

ELECTRONOTES APPLICATION NOTE NO. 420
1016 Hanshaw Road
Ithaca, NY 14850 Dec 31, 2014

 CHEBYSHEV AS A FILTER CHARACTERISTIC

INTRODUCTION

 In the previous app note, AN-419 [11], we reviewed Chebyshev Polynomials as
mathematical objects of interest, remarking that they were familiar in a practical sense
from filter design. Well, the name at least is familiar, and the equiripple signature
property are. Further, we know, more or less, exactly how to obtain (and realize)
Chebyshev transfer functions [1,3,5,7,8,9]. What may be neglected and therefore
less clear is the connection between the polynomials and the frequency response
curves. For example, it is clear that a Chebyshev polynomial as seen in [11] could
NOT be a frequency response curve, as the polynomial runs to infinity while (useful)
frequency responses are finite everywhere and often run to (often asymptotically to)
zero. So what is going on?

DESIGNING THE TRANSFER FUNCTION

 Here we will be looking at (reviewing) the design of an example Chebyshev low-
pass filter. Once this design in done (essentially just finding the poles) we can
exercise the mathematics in various ways.

 Recall that we obtain Chebyshev poles by first obtaining Butterworth poles for the
same order [4.5.7]. In fact, it is completely correct to say that a Butterworth filter IS
just a Chebyshev filter designed for zero ripple. Once the Butterworth poles are
obtained (as we will shortly review), the corresponding Chebyshev poles are obtained
by simply multiplying the real parts of all these poles by some “reduction factor” r
(0<r<1) that is the same for all the poles [5,8,10]. (For Butterworth, r=1.) There is a
formula for r, based on the order and ripple allowed, but we could just find a
satisfactory value of r by trial and error. That is, we choose some trial value of r –
perhaps we try 0.5. We then look at the resulting Chebyshev ripple and if it is too
large, increase r, else we may want to try decreasing r for more ripple (which we didn’t
really “want”) and a correspondingly sharper cutoff rate (which we often do want).

 The ”formula” for Butterworth (BW) [4,5,7] poles is not really mathematical in the
sense that one writes it down, but in that one remembers how to derive the pole
positions. The BW poles are all on a unit circle. For an order-N BW pole set, place
2N equally spaced poles on this unit circle. Now rotate this array until poles are
complex conjugates, and so that there are no poles on the jω-axis. Finally, erase the
N poles that are in the right half of the s-plane. Fig. 1 shows the results of this
procedure of N=5.
 AN-420 (1)

 AN-420 (2)

 We see from Fig. 1 the BW poles are separated by 36° with the poles closest to the
jω-axis being 18° from the axis (36° from the “erased” right-half-plane pole). Then our
remaining task is to reduce the real part of these poles by a factor r. In addition to
choosing N=5 we chose a ripple factor R=0.75 (look ahead to Fig. 2) which means the
response can ripple down to 0.75. This is about 2.5db of ripple. Often times
Chebyshev ripples are chosen at 1/2db, 1db, 2db, and 3db, so the one we choose
here is typical but on the higher side – making a better illustration perhaps. Nothing
requires any particular value in terms of a fraction R or in db.

 Now, having chosen R=0.75, there is a formula giving r:

which gives r = 0.1922 for R=0.75 and N=5. We note two things about this r. First the
equation is not easy to remember, and secondly, the resulting value of r is quite small
(so it seems). The green lines in Fig. 2 indicate how the BW poles move toward the
jω-axis when their real parts are multiplies by r. These green poles are perfectly good
in practice. However, we are interested in getting calculations to verify exactly (many
decimal places) with the Chebyshev theory [1,2], so these poles were adjusted slightly
outward (by about 2%) from s=0 to the red positions. That is, the radii of the poles
were all multiplied by 1.018 more or less by trial and error, but to correct for expected
discrepancies as we will discuss just below.

 Once we have the poles (BW, or the green or red Chebyshev poles) we can
calculate the transfer functions (see below) and/or the frequency responses. These
were actually done with Matlab’s freqs function (see code at end) but we will remind
you how to do this in a moment [6,9]. Here we want to look at the frequency
response curves of Fig. 2. We see the nice 5th-order BW which is nice and flat in the
passband, and the 5th-order Chebyshev is remarkable for its equi-ripple and a much
sharper cutoff region. This is the performance consideration of course – trading ripple
for a sharp cutoff.

