

ELECTRONOTES APPLICATION NOTE NO. 419
1016 Hanshaw Road
Ithaca, NY 14850 Dec 26, 2014

 FINDING CHEBYSHEV POLYNOMIALS

 Should one happen to wake up some morning with an overwhelming desire to
obtain some Chebyshev polynomials, you are likely in the position of having a
moderately valid impression of what they are (equal ripple) and with two notions of
how to get them: (1) look them up in the literature, or (2) write a program that
iteratively converges on them. The first choice may leave you bedazzled in such
things as recursion equations and much more than you needed for a start. As usual,
Abramowitz and Stegun [1] comes to the rescue and will tabulate some actual values.
At some point however, we want to use our computers to give answers to myriad
“what if” type questions. In this case, polynomial fitting and plotting software is
invaluable, allowing us to offer an unlimited source of examples to learn from.

FITTING POLYNOMIALS

 We have experience fitting polynomials to data points (either a perfect fit of an Nth-
order polynomial to N+1 points, or as a least square fit) and this is always fun and it
has many applications to real problems such as filtering, rate-changing, and
interpolation [2]. Let’s briefly review it:

 Fig. 1a and Fig. 1b are the same plots with different vertical scaling (to be
discussed). These show two polynomial fits. The blue curve is an exact 8th-order fit to
the 9 blue points for horizontal integer points 0 to 8. The red curve is an exact
5th-order fit to the 6 red points for horizontal integer points 2 to 7. The exact choices
here are purely a matter of clarity of plotting. Here are the important observations:

 (1) The polynomial curves fit exactly through the original points. The curve passes
through the points, and in general the local min or max is not at the points (none here).

 (2) The polynomial fits here were done using Matlab’s polyfit and polyval,
although the calculations are easily hand-programmed (see below).

 (3) The polynomials tend to ripple horizontally through the given points and then
run off to +∞ or -∞. This is the purpose of rescaling in Fig. 1b to show more of the
ends taking off. We have previously [3] noted that polynomials, being thus inherently
vertical, are not that well suited to signals, which are horizontal.

 (4) Indeed the polynomials are well-behaved close to their centers, and resemble
linear interpolation there (red between 4 and 5, blue between 3 and 4 or 4 and 5) and
would not be suitable interpolators on the ends.

 AN-419 (1)

 AN-419 (2)

THE HAND MATH

 Just as a reminder, this is a math exercise of N+1 equations in N+1 unknowns
based on just a polynomial equation:

If we have N+1 samples of , we can solve for the N+1 values of The N+1

samples may be anywhere, not necessarily at integers. Once we have found the ,
we can solve for at any desired value of t, and indeed on a dense grid of t
suitable for plotting what looks like a continuous function.

 That’s all there is to it.

CHEBYSHEV BY TRIAL AND ERROR

 In engineering when we say “trial and error” we most often mean “iteration” and
indeed, intelligent iteration with the specific notion of improvement with each new
attempt, perhaps even with a mathematical assurance of some formal sense of a
defined “optimal” result at the end.

 Accordingly we might well just try (to see what happens) a sequence of alternating
+1’s and -1’s. Much as we used the sequence [1 4 3 -3 1 -1 2 -2 5] to generate the
blue curve in Fig. 1a, we can consider a sequence [1 -1 1 -1 1 -1 1 -1 1] with the hope
that it is a start toward an equal ripple. Fig. 2a shows the result.

 AN-419 (3)

 As we would have expected, the polynomial does go through the alternating series
with no error on the defined points. If this were Chebyshev however, there would be
no portion of the curve internal to the given samples where the value of the curve has
magnitude greater than 1, and the local max/mins of the polynomial would all be
equal. We note as well the symmetry which is expected on the basis of the generating
samples. In addition, the two values on the ends, and the one in the middle (all equal
to 1) are exactly right. So our concern is the regions of the curve that are outside the
amplitude bounds of ±1. We have written code not just to solve for the polynomial and
to plot it, but to also find the maximum absolute value between 0 and 8. This point is
identified with the green dot, and occurs at about 0.36 with a value of -10.24, so this is
clearly far outside the ±1 limits and we shall refer to this an “error”. Note that due to
the symmetry, the horizontal axis value of 8-0.36 = 7.64 should be the same error.
Matlab either has a round-off difference or some sort of tie-breaker to give us just one
answer. We are aware of the fact that there are two values. Our goal is the move
positions on the horizontal axis to reduce the error, and to proceed iteratively.

 Our second iteration, based on our experience with filter design [4] would be to
move a defined sample to exactly the one where the error explodes. That is, we want
to move a sample to 0.36 (with paired sample at 8-0.36). We do not want to move the
ends, or the middle which are already where we want them to end up. Thus the
sample at 1 is moved down to 0.36 and the sample at 7 moves up to 7.64. We rerun
the program (Fig. 2b). Now the error is on the positive side and about half the
magnitude, so we have an improvement. We did succeed in greatly reducing the
large error in the vicinity of 0.36, as we intended.

