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                        CHEBYSHEV AS A FILTER CHARACTERISTIC 
 
 
INTRODUCTION 
      
     In the previous app note, AN-419 [11], we reviewed Chebyshev Polynomials as 
mathematical objects of interest, remarking that they were familiar in a practical sense 
from filter design. Well, the name at least is familiar, and the equiripple signature 
property are.  Further, we know, more or less, exactly how to obtain (and realize) 
Chebyshev transfer functions [1,3,5,7,8,9].   What may be neglected and therefore 
less clear is the connection between the polynomials and the frequency response 
curves.  For example, it is clear that a Chebyshev polynomial as seen in [11] could 
NOT be a frequency response curve, as the polynomial runs to infinity while (useful) 
frequency responses are finite everywhere and often run to (often asymptotically to) 
zero.  So what is going on? 

   
DESIGNING THE TRANSFER FUNCTION 
 
    Here we will be looking at (reviewing) the design of an example Chebyshev low-
pass filter.   Once this design in done (essentially just finding the poles) we can 
exercise the mathematics in various ways. 
 
      Recall that we obtain Chebyshev poles by first obtaining Butterworth poles for the 
same order [4.5.7].   In fact, it is completely correct to say that a Butterworth filter IS 
just a Chebyshev filter designed for zero ripple.    Once the Butterworth poles are 
obtained (as we will shortly review), the corresponding Chebyshev poles are obtained 
by simply multiplying the real parts of all these poles by some “reduction factor” r 
(0<r<1) that is the same for all the poles [5,8,10].  (For Butterworth, r=1.)   There is a 
formula for r, based on the order and ripple allowed, but we could just find a 
satisfactory value of r by trial and error.  That is, we choose some trial value of r – 
perhaps we try 0.5.  We then look at the resulting Chebyshev ripple and if it is too 
large, increase r, else we may want to try decreasing r for more ripple (which we didn’t 
really “want”) and a correspondingly sharper cutoff rate (which we often do want).     
 
     The ”formula” for Butterworth (BW) [4,5,7] poles is not really mathematical in the 
sense that one writes it down, but in that one remembers how to derive the pole 
positions.  The BW poles are all on a unit circle.  For an order-N BW pole set, place 
2N equally spaced poles on this unit circle.  Now rotate this array until poles are 
complex conjugates, and so that there are no poles on the jω-axis.  Finally, erase the 
N poles that are in the right half of the s-plane.  Fig. 1 shows the results of this 
procedure of N=5.   
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     We see from Fig. 1 the BW poles are separated by 36° with the poles closest to the 
jω-axis being 18° from the axis (36° from the “erased” right-half-plane pole). Then our 
remaining task is to reduce the real part of these poles by a factor r.  In addition to 
choosing N=5 we chose a ripple factor R=0.75 (look ahead to Fig. 2) which means the 
response can ripple down to 0.75.  This is about 2.5db of ripple.  Often times 
Chebyshev ripples are chosen at 1/2db, 1db, 2db, and 3db, so the one we choose 
here is typical but on the higher side – making a better illustration perhaps.  Nothing 
requires any particular value in terms of a fraction R or in db.   
      
     Now, having chosen R=0.75, there is a formula giving r: 
 

                          
 

 
        

 

     
                                                                          

 
which gives r = 0.1922 for R=0.75 and N=5.  We note two things about this r.  First the 
equation is not easy to remember, and secondly, the resulting value of r is quite small 
(so it seems).  The green lines in Fig. 2 indicate how the BW poles move toward the 
jω-axis when their real parts are multiplies by r.  These green poles are perfectly good 
in practice.  However, we are interested in getting calculations to verify exactly (many 
decimal places) with the Chebyshev theory [1,2], so these poles were adjusted slightly 
outward (by about 2%) from s=0 to the red positions.  That is, the radii of the poles 
were all multiplied by 1.018 more or less by trial and error, but to correct for expected 
discrepancies as we will discuss just below.   
 
