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       EXPONENTIAL DECAY – CONTINUOUS AND DISCRETE 
 
 
IMPULSE RESPONSE: 
 
     Not unlikely one of the first “circuits” an engineering student encounters is the 
first-order R-C low-pass.  Probably this is first solved by setting up the differential 
equation and solving it.  Not unlikely this might have even been in a math class to 
suggest that calculus might be used for something real.  The approach was perhaps 
disconcerting because it seemed to suggest that you first “guess” the answer and then 
plug in boundary conditions.  Not the least of the worries, for the student peeking well 
ahead, was how this would be possible once a circuit with many more elements was 
the subject.  At that point, no one said: “Don’t worry – You will eventually learn about 
Laplace Transforms.” 
 

   
     Most readers of these notes know very well that the first-order R-C (as in Fig. 1) 
has the discharge curve (red) as shown.   You even know how to solve it (outlined 
here): 
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for which we assume an exponential solution: 
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Plugging in this trial solution into equation (1) we find        and then using the 

boundary condition           we get     and thus: 
 

                                                                                                                          (3) 
 
which is familiar.   Exponential decay – the red curve.  Note the green star at t=1 with 
value 1/e.   
 
     Another actually simpler illustration of an exponential decay is shown in Fig. 1 by 
the discrete time system.  Here the new output is found by taking the current output 
and multiplying by a, and repeating.  For this example, taking a = 0.9, if we start at n=0 
with y(n)=1, successive samples at the output are 1, 0.9, 0.81, 0.729, 0.6561,…. and 
so on.  This discrete sequence is often called a “geometric progression” or “geometric 
series”, but it’s a sampled exponential function as can be seen.  The blue “lollypop” 
samples are identical to what is on the red curve.  We all know, more or less, that the 
geometric series and the exponential are related, but the conversion always seems to 
evade us momentarily.  If the reader considers anything notable, it is how we actually 
got them to come out the same. 
 
     Here the key is to recognize from equation (3) that the only unique thing there is 
the RC time constant.  Finding the discrete equivalent is a matter of choosing the 
correct sampling interval T for a desired geometric ratio a.  This we see immediately if 
we write nT for t in equation (3): 
 

                                                =                                                                    (4) 
 
so that: 
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Thus in our example where a = 0.9, we have T=0.1053605RC.  In Fig. 1, note that the 
n=10 (the eleventh) sample is at 1.013605, just beyond the 1/e point.   
  
     We thus see a significant relationship between the continuous and the discrete 
cases – at least for what we have displayed, which we would describe as the “impulse 

responses”.  Thus Fig. 1 shows the imposition of a proper impulse as        the “Dirac 
Delta” for the continuous-time case, or     , “Kronecker Delta” or “Unit Sample” in the 
discrete time case.   These may not be essential because to the extent that we are not 
concerned with what was going on prior to t=0 (or n=0) we only need to worry about 
the function value at time 0, and the fact that there is no “input” thereafter (thus natural 
or unforced behavior).  Next we need to consider what happens for different input 
conditions.  For example, the “step response” is closely related to the impulse 
response, inverted.     
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STEP RESPONSE 
 
     While the notion of an impulse response is familiar, our best intuitive feel for a 
system is often in terms of its “step response”.  In this case the RC circuit is not 
instantaneous charged by a Dirac delta, but the capacitor is initially uncharged and the 
resistor is connected not to ground, but to a voltage source.   We get the familiar RC 
charge as in Fig. 2.    
 
     This is often misunderstood.  We recognize that after enough RC time periods the 
charge is very close to the step size (it’s above 98% at t=4 in Fig. 2).  This is a 
perfectly good way to actually charge a real RC circuit.  Then grounding Vin would 
produce an exponential discharge as in Fig. 1.   [Indeed, this is the usual way it is 
measured.]  Readers of these notes will recognize the combined responses of Fig. 2 
and Fig. 1 as the standard “AR” or attack-release envelope generator as used in 
music synthesizers.   We can all sketch these curves, and probably put numbers on 
them.  We easily remember that a charge or attack (Fig. 2) is a “convex” exponential 
while a discharge or decays is a “concave” exponential.  WRONG!    
 