 Now, BW low-pass filter of all orders have frequency responses that pass through

 at a frequency of 1. [Here we have not found it necessary to specify frequency
in exact units. Whatever units we choose for the radius of the unit circle is 1.] In an
actual design, this is denormalized as needed. So for BW, calling the cutoff 1 with

corresponding magnitude response (which is close to, but not exactly -3db) is an
obvious choice. But where is the corresponding cutoff for Chebyshev? Not so
obvious. Perhaps 3db down from the peak? Or perhaps 3db down from dc, which
would be the same here, but not for even N. Why not R down from the peak – and
this is what we will use here (consistent with the Chebyshev theory[1,3]). Even for
N=5 we already see that there is a very sharp cutoff just above the pole that is closest
to the jω-axis, and the radius of this pole approaches 1. Thus no matter how we
exactly define the cutoff, it will be approximately 1. It is the slight differences which we
have noted in our write-ups [5] that make the tweaks necessary, as the specific 1.018
expansion of the radii here. So that’s that.

 AN-420 (3)

 So we have simply obtained poles and, based on them, jumped ahead to the
frequency responses, showing that we likely are on the right track. Let’s fill in some
details. We will be continuing with the red poles.

 The transfer function is obtained from the pole set p1 to pN as:

and the denominator can be multiplied out (mildly tedious algebra, or just something
like Matlab’s poly function if the poles are known numerically):

Here the value of K is an overall gain constant and we can freely adjust the gain for
convenience. The denominator in equation (3) is a polynomial in s, but keep in mind
that s is in general complex: (s= σ+jω). Further, if we have used BW or Chebyshev
poles, the denominator is a polynomial that corresponds to BW or Chebyshev transfer
functions, but are not BW or Chebyshev polynomials in the more formal mathematical
sense. (They may be all we need to complete a design and implement a working
filter.) With the poles from a Chebyshev set, confusing the denominator or T(s) for a
“Chebyshev polynomial” is the same as confusing the red curve of Fig. 2 for a
Chebyshev polynomial of the type we saw before [11], and will revisit below.

 Before going on to the Chebyshev polynomial study, we need to be clear about
how we get the frequency response curve from equation (2) or equation (3). Since
T(s) is a complex number, we find the frequency response by the usual procedures of
finding the magnitude of a complex number, evaluated at s=jω. In fact, it will be
convenient for what follows to find the square magnitude of T(s):

If we want “frequency response” we take the square root. There are several practical
ways of obtaining this frequency response [6,9]. For the moment, note that we have
the “recipe” here: we just plug equation (3) into equation (4) and chug it out. In the
case of our 5th-order Chebyshev, this is quite tedious, but perhaps necessary to do
once.

 The red poles in Fig. 1, our example, are:

 -0.0605+ 0.9682i
 -0.1583+ 0.5984i
 -0.1956+ 0.0000i (5)
 -0.1583- 0.5984i
 -0.0605- 0.9682i

Plugging these into equation (2) and multiplying out, the denominator of equation (3)
becomes:

 AN-420 (4)

and next we put in jω and –jω for s

Where we have fought with powers of j and of –j. Multiplying these together looks
very tedious, but we keep in mind that the odd powers of ω (those multiplied by j) will
cancel in the cross-multiplication (since the magnitude must be real), we arrive at

This is the denominator of |T(s)|2, and is as far as we can go. We can plot |T(s)|
however by evaluating equation (8) on some convenient interval (-3 to +3 here) and
taking the square root of the reciprocal, adjusting for unity gain. This is plotted in Fig.
3. We see that this is the same as the frequency response of Fig. 2, which is the
expected result. The response is symmetric about zero frequency because it uses
only even powers of ω – we could have plotted just the positive side. Note that the
passband is nicely “boxed” inside ω=±1 and magnitude R=0.75 to 1.