     Once we have the poles (BW, or the green or red Chebyshev poles) we can 
calculate the transfer functions (see below) and/or the frequency responses.  These 
were actually done with Matlab’s freqs function (see code at end) but we will remind 
you how to do this in a moment [6,9].   Here we want to look at the frequency 
response curves of Fig. 2.  We see the nice 5th-order BW which is nice and flat in the 
passband, and the 5th-order Chebyshev is remarkable for its equi-ripple and a much 
sharper cutoff region.  This is the performance consideration of course – trading ripple 
for a sharp cutoff.  
 
     Now, BW low-pass filter of all orders have frequency responses that pass through 

     at a frequency of 1.  [ Here we have not found it necessary to specify frequency 
in exact units.  Whatever units we choose for the radius of the unit circle is 1. ]  In an 
actual design, this is denormalized as needed.  So for BW, calling the cutoff 1 with 

corresponding magnitude response      (which is close to, but not exactly -3db) is an 
obvious choice.  But where is the corresponding cutoff for Chebyshev?  Not so 
obvious.  Perhaps 3db down from the peak?  Or perhaps 3db down from dc, which 
would be the same here, but not for even N.   Why not R down from the peak – and 
this is what we will use here (consistent with the Chebyshev theory[1,3]).  Even for 
N=5 we already see that there is a very sharp cutoff just above the pole that is closest 
to the jω-axis, and the radius of this pole approaches 1.  Thus no matter how we 
exactly define the cutoff, it will be approximately 1.  It is the slight differences which we 
have noted in our write-ups [5] that make the tweaks necessary, as the specific 1.018 
expansion of the radii here.  So that’s that. 
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     So we have simply obtained poles and, based on them, jumped ahead to the 
frequency responses, showing that we likely are on the right track.  Let’s fill in some 
details.   We will be continuing with the red poles.   
 
     The transfer function is obtained from the pole set p1 to pN as: 
 

                     
 

                        
                                                                    

 
and the denominator can be multiplied out (mildly tedious algebra, or just something 
like Matlab’s poly function if the poles are known numerically):                                   
   

                
 

                                  
                                                   

 
Here the value of K is an overall gain constant and we can freely adjust the gain for 
convenience.   The denominator in equation (3) is a polynomial in s, but keep in mind 
that s is in general complex: (s= σ+jω).  Further, if we have used BW or Chebyshev 
poles, the denominator is a polynomial that corresponds to BW or Chebyshev transfer 
functions, but are not BW or Chebyshev polynomials in the more formal mathematical 
sense.  (They may be all we need to complete a design and implement a working 
filter.)   With the poles from a Chebyshev set, confusing the denominator or T(s) for a 
“Chebyshev polynomial” is the same as confusing the red curve of Fig. 2 for a 
Chebyshev polynomial of the type we saw before [11], and will revisit below. 

     Before going on to the Chebyshev polynomial study, we need to be clear about 
how we get the frequency response curve from equation (2) or equation (3).  Since 
T(s) is a complex number, we find the frequency response by the usual procedures of 
finding the magnitude of a complex number, evaluated at s=jω.  In fact, it will be 
convenient for what follows to find the square magnitude of T(s): 
 

                                                                                                                               
 
If we want “frequency response” we take the square root.  There are several practical 
ways of obtaining this frequency response [6,9].  For the moment, note that we have 
the “recipe” here: we just plug equation (3) into equation (4) and chug it out.  In the 
case of our 5th-order Chebyshev, this is quite tedious, but perhaps necessary to do 
once. 
 
     The red poles in Fig. 1, our example, are: 
      
          -0.0605+ 0.9682i    
          -0.1583+ 0.5984i   
          -0.1956+ 0.0000i                                                                                           (5)            
           -0.1583- 0.5984i 
           -0.0605- 0.9682i 
 
Plugging these into equation (2) and multiplying out, the denominator of equation (3) 
becomes: 
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and next we put in jω and –jω for s 
 
     

                                                                              
 
 

                                                                          
 
 
Where we have fought with powers of j and of –j.   Multiplying these together looks 
very tedious, but we keep in mind that the odd powers of ω (those multiplied by j) will 
cancel in the cross-multiplication (since the magnitude must be real), we arrive at 
 

                                                                        
 
