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                                     FINDING CHEBYSHEV POLYNOMIALS 
 
 
     Should one happen to wake up some morning with an overwhelming desire to 
obtain some Chebyshev polynomials, you are likely in the position of having a 
moderately valid impression of what they are (equal ripple) and with two notions of 
how to get them: (1) look them up in the literature, or (2) write a program that 
iteratively converges on them.   The first choice may leave you bedazzled in such 
things as recursion equations and much more than you needed for a start.  As usual, 
Abramowitz and Stegun [1] comes to the rescue and will tabulate some actual values.  
At some point however, we want to use our computers to give answers to myriad  
“what if” type questions.   In this case, polynomial fitting and plotting software is 
invaluable, allowing us to offer an unlimited source of examples to learn from.     
 

FITTING POLYNOMIALS 
  
     We have experience fitting polynomials to data points (either a perfect fit of an Nth-
order polynomial to N+1 points, or as a least square fit) and this is always fun and it 
has many applications to real problems such as filtering, rate-changing, and 
interpolation [2].  Let’s briefly review it: 
 
     Fig. 1a and Fig. 1b are the same plots with different vertical scaling (to be 
discussed).  These show two polynomial fits.  The blue curve is an exact 8th-order fit to 
the 9 blue points for horizontal integer points 0 to 8.   The red curve is an exact  
5th-order fit to the 6 red points for horizontal integer points 2 to 7.  The exact choices 
here are purely a matter of clarity of plotting.  Here are the important observations:  
 
     (1)  The polynomial curves fit exactly through the original points.  The curve passes 
through the points, and in general the local min or max is not at the points (none here).    
 
     (2)  The polynomial fits here were done using Matlab’s polyfit and polyval, 
although the calculations are easily hand-programmed (see below). 
 
     (3)  The polynomials tend to ripple horizontally through the given points and then 
run off to +∞ or -∞.  This is the purpose of rescaling in Fig. 1b to show more of the 
ends taking off.  We have previously [3] noted that polynomials, being thus inherently 
vertical, are not that well suited to signals, which are horizontal. 
 
     (4)  Indeed the polynomials are well-behaved close to their centers, and resemble 
linear interpolation there (red between 4 and 5, blue between 3 and 4 or 4 and 5) and 
would not be suitable interpolators on the ends. 
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THE HAND MATH 
 
     Just as a reminder, this is a math exercise of N+1 equations in N+1 unknowns 
based on just a polynomial equation: 
 

                            
                                                                                       

 
If we have N+1 samples of     , we can solve for the N+1 values of      The N+1 

samples may be anywhere, not necessarily at integers.  Once we have found the   , 
we can solve for      at any desired value of t, and indeed on a dense grid of t 
suitable for plotting what looks like a continuous function.  
 
     That’s all there is to it. 
 
 

CHEBYSHEV BY TRIAL AND ERROR 
 
     In engineering when we say “trial and error” we most often mean “iteration” and 
indeed, intelligent iteration with the specific notion of improvement with each new 
attempt, perhaps even with a mathematical assurance of some formal sense of a 
defined “optimal” result at the end. 
 
     Accordingly we might well just try (to see what happens) a sequence of alternating 
+1’s and -1’s.   Much as we used the sequence [1 4 3 -3 1 -1 2 -2 5] to generate the 
blue curve in Fig. 1a, we can consider a sequence [1 -1 1 -1 1 -1 1 -1 1] with the hope 
that it is a start toward an equal ripple.  Fig. 2a shows the result. 
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     As we would have expected, the polynomial does go through the alternating series 
with no error on the defined points.   If this were Chebyshev however, there would be 
no portion of the curve internal to the given samples where the value of the curve has 
magnitude greater than 1, and the local max/mins of the polynomial would all be 
equal.  We note as well the symmetry which is expected on the basis of the generating 
samples.  In addition, the two values on the ends, and the one in the middle (all equal 
to 1) are exactly right.   So our concern is the regions of the curve that are outside the 
amplitude bounds of ±1.  We have written code not just to solve for the polynomial and 
to plot it, but to also find the maximum absolute value between 0 and 8.   This point is 
identified with the green dot, and occurs at about 0.36 with a value of -10.24, so this is 
clearly far outside the ±1 limits and we shall refer to this an “error”.  Note that due to 
the symmetry, the horizontal axis value of 8-0.36 = 7.64 should be the same error.  
Matlab either has a round-off difference or some sort of tie-breaker to give us just one 
answer.  We are aware of the fact that there are two values.   Our goal is the move 
positions on the horizontal axis to reduce the error, and to proceed iteratively. 
 
     Our second iteration, based on our experience with filter design [4] would be to 
move a defined sample to exactly the one where the error explodes.  That is, we want 
to move a sample to 0.36 (with paired sample at 8-0.36).  We do not want to move the 
ends, or the middle which are already where we want them to end up.  Thus the 
sample at 1 is moved down to 0.36 and the sample at 7 moves up to 7.64.  We rerun 
the program (Fig. 2b).   Now the error is on the positive side and about half the 
magnitude, so we have an improvement.  We did succeed in greatly reducing the 
large error in the vicinity of 0.36, as we intended. 
 