 AN-420 (5)

THE CHEBYSHEV APPROXIMATION

 The Chebyshev polynomials as they are usually tabulated are:

which seem to be perfectly good functions. There is the restriction that these are not
really polynomials yet, and that we have to switch the functional form as |ω| goes
through 1. Note that when N=0 we get C0(ω)=cos(0)=1 and when N=1 we get
C1(ω) = cos(cos-1(ω))=ω. There is also a recursion relationship [1]:

by which a new polynomial is obtained in terms of the previous two. This allows us to
construct a table:

 N CN(ω)

 0 1
 1 ω
 2 2ω2 – 1
 3 4ω3 – 3ω
 4 8ω4 – 8ω2 + 1
 5 16ω5 – 20ω3 + 5ω
 6 32ω6 – 48ω4 + 18ω2 – 1
 7 64ω7 – 112ω5 + 56ω3 – 7ω
 8 128ω8 – 256ω6 + 160ω4 – 32ω2 + 1
 9 256ω9 – 576ω7 + 432ω5 – 120ω3 + 9ω
 10 512ω10 – 1280ω8 + 1120ω6 – 400ω4 + 50ω2 – 1
 11 1024ω11 – 2816ω9 + 2816ω7 – 1232ω5 +220ω3 – 11ω
 12 2048ω12 – 6144ω10 + 6912ω8 – 3584ω6 + 840ω4 – 72ω2 + 1

 Finally we see what the polynomials look like. We note that the coefficients are all
integers and that every other power is skipped. These do not look at all like the
numbers we have encountered working from the poles so far.

 At least we have polynomials. Thus we can plot a few, C4(ω), C6(ω), and C9(ω) in
Fig. 4. These are plotted by choosing a range of ω from -1.2 to +1.2 and directly
calculating using the tabulated coefficients. As we expect, these stay nicely inside
limits for values of ω between -1 and +1, but then run away, headed for +∞ or -∞
outside that center range. To make sure we are calculating correctly, the C6(ω)
polynomial is calculated using equations (9a) and (9b) and overplotted with dashed
red (outside ±1) or dashed black (inside ±1). The agreement is perfect as it should be.
Note that the difference is equations (9a) and (9b) is whether or not ordinary cosines
or hyperbolic cosines (imaginary arguments) are required. In actual fact, Matlab is
forgiving and chooses the right function automatically.

 AN-420 (6)

 AN-420 (7)

COMPLETING THE PROCEDURE

 Now, recognizing the fact that the connection between mathematical Chebyshev
polynomials and the pole-determining polynomial of a Chebyshev transfer function is
indirect, we can complete the loop and show exactly how to connect the two. This is
given in the equation (11) below for the squared magnitude [corresponding to
equation (8) of our pole procedure] and is also summarized in the example of Fig. 5.
This equation is actually telling us what was going on all the time:

That is, you take the Chebyshev polynomial, square it (doubling the order and making

the result strictly non-negative), multiply it be some attenuation factor , add 1, and
take the reciprocal (an arbitrary constant, which we will take to be 1, appears in the
numerator). It is clear from equation (9a) that at the edge of the defined region, at
ω=1, the value of CN(ω=1) =1. This is also clear that this is true from examining the
table on page 6 (this is “cute”!), and is suggested in Fig. 4 for example. This means
that:

or

So for our example of R=3/4 we have , which we can plug into equation (11),
the denominator of which is now:

 199.1111ω10 - 497.7778ω8 + 435.5556ω6 -155.5556ω4 +19.4444ω2 + 1 (13)

which is the same as equation (8) except for a scale factor of 199.1111.

 That’s about it. Oh, this approach to setting a filter characteristic is classic [1] and
quite general, and we can generalize equation (11) as:

In this context, Butterworth is just:

and we often see equation (15) freely presented without derivation/elaboration as the
“way” to calculate the frequency response of a Butterworth filter.

 AN-420 (8)

REFERENCES

General References on the Topic Here

[1] Kuo, Franklin F., Network Analysis and Synthesis, Wiley (1962), Chapter 12

[2] Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover
(1965) pp 795 for tables

[3] Schaumann, R., and M. E. Van Valkenburg, Design of Analog Filters, Oxford U.
Press (2001) Section 7.2

General Electronotes References

[4] “Laboratory Problems and Examples in Active, Voltage-Controlled, and Delay Line
Networks” Electronotes Supplement S-016 (1978)
http://electronotes.netfirms.com/S016.pdf