 
This is the denominator of |T(s)|2, and is as far as we can go.   We can plot |T(s)| 
however by evaluating equation (8) on some convenient interval (-3 to +3 here) and 
taking the square root of the reciprocal, adjusting for unity gain.  This is plotted in Fig. 
3.  We see that this is the same as the frequency response of Fig. 2, which is the 
expected result.  The response is symmetric about zero frequency because it uses 
only even powers of ω – we could have plotted just the positive side.  Note that the 
passband is nicely “boxed” inside ω=±1 and magnitude R=0.75 to 1.   
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THE CHEBYSHEV APPROXIMATION 
 
     The Chebyshev polynomials as they are usually tabulated are: 
 

                                                                                                       
 

                                                                                                    
 
which seem to be perfectly good functions.  There is the restriction that these are not 
really polynomials yet, and that we have to switch the functional form as |ω| goes 
through 1.  Note that when N=0 we get C0(ω)=cos(0)=1 and when N=1 we get  
C1(ω) = cos(cos-1(ω))=ω.   There is also a recursion relationship [1]: 
 

                                                                                                      
 
by which a new polynomial is obtained in terms of the previous two.  This allows us to 
construct a table: 
 
     N              CN(ω)   
 
     0               1 
     1                ω 
     2                2ω2 – 1  
     3                4ω3 – 3ω 
     4                8ω4 – 8ω2 + 1 
     5                16ω5 – 20ω3 + 5ω 
     6                32ω6 – 48ω4 + 18ω2 – 1 
     7                64ω7 – 112ω5 + 56ω3 – 7ω  
     8                128ω8 – 256ω6 + 160ω4 – 32ω2 + 1 
     9                256ω9 – 576ω7 + 432ω5 – 120ω3 + 9ω 
    10               512ω10 – 1280ω8 + 1120ω6 – 400ω4 + 50ω2 – 1 
    11               1024ω11 – 2816ω9 + 2816ω7 – 1232ω5 +220ω3 – 11ω 
    12               2048ω12 – 6144ω10 + 6912ω8 – 3584ω6 + 840ω4 – 72ω2 + 1  
 
     Finally we see what the polynomials look like.  We note that the coefficients are all 
integers and that every other power is skipped.  These do not look at all like the 
numbers we have encountered working from the poles so far.  
 
     At least we have polynomials.  Thus we can plot a few, C4(ω), C6(ω), and C9(ω) in 
Fig. 4.  These are plotted by choosing a range of ω from -1.2 to +1.2 and directly 
calculating using the tabulated coefficients.  As we expect, these stay nicely inside 
limits for values of ω between -1 and +1, but then run away, headed for +∞ or -∞ 
outside that center range.  To make sure we are calculating correctly, the C6(ω)  
polynomial is calculated using equations (9a) and (9b) and overplotted with dashed 
red (outside ±1) or dashed black (inside ±1).  The agreement is perfect as it should be.  
Note that the difference is equations (9a) and (9b) is whether or not ordinary cosines 
or hyperbolic cosines (imaginary arguments) are required.  In actual fact, Matlab is 
forgiving and chooses the right function automatically. 
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COMPLETING THE PROCEDURE 
 
     Now, recognizing the fact that the connection between mathematical Chebyshev 
polynomials and the pole-determining polynomial of a Chebyshev transfer function is 
indirect, we can complete the loop and show exactly how to connect the two.  This is 
given in the equation (11) below for the squared magnitude  [corresponding to 
equation (8) of our pole procedure] and is also summarized in the example of Fig. 5.  
This equation is actually telling us what was going on all the time: 
 

                            
 

          
     

                                                                                          

 
That is, you take the Chebyshev polynomial, square it (doubling the order and making 

the result strictly non-negative), multiply it be some attenuation factor   , add 1, and 
take the reciprocal (an arbitrary constant, which we will take to be 1, appears in the 
numerator).   It is clear from equation (9a) that at the edge of the defined region, at 
ω=1, the value of CN(ω=1) =1.  This is also clear that this is true from examining the 
table on page 6 (this is “cute”!), and is suggested in Fig. 4 for example.  This means 
that: 
 

                     
 

        
                                                                                                            

 
or  

             
 

                                                                                                                                          

 

So for our example of R=3/4 we have        , which we can plug into equation (11), 
the denominator of which is now: 
 
     199.1111ω10 - 497.7778ω8 + 435.5556ω6 -155.5556ω4 +19.4444ω2 + 1           (13) 
 
which is the same as equation (8) except for a scale factor of 199.1111.      
 