 In Iteration 3 (Fig. 2c) we now attack the new maximum by placing a sample at
1.18 and at 6.82 (8 – 1.18), while leaving the sample placed at 0.36 right where we
moved it (this may eventually need further adjustment – that’s the idea of getting a

 AN-419 (4)

convergence. In Fig. 2c, we see the improvement at 1.18 and at 6.82, and the max
error now jumps to -1.86 at 2.43 and at 5.57. The error is smaller. As importantly, the
error at 0.36 did not jump back up – it is in fact a bit better yet.

 AN-419 (5)

 Fig. 2d shows Iteration 4, and we are getting close. The maximum error jumps
back to the first internal bump, and wants to be moved from 0.36 to 0.32. Fig. 2f is
Iteration 5 and we see the maximum error moves on to the third internal bump.

 AN-419 (6)

 Skipping now a few additional iterations, we can stop at the 9th iteration of Fig. 2f
where the error is now 0.3%. Unless we define the horizontal axis to more than two
decimal places (which we are not attempting) the iterations alternate (are stuck). The
result of Fig. 2f sure looks like the Cheybshev polynomial we were expecting. It is.
Perhaps it is confusing that the polynomial coefficients (blue in Fig. 2f) don’t ring any
bells.

COMPARING COEFFICIENTS

 If we really found the 8th-order Chebyshef polynomial in Fig. 2f, it should be close
to:

So when we open the references [1] to see what should be, it’s:

which is “bell ringing” and simpler. If these are really the same, we should be able to
get back and forth between them – the difference turning out to be the different
interval over which the polynomial is defined. In the case of equation (3), and similar
tabulations, the interval is t=-1 to t=+1. In our iterative fit, we assumed an interval t=0
to t=8. Sounds easy to reconcile?

METHOD 1 Iterate in the Shifted Interval

 AN-419 (7)

In this case, we simply iterate as in the examples of Fig. 2, but now set the samples
on the interval of -1 to +1. This is very easy to do, and following up on the original
example, only takes about 5 minutes to reform the code and run it. The polynomial
coefficients at convergence are printed on Fig. 3, and are a very good match to
equation (3). This was easy.

METHOD 2 Do the Shift and Scale from Equation (3)

 In Method 1 we showed that iteration on the interval -1 to +1 could lead to the
textbook equation (3). Here we want to show that plotting equation (3) shifted (by +1)
and scaled (by +4) will give the same result as the iteration on the original interval (0
to +8). The red curve in Fig. 4 is equation (3). The dotted light blue curve is obtained
by taking the horizontal values 0 to 8, dividing by 4 (now 0 to +2) and subtracting 1
(now -1 to +1) and calculating with equation (3). These light blue results overplot the
black curve from the original iterations on 0 to +8. This too was easy.

Method 3 – A Lot of Algebra

 This is hard – tedious algebra that follows setting your mind to what needs to be

done! Let’s call the time for equation (3), the interval -1 to +1, and the time for
the interval 0 to +8. Thus:

or:
 AN-419 (8)

It is convenient to use:

so that:

Now the algebraic problem is in raising to the powers 8, 6, 4, and 2 as
required by equation (3). Pascal’s triangle (binomial expansion) to the rescue:

Multiplying by the coefficients required by equation (3) and converting back to by
dividing by the appropriate power of 4, we can obtain the terms:

 AN-419 (9)

 We note that these are very close to the values we obtained with iteration as
printed on Fig. 2f. All we have really done here is to properly weight and add up
terms of the same power along a general diagonal in equations (5a) through (5f).

DISCUSSION

 The first part of this note, the polynomial fitting followed by iteration toward an
equiripple-center region was done without any reference to equations and tables of
Chebyshev polynomials. This is good because it is generally better to know how to
obtain a result with minimal initial resources than it is to resort to canned data. We are
relieved to see that this gives the same result as the text-book data. Further, we can
imagine the development of a useful algorithm that performs the iterations
automatically.

 The discovery that the result of finding a polynomial from samples not centered and
symmetric about zero is interesting, and understood in terms of even symmetry not
requiring odd powers. Above our transformation of the scale and range indeed
brought back all powers, odd as well as even. Thus the textbook data is a special case
we need to be aware of. The even symmetry is of course attractive for filter designs.

REFERENCES

[1] Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover (1965),
pg 795

[2] B. Hutchins, “Polynomial Fitting for Sample-rate Changing at Rational and Irrational
FrequencyRatios,” Electronotes Application Note No. 317, January 1992;
http://electronotes.netfirms.com/AN317.PDF
“Interpolation, Decimation, and Prediction of Digital Signals,” Electronotes, Vol. 15, No. 164-
167 (Special Issue F) July 1986.