[5] “Placement of Butterworth and Chebyshev Low-Pass Poles: Cascade Form”,
Chapter 3, Section 3-3 of Analog Signal Processing, Electronotes, Vol. 19, No. 192,
Feb 2000. See page 22 for discussion of “tweaking” the cutoff.
http://electronotes.netfirms.com/EN192.pdf

Specific Application Notes – Numerical Order

[6] “Graphical Determination of Frequency Response – s-Plane Case” Electronotes
Application Note AN-45, July 4, 1977

[7] “Design of Butterworth Filters Without Data, ” Electronotes Application Note
AN-75, Feb. 18, 1978

[8] “Graphical Methods for Chebyshev Pole Placement,” Electronotes Application
Note AN-76, Feb. 25, 1978

[9] “TI-59 Program for T(s) Without factoring,” Electronotes Application Note
AN-256, July 20, 1982 (program obsolete but theory short and simple there)
http://electronotes.netfirms.com/AN256.PDF

[10] “Design of Chebyshev Filters -1” and “Design of Chebyshev Filters – 2”
Electronotes Application Notes AN-275 and AN-276, Mar. 25, 1983 and April 5, 1983

[11] “Finding Chebyshev Polynomials”, Electronotes Application Note 419, Dec. 26,
2014
http://electronotes.netfirms.com/AN419.pdf

 AN-420 (9)

http://electronotes.netfirms.com/S016.pdf
http://electronotes.netfirms.com/EN192.pdf
http://electronotes.netfirms.com/AN256.PDF
http://electronotes.netfirms.com/AN419.pdf

PROGRAM (Matlab)

% AN420.m

% Here figures 1-5 of program are exactly FIg. 1-5 pf this note

% Fig. 1 Poles

p=[]

N=5

R=0.75

r=tanh((1/N)*asinh(R/sqrt(1-R^2)))

sa=(2*pi)/(2*N)

for k=0:N-1

 pbutt(k+1)=j*cos(sa/2+k*sa) - sin(sa/2+k*sa);

 p(k+1)=j*cos(sa/2+k*sa) - r*sin(sa/2+k*sa);

end

porig=p

p=1.018*p % adjust poles slightly for cutoff

figure(1)

plot(real(porig),imag(porig),'gx')

hold on

plot(real(p),imag(p),'rx')

a=-pi/2:pi/1000:pi/2;

cx=cos(a);

cy=sin(a);

plot(-cx,cy,'c')

plot(real(pbutt),imag(pbutt),'xb')

plot([0 0],[-2 2],'k:')

plot([-2 1],[0 0],'k:')

hold off

axis('equal')

axis([-1.2 0.2 -1.2 1.2])

figure(1)

%

%

% Supp calculations

pn=poly(p);

pn=real(pn)

pn1=real(poly([p(1) p(5)]))

pn2=real(poly([p(2) p(4)]))

pn3=real(poly([p(3)]))

%

%

% Fig. 2 - Plot Frequency Responses

figure(2)

f=0:.001:3;

TC=abs(freqs(1,pn,f));

TC=TC/max(TC);

plot(f,TC,'r')

pnbutt=real(poly(pbutt));

TB=abs(freqs(1,pnbutt,f));

hold on

plot(f,TB,'b')

plot([-1 4],[0 0],'k:')

plot([0 0],[-1 2],'k:')

hold off

axis([-0.2 3.3 -0.2 1.2])

figure(2)

 AN-402 (10)

% Fig. 3 find Cheb Poly from Filter T(s), no freqs

D1=[pn(1)*j pn(2) -pn(3)*j -pn(4) pn(5)*j pn(6)]

D2=[-pn(1)*j pn(2) pn(3)*j -pn(4) -pn(5)*j pn(6)]

D=conv(D1,D2) % convolving = multiplication of terms

Dfrompoles=D

w=-3:.001:3;

DD=D(1)*w.^10 + D(3)*w.^8 + D(5)*w.^6+D(7)*w.^4 +D(9)*w.^2 + D(11);

SDD=1./sqrt(DD);

SDD=SDD/max(SDD);

figure(3)

plot(w,SDD)

hold on

plot([-3 3],[0 0],'k:')

plot([0 0],[-1 2],'k:')

plot([-3 3],[0.75 0.75],'c:')

plot([-3 3],[1 1],'c:')

plot([-1 -1],[-1 2],'c:')

plot([1 1],[-1 2],'c:')

hold off

axis([-3 3 -.2 1.2])