     That’s about it.  Oh, this approach to setting a filter characteristic is classic [1] and 
quite general, and we can generalize equation (11) as: 

                         

                            
 

            
                                                                                                    

 
In this context, Butterworth is just: 

                                                     

                            
 

         
                                                                                                         

 
and we often see equation (15) freely presented without derivation/elaboration as the 
“way” to calculate the frequency response of a Butterworth filter. 
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PROGRAM   (Matlab) 
 
% AN420.m  

% Here figures 1-5 of program are exactly FIg. 1-5 pf this note 

  

% Fig. 1 Poles 

p=[] 

N=5 

R=0.75 

r=tanh((1/N)*asinh(R/sqrt(1-R^2))) 

sa=(2*pi)/(2*N) 

for k=0:N-1  

   pbutt(k+1)=j*cos(sa/2+k*sa) -  sin(sa/2+k*sa); 

   p(k+1)=j*cos(sa/2+k*sa) - r*sin(sa/2+k*sa); 

end 

porig=p 

p=1.018*p % adjust poles slightly for cutoff 

figure(1) 

plot(real(porig),imag(porig),'gx') 

hold on 

plot(real(p),imag(p),'rx') 

a=-pi/2:pi/1000:pi/2; 

cx=cos(a); 

cy=sin(a); 

plot(-cx,cy,'c') 

plot(real(pbutt),imag(pbutt),'xb') 

plot([0 0],[-2 2],'k:') 

plot([-2 1],[0 0],'k:') 

hold off 

axis('equal') 

axis([-1.2 0.2 -1.2 1.2]) 

figure(1) 

% 

% 

% Supp calculations  

pn=poly(p); 

pn=real(pn) 

pn1=real(poly([p(1) p(5)])) 

pn2=real(poly([p(2) p(4)])) 

pn3=real(poly([p(3)])) 

% 

% 

% Fig. 2 - Plot Frequency Responses 

figure(2) 

f=0:.001:3; 

TC=abs(freqs(1,pn,f)); 

TC=TC/max(TC); 

plot(f,TC,'r') 

pnbutt=real(poly(pbutt)); 

TB=abs(freqs(1,pnbutt,f)); 

hold on 

plot(f,TB,'b') 

plot([-1 4],[0 0],'k:') 

plot([0 0],[-1 2],'k:') 

hold off 

axis([-0.2 3.3 -0.2 1.2]) 

figure(2) 
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% Fig. 3  find Cheb Poly from Filter T(s), no freqs 

D1=[pn(1)*j pn(2) -pn(3)*j -pn(4) pn(5)*j pn(6)] 

D2=[-pn(1)*j pn(2) pn(3)*j -pn(4) -pn(5)*j pn(6)] 

D=conv(D1,D2)   % convolving = multiplication of terms 

Dfrompoles=D 

w=-3:.001:3; 

DD=D(1)*w.^10 + D(3)*w.^8 + D(5)*w.^6+D(7)*w.^4 +D(9)*w.^2 + D(11); 

SDD=1./sqrt(DD); 

SDD=SDD/max(SDD); 

figure(3) 

plot(w,SDD) 

hold on 

plot([-3 3],[0 0],'k:') 

plot([0 0],[-1 2],'k:') 

plot([-3 3],[0.75 0.75],'c:') 

plot([-3 3],[1 1],'c:') 

plot([-1 -1],[-1 2],'c:') 

plot([1 1],[-1 2],'c:') 

hold off 

axis([-3 3 -.2 1.2]) 

 

 

% Fig. 4  Plot some Cheby Polys 

w=-1.2:.001:1.2; 

C4=8*w.^4 - 8*w.^2 + 1; 

C6=32*w.^6 - 48*w.^4 + 18*w.^2 -1;  

C9=256*w.^9 -576*w.^7 +432*w.^5 - 120*w.^3 +9*w; 

figure(4) 

plot(w,C4,'b') 

hold on 

plot(w,C9,'g') 

plot(w,C6,'c') 

ww=-2:.001:-1; 