[3] B. Hutchins, “Models – Good, And Bad: And The (Mis-)Use Of Engineering Ideas In
Them,” Electronotes, Volume 22, Number 211 July 2012
http://electronotes.netfirms.com/EN211.pdf

[4] B. Hutchins, “Basic Elements of Digital Signal Processing: Filter Elements –
Part 2” Electronotes, Vol. 20, No. 198, June 2001, Section 3b
http://electronotes.netfirms.com/EN198.pdf

 AN-419 (10)

http://electronotes.netfirms.com/AN317.PDF
http://electronotes.netfirms.com/EN211.pdf
http://electronotes.netfirms.com/EN198.pdf

PROGRAM

Program here for complete documentation.

% an419

% Code below makes Fig. 1a and Fig. 1b of AN419

x=[0 1 2 3 4 5 6 7 8]

y = [1 4 3 -3 1 -1 2 -2 5]

p=polyfit(x,y,8)

xx=[-1:.01:9];

yy=polyval(p,xx);

x2=[2 3 4 5 6 7]

y2 = [5 4 -2 5 -1 3]

p2=polyfit(x2,y2,5)

yy2=polyval(p2,xx);

figure(1)

plot(xx,yy,'b')

hold on

plot(xx,yy2,'r')

plot(x,y,'ob')

plot(x2,y2,'or')

plot([-1 10],[0 0],'k:')

axis([-1 10 -100 100])

%axis([-1 10 -20 20])

hold off

figure(1)

% Code makes Fig. 2a

x=[0 1 2 3 4 5 6 7 8]

y = [1 -1 1 -1 1 -1 1 -1 1]

p=polyfit(x,y,8)

xx=[-1:.01:9];

yy=polyval(p,xx);

yyy=yy(101:800);

[yyymax1,ix1]=max(abs(yyy))

figure(2)

plot(xx,yy)

hold on

yyy(ix1)

ix1*.01

plot(ix1*0.01,yyy(ix1),'ro')

plot(x,y,'*r')

plot([-1 10],[0 0],'k:')

axis([-1 10 -12 12])

hold off

figure(2)

% Code made Fig. 2b through Fig. 2f

% x below is for last iteration

x=[0 .31 1.17 2.48 4 8-2.48 8-1.17 8-.31 8]

y = [1 -1 1 -1 1 -1 1 -1 1]

p=polyfit(x,y,8)

xx=[-1:.01:9];

yy=polyval(p,xx);

yyy=yy(101:800);

[yyymax1,ix1]=max(abs(yyy))

figure(3)

plot(xx,yy)

hold on

yyy(ix1)

ix1*.01

plot(ix1*0.01,yyy(ix1),'ro')

plot(x,y,'*r')

plot([-1 10],[0 0],'k:')

axis([-1 10 -5 10])

hold off

figure(3)

 AN-419 (11)

% not part of AN419 shows offset and scaling

figure(4)

t=-5:.01:10;

p8=[128 0 -256 0 160 0 -32 0 1];

yt=polyval(p8,t);

plot(t,yt)

hold on

plot(xx,yy,'r')

axis([-2 10 -2 2])

hold off

figure(4)

% calculating without polyval

t1=-1:.001:1;

t2=4*(t1+1);

P1=128*t1.^8-256*t1.^6+160*t1.^4-32*t1.^2 + 1;

P2=p(1)*t2.^8+p(2)*t2.^7+p(3)*t2.^6+p(4)*t2.^5+p(5)*t2.^4+p(6)*t2.^3+p(7)*t2.^2+p(8)*t2+p(9);

t4= (t2/4-1);

P2Ck = 128*t4.^8-256*t4.^6+160*t4.^4-32*t4.^2 + 1;

% Fig. 4 of AN-419

figure(5)

plot(t1,P1,'r')

hold on

plot(t2,P2,'b')

plot(t2,P2Ck,'c:')

plot([-10 20],[0 0],'k:')

hold off

axis([-2 9 -1.5 1.5])

figure(5)

% Iteration to -1 to +1 range - Fig. 3 of AN-419

%x=[-1 -.75 -.50 -.25 0 .25 .50 .75 1]

x=[-1 -.923 -.705 -.38 0 .38 .705 .923 1]

y=[1 -1 1 -1 1 -1 1 -1 1]

p=polyfit(x,y,8)

xx=[-1:.001:1];

yy=polyval(p,xx);

[yyymax1,ix1]=max(abs(yy))

figure(6)

plot(xx,yy)

hold on

ix1*.001

plot(ix1*0.001-1,yy(ix1),'ro')

plot(x,y,'*r')

plot([-1 10],[0 0],'k:')

axis([-1.2 1.2 -1.5 1.5])

hold off

figure(6)

 AN-419 (12)