 
     The exponential response behaves in only ONE WAY, which is essentially 
concave.   Presented with a change of input level, the output begins to change rapidly, 
and then slows (Fig. 1).   In Fig. 2, the system is presented with a change of level, not 
from a positive level to zero, but from zero to a positive level.  It really is just a 
subtraction from 1 for this case (a “discharge” to 1).   In a general case, the output 
moves rapidly in the direction of change, and then slows (asymptotic).   
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LAPLACE TRANSFORMS 
 
     Engineers value the Laplace transform method as a way of deriving various time 
responses from a (frequency domain) transfer function.  Laplace transform pairs are 
readily tabulated.  Two that are of direct use here are: 
 
     

           
 

   
                                                                                                                                            

 
and: 
 

      
 

      
    

     

 
                                                                                                                 

 
The transfer function of the RC low-pass in Fig. 2 is: 
 

                                           
 

  

  
 

  

                                                                                                        

 
Thus the step response has Laplace transform: 

  

                                             
 

  

    
 

  
 
                                                                                                  

 
Here with β = -1/RC we verify the impulse response and the step responses as: 
 
                                

                                                                                                                                 
 
  
and: 
     

                                                                                                                                   
 
This verifies the previous results by the Laplace transform method – bypassing the 
need to solve differential equations 
 
 

SIMULATION 
 
     Here we want to make the point about time response being a discharge to a level 
of a step change.  This we could attempt with either differential equation solutions or 
Laplace transforms, but here the easiest thing is to simulate (numerically calculate), as 
this offers us a very general approach while giving up closed-form equations.  A 
typical code line (here in Matlab) would be: 
 
              vout(n)=vout(n-1)+dt*(x(n)-vout(n-1))/(R*C); 
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where the input (steps) are a sequence x(n) and dt is the time increment (very small 
relative to RC).   Fig. 3 is a typical example output.  There are five target steps.  The 
first two (n=100 to n=200) correspond to a usual step to a level of 1 such as Fig. 2.  
From n=200 to n=300 we have a discharge to 0, such as Fig. 1.  In total, the range 
n=100 to n=300 is an example of an AR envelope generator used in music 
synthesizers.   Further, it illustrates that we can observe the “impulse response” by 
charging the capacitor to an initial value very close to 1 with a step.   
 
     The remaining step changes from 0 to -1, from -1 to +3 (crossing zero), and from 
+3 to +1 (stopping short of zero) make the main point.  In Fig. 3, the green step levels 
show the targets, and discharge (whether appearing as a charge or a discharge) are 
always to these green levels.  Note that we have made all the steps of time length 
100, but they could have been shorter or longer. The red curves are all the same 
function – just scaled and shifted.  Note however that theoretically no red curve ever 
actually reaches the green steps.  While we do not show it here, we could have had 
output curves falling noticeably short of the green targets.  For example, a step length 
of 25 rather than 100 would have given about 78% at the top (here RC was 0.15 and 
dt was 0.01).    
 
 

THE DISCRETE-TIME CASE 
 
     We have many times looked at results similar to those above for continuous-time 
[1,2].   While equally well established, the z-Transform methods for discrete-time, 
which we need to use here, are likely deserving of a reasonable outline. 
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     Here we are dealing with the z-transform (essentially the Laplace transform applied 
to a discrete-time signal).   For a discrete-time signal x(n) the z-transform is: 
     

                              

 

    

                                                                                             

                          
so for a discrete step s(n) = 1 for n ≥ 0 and s(n)=0 for n<0, we have [3]: 
 

                            
 

     
                                                                                                            

 
We easily write down the transfer function of the discrete network inset in Fig. 1: 
 

                          
 

                                                                                                                   

 
We note from equation (11) that when we set z=1, the “DC” response, we get a gain of 
1/(1-a), NOT a gain of 1 as we had for the DC response of the R-C circuit.  
Accordingly we expect the step response of H(z) to go to 1/(1-a), which would be to 10 
for the example of Fig. 1.  So if we were going to use a step to “charge” the discrete 
time network, we would (strictly speaking) need to include an attenuation of (1-a).  To 
see what the whole step response is (not just the far end), as in equation (7b) for the 
R-C circuit, we multiply the transfer function by the transform of the step, and take the 
inverse transform of the product.    
 
     For the discrete-time case, we thus have: 
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where the last term in equation (12) is the partial fraction version of the product, which 
we need to do the inverse z-transform by inspection (from first-order terms). 
         

              
 

   
                  

 

   
                                                                         

 
This is exactly the correct answer (Fig. 4).   
 
     We are aware that we could find the same sequence as is plotted in Fig. 4 by just 
simulating the network.  A sample equal to 1 arrives at the input and it becomes the 
first output.  That output is multiplied by 0.9 and as added to a new input sample (=1) 
and we get 1.9 as a second output.  Then 1.9 is multiplied by 0.9 giving 1.71 which is 
added to the new input (still = 1) and we get 2.71.  And so on.  The nice thing about 
equation (13) is that it agrees with the simulation and that it gives us a closed form.  
This helps us to believe the z-transform method.   
 
     As we noted, the DC gain is 1/(1-a) which is 10 in this example.  Nothing much 
prevents us from putting a gain of (1-a) = 1/10 in equation (11) so that the DC gain 
becomes 1 (Fig. 4 goes asymptotically to 1 instead of to 10).  Our discomfort with this 
is probably just that we did not have to do this in the continuous-time case.   
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