 5, and Fig. 6 are pretty much the same graphs and constitute the 

elements of a “slide show” presentation.  Fig. 4 relates best to the original length-12 plot 

while Fig. 6 shows essentially a verification that the calculation works (all dots turn 

green).   This leaves Fig. 5 as the plot that is easiest to follow.  Note that we see that 

interpolation adds a lot to the understanding of the sinusoidal components, and we 

understand how much the dashed lines help us follow the swings. For example, the red 

dashed line between k=24 and k=32 as seen in Fig. 4 (straight!) and then in reality, Fig. 

5!  In going from 12 points to 96 points (Fig. 4), a lot of definition is added by the 

additional circles.  However, the dashed line linear interpolations (Fig. 5) clear up a lot 

of uncertainty.  A better interpolation, perhaps to 1200 points using the DFT, would 

likely be better than the dashed lines.  A lot to examine.  
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      One final variation here is shown in Fig. 7.  In as much as we did interpolation by 

taking a zero-padded time sequence, thus adding no additional information, we might 

suppose that we could pad with something other than zeros, and still argue that no new 

information is added.  In particular, we might simply repeat the original 12 samples 

seven additional times and look at the length 96 FFT.  One new feature is that we are 

adding energy in this case, so we need to divide by 8 at some point.  The result is the 

DFT of the original length-12 sequence with 7 zeros between each of the original 

frequency points. This is no surprise.   The DFT harmonics of the length 96 sequence 

are just 0, 8, 16, … . 96.   

 

 

CODE FOR FIG. 4 TO FIG. 7 
% 

%  Now zero pad x to xe 

xe=[x zeros(1,84)]; 

Xe=fft(xe) ; 

figure(4) 

plot([0:95],real(Xe),'ro') 

hold on 

plot([0:95],imag(Xe),'bo') 

plot([0:95],abs(Xe),'ko') 

% Plot originals with * 

plot([0:8:95],real(X),'r*') 

plot([0:8:95],imag(X),'b*') 

plot([0:8:95],abs(X),'k*') 
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% Plot dashed lines between orig 

plot([0:8:95],real(X),'r:') 

plot([0:8:95],imag(X),'b:') 

plot([0:8:95],abs(X),'k:') 

% fudge in dashed lines to starting values for clarity 

plot([88 97],[real(X(12)),real(X(1))],'r:') 

plot([88 97],[imag(X(12)),imag(X(1))],'b:') 

plot([88 97],[abs(X(12)),abs(X(1))],'k:') 

% 

plot([0 0],[-25 25],'k:') 

plot([-5 105],[0 0],'k:') 

axis([-5 102 -24 24]) 

hold off  

% 

% 

% replot Fig. 4 with dashed lines 

figure(5) 

plot([0:95],real(Xe),'ro') 

hold on 

plot([0:95],imag(Xe),'bo') 

plot([0:95],abs(Xe),'ko') 

%Plot originals with * 

plot([0:8:95],real(X),'r*') 

plot([0:8:95],imag(X),'b*') 

plot([0:8:95],abs(X),'k*') 

% Plot dashed lines between all 

plot([0:95],real(Xe),'r:') 

plot([0:95],imag(Xe),'b:') 

plot([0:95],abs(Xe),'k:') 

% 

plot([0 0],[-25 25],'k:') 

plot([-5 105],[0 0],'k:') 

axis([-5 102 -24 24]) 

hold off  

% 

% 

% Calculate with equation (2) 

Xdc=zeros(1,96); 

for kk=1:96 

   w=(kk-1)*2*pi/96;  

   for n=0:11 

          Xdc(kk)=Xdc(kk)+xe(n+1)*exp(-j*n*w);  

   end 

end 

figure(6) 

% Interpolated by FFT   

plot([0:95],real(Xe),'ro') 

hold on 

plot([0:95],imag(Xe),'bo') 

plot([0:95],abs(Xe),'ko') 
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% Originals from length 12 

plot([0:8:95],real(X),'r*') 

plot([0:8:95],imag(X),'b*') 

plot([0:8:95],abs(X),'k*') 

% Direct Calculations as green * 

plot([0:95],real(Xdc),'g*') 

plot([0:95],imag(Xdc),'g*') 

plot([0:95],abs(Xdc),'g*') 

%  dashed lines for original length 12 

plot([0:8:95],real(X),'r:') 

plot([0:8:95],imag(X),'b:') 

plot([0:8:95],abs(X),'k:') 

%  fudge connection 

plot([88 97],[real(X(12)),real(X(1))],'r:') 

plot([88 97],[imag(X(12)),imag(X(1))],'b:') 

plot([88 97],[abs(X(12)),abs(X(1))],'k:') 

% 

plot([0 0],[-25 25],'k:') 

plot([-5 105],[0 0],'k:') 

axis([-5 102 -24 24]) 

hold off 

% 

% 

% 

%  Repeat the length-12 sequence 8 times 

xe=[x x x x x x x x ]/8; 

Xe=fft(xe) ; 

figure(7) 

plot([0:95],real(Xe),'ro') 

hold on 

plot([0:95],imag(Xe),'bo') 

plot([0:95],abs(Xe),'ko') 

% Plot originals with * 

plot([0:8:95],real(X),'r*') 

plot([0:8:95],imag(X),'b*') 

plot([0:8:95],abs(X),'k*') 

% Plot dashed lines between orig 

plot([0:8:95],real(X),'r:') 

plot([0:8:95],imag(X),'b:') 

plot([0:8:95],abs(X),'k:') 

plot([88 97],[real(X(12)),real(X(1))],'r:') 

plot([88 97],[imag(X(12)),imag(X(1))],'b:') 

plot([88 97],[abs(X(12)),abs(X(1))],'k:') 

% 

plot([0 0],[-25 25],'k:') 

plot([-5 105],[0 0],'k:') 

axis([-5 102 -24 24]) 

hold off  
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