C6form=cosh(6*acosh(ww)); 

plot(ww,C6form,'r:') 

ww=1:.001:2; 

C6form=cosh(6*acosh(ww)); 

plot(ww,C6form,'r:') 

ww=-1:.001:1; 

C6form=cos(6*acos(ww)); 

plot(ww,C6form,'k:') 

plot([-2 2],[0 0],'k:') 

plot([-1 -1],[-8 8],'k:') 

plot([1 1],[-8 8],'k:') 

plot([0 0],[-8 8],'k:') 

hold off 

axis([-1.2 1.2 -8 8]) 

 

 

 

 

 

 

 

 

 

 

 

                                                      AN-420 (11) 
 

 

 



% Fig. 5 procedure to manipulate polynomial   

w=-2:.001:2; 

C5=16*w.^5 -20*w.^3 + 5*w; 

figure(5) 

subplot(321) 

plot(w,C5,'b') 

hold on 

plot([-2 2],[0 0],'k:') 

plot([0 0],[-8 8],'k:') 

axis([-1.2 1.2 -3 3])  

hold off 

% square 

C5S=C5.^2; 

subplot(322) 

plot(w,C5S,'b') 

hold on 

plot([-2 2],[0 0],'k:') 

plot([0 0],[-8 8],'k:') 

axis([-1.2 1.2 -0.2 1.2]) 

hold off 

% 

C5SA=C5S*(7/9) ; 

subplot(323) 

plot([-2 2],[7/9 7/9],'c') 

hold on 

plot([-2 2],[0 0],'k:') 

plot([0 0],[-8 8],'k:') 

plot(w,C5SA,'b') 

axis([-1.2 1.2 -0.2 1.2]) 

hold off 

% 

C5SAP1=C5SA + 1; 

subplot(324) 

plot([-2 2],[16/9 16/9],'c') 

hold on 

plot([-2 2],[0 0],'k:') 

plot([0 0],[-8 8],'k:') 

plot([-2 2],[16/9 16/9],'c') 

plot(w,C5SAP1,'b') 

axis([-1.2 1.2 -0.2 2.2]) 

hold off 

% 

C5SAP1R=1./C5SAP1; 

subplot(325) 

plot([-2 2],[0 0],'k:') 

hold on 

plot([0 0],[-8 8],'k:') 

plot([-2 2],[9/16 9/16],'c') 

plot(w,C5SAP1R,'b') 

axis([-1.2 1.2 -0.2 1.5]) 

hold off 
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% square root 

C5SAP1RSR = sqrt(C5SAP1R); 

subplot(326) 

plot([-2 2],[0 0],'k:') 

hold on 

plot([0 0],[-8 8],'k:') 

plot([-2 2],[3/4 3/4],'c') 

plot([-2 2],[1 1],'c') 

plot([-1 -1],[-2 2],'c') 

plot([1 1],[-2 2],'c') 

plot(w,C5SAP1RSR,'b') 

hold off 

axis([-1.2 1.2 -0.2 1.5]) 

 

 

 

% find Cheb Poly from Textbook Data 

w=-3:.001:3; 

%D=[199.11109 0 -497.77778 0 435.5555 0 -155.55554 0 19.44444 0 1] 

%  numbers from hand-calculation - overwritten just below 

ep2=1/R^2 -1 

D=[ep2*conv([16 0 -20 0 5], [16 0 -20 0 5]) 0 1] 

Dfromtext=D 

DD=D(1)*w.^10 + D(3)*w.^8 + D(5)*w.^6+D(7)*w.^4 +D(9)*w.^2 + D(11); 

SDD=1./sqrt(DD); 

SDD=SDD/max(SDD); 

figure(6)   % NOT IN THIS NOTE - IDENTICAL TO Fig. 3 of Note 

plot(w,SDD) 

hold on 

plot([-3 3],[0 0],'k:') 

plot([0 0],[-1 2],'k:') 

hold off 

axis([-3 3 -.2 1.2]) 

 

 

% 

%  Check 

RAT=Dfrompoles./Dfromtext  %ignore divide by 0 
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