% Fig. 4 Plot some Cheby Polys

w=-1.2:.001:1.2;

C4=8*w.^4 - 8*w.^2 + 1;

C6=32*w.^6 - 48*w.^4 + 18*w.^2 -1;

C9=256*w.^9 -576*w.^7 +432*w.^5 - 120*w.^3 +9*w;

figure(4)

plot(w,C4,'b')

hold on

plot(w,C9,'g')

plot(w,C6,'c')

ww=-2:.001:-1;

C6form=cosh(6*acosh(ww));

plot(ww,C6form,'r:')

ww=1:.001:2;

C6form=cosh(6*acosh(ww));

plot(ww,C6form,'r:')

ww=-1:.001:1;

C6form=cos(6*acos(ww));

plot(ww,C6form,'k:')

plot([-2 2],[0 0],'k:')

plot([-1 -1],[-8 8],'k:')

plot([1 1],[-8 8],'k:')

plot([0 0],[-8 8],'k:')

hold off

axis([-1.2 1.2 -8 8])

 AN-420 (11)

% Fig. 5 procedure to manipulate polynomial

w=-2:.001:2;

C5=16*w.^5 -20*w.^3 + 5*w;

figure(5)

subplot(321)

plot(w,C5,'b')

hold on

plot([-2 2],[0 0],'k:')

plot([0 0],[-8 8],'k:')

axis([-1.2 1.2 -3 3])

hold off

% square

C5S=C5.^2;

subplot(322)

plot(w,C5S,'b')

hold on

plot([-2 2],[0 0],'k:')

plot([0 0],[-8 8],'k:')

axis([-1.2 1.2 -0.2 1.2])

hold off

%

C5SA=C5S*(7/9) ;

subplot(323)

plot([-2 2],[7/9 7/9],'c')

hold on

plot([-2 2],[0 0],'k:')

plot([0 0],[-8 8],'k:')

plot(w,C5SA,'b')

axis([-1.2 1.2 -0.2 1.2])

hold off

%

C5SAP1=C5SA + 1;

subplot(324)

plot([-2 2],[16/9 16/9],'c')

hold on

plot([-2 2],[0 0],'k:')

plot([0 0],[-8 8],'k:')

plot([-2 2],[16/9 16/9],'c')

plot(w,C5SAP1,'b')

axis([-1.2 1.2 -0.2 2.2])

hold off

%

C5SAP1R=1./C5SAP1;

subplot(325)

plot([-2 2],[0 0],'k:')

hold on

plot([0 0],[-8 8],'k:')

plot([-2 2],[9/16 9/16],'c')

plot(w,C5SAP1R,'b')

axis([-1.2 1.2 -0.2 1.5])

hold off

 AN-420 (12)

% square root

C5SAP1RSR = sqrt(C5SAP1R);

subplot(326)

plot([-2 2],[0 0],'k:')

hold on

plot([0 0],[-8 8],'k:')

plot([-2 2],[3/4 3/4],'c')

plot([-2 2],[1 1],'c')

plot([-1 -1],[-2 2],'c')

plot([1 1],[-2 2],'c')

plot(w,C5SAP1RSR,'b')

hold off

axis([-1.2 1.2 -0.2 1.5])

% find Cheb Poly from Textbook Data

w=-3:.001:3;

%D=[199.11109 0 -497.77778 0 435.5555 0 -155.55554 0 19.44444 0 1]

% numbers from hand-calculation - overwritten just below

ep2=1/R^2 -1

D=[ep2*conv([16 0 -20 0 5], [16 0 -20 0 5]) 0 1]

Dfromtext=D

DD=D(1)*w.^10 + D(3)*w.^8 + D(5)*w.^6+D(7)*w.^4 +D(9)*w.^2 + D(11);

SDD=1./sqrt(DD);

SDD=SDD/max(SDD);

figure(6) % NOT IN THIS NOTE - IDENTICAL TO Fig. 3 of Note

plot(w,SDD)

hold on

plot([-3 3],[0 0],'k:')

plot([0 0],[-1 2],'k:')

hold off

axis([-3 3 -.2 1.2])

%

% Check

RAT=Dfrompoles./Dfromtext %ignore divide by 0

 AN-420 (13)