     In Iteration 3 (Fig. 2c) we now attack the new maximum by placing a sample at 
1.18 and at 6.82 (8 – 1.18), while leaving the sample placed at 0.36 right where we 
moved it (this may eventually need further adjustment – that’s the idea of getting a  

 
                                                         AN-419 (4) 



 
 
convergence.   In Fig. 2c, we see the improvement at 1.18 and at 6.82, and the max 
error now jumps to -1.86 at 2.43 and at 5.57.  The error is smaller.  As importantly, the 
error at 0.36 did not jump back up – it is in fact a bit better yet. 
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     Fig. 2d shows Iteration 4, and we are getting close.  The maximum error jumps 
back to the first internal bump, and wants to be moved from 0.36 to 0.32.   Fig. 2f is 
Iteration 5 and we see the maximum error moves on to the third internal bump. 
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     Skipping now a few additional iterations, we can stop at the 9th iteration of Fig. 2f 
where the error is now 0.3%.  Unless we define the horizontal axis to more than two 
decimal places (which we are not attempting) the iterations alternate (are stuck).  The 
result of Fig. 2f sure looks like the Cheybshev polynomial we were expecting.  It is.  
Perhaps it is confusing that the polynomial coefficients (blue in Fig. 2f) don’t ring any 
bells. 
 
 

COMPARING COEFFICIENTS 
 
     If we really found the 8th-order Chebyshef polynomial in Fig. 2f, it should be close 
to: 
 

                                                                       
                                                                                                                   
 

So when we open the references [1] to see what    should be, it’s: 
 

                                                                                                                     
 
which is “bell ringing” and simpler.  If these are really the same, we should be able to 
get back and forth between them – the difference turning out to be the different 
interval over which the polynomial is defined.  In the case of equation (3), and similar 
tabulations, the interval is t=-1 to t=+1.  In our iterative fit, we assumed an interval t=0 
to t=8.  Sounds easy to reconcile? 
 
 

METHOD 1 Iterate in the Shifted Interval 
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In this case, we simply iterate as in the examples of Fig. 2, but now set the samples 
on the interval of -1 to +1.  This is very easy to do, and following up on the original 
example, only takes about 5 minutes to reform the code and run it. The polynomial 
coefficients at convergence are printed on Fig. 3, and are a very good match to 
equation (3).  This was easy. 
 
 

METHOD 2    Do the Shift and Scale from Equation (3) 
 
     In Method 1 we showed that iteration on the interval -1 to +1 could lead to the 
textbook equation (3).  Here we want to show that plotting equation (3) shifted (by +1) 
and scaled (by +4) will give the same result as the iteration on the original interval (0 
to +8).  The red curve in Fig. 4 is equation (3).  The dotted light blue curve is obtained 
by taking the horizontal values 0 to 8, dividing by 4 (now 0 to +2) and subtracting 1 
(now -1 to +1) and calculating with equation (3).  These light blue results overplot the 
black curve from the original iterations on 0 to +8.  This too was easy.  

 
 
Method 3 – A Lot of Algebra 
 
     This is hard – tedious algebra that follows setting your mind to what needs to be 

done!  Let’s call    the time for equation (3), the interval -1 to +1, and    the time for 
the interval 0 to +8.  Thus: 
 
                                                                                                                                                 
 
or: 
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It is convenient to use: 
 

                 
  

 
                                                                                                                                       

 
so that: 
 

                                                                                                                                                  
    
Now the algebraic problem is in raising         to the powers 8, 6, 4, and 2 as 
required by equation (3).  Pascal’s triangle (binomial expansion) to the rescue: 
 
         

      
      

      
       

      
      

      
      

     
                                      

 

        
       

     
      

      
      

     
                                                                   

      
           

        
     

     
     

                                                                                                   
     
            

         
                                                                                                                             

     
            

                                                                                                                                                    
 

Multiplying by the coefficients required by equation (3) and converting back to    by 
dividing by the appropriate power of 4, we can obtain the terms: 
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     We note that these are very close to the values we obtained with iteration as 
printed on Fig. 2f.   All we have really done here is to properly weight and add up 
terms of the same power along a general diagonal in equations (5a) through (5f). 

DISCUSSION 

     The first part of this note, the polynomial fitting followed by iteration toward an 
equiripple-center region was done without any reference to equations and tables of 
Chebyshev polynomials.   This is good because it is generally better to know how to 
obtain a result with minimal initial resources than it is to resort to canned data.  We are 
relieved to see that this gives the same result as the text-book data.  Further, we can 
imagine the development of a useful algorithm that performs the iterations 
automatically.   

     The discovery that the result of finding a polynomial from samples not centered and 
symmetric about zero is interesting, and understood in terms of even symmetry not 
requiring odd powers.  Above our transformation of the scale and range indeed 
brought back all powers, odd as well as even. Thus the textbook data is a special case 
we need to be aware of.  The even symmetry is of course attractive for filter designs.   
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PROGRAM  

Program here for complete documentation.  
 

% an419 

 

% Code below makes Fig. 1a and Fig. 1b of AN419 

x=[0 1 2 3 4 5 6 7 8 ] 

y = [1 4 3 -3 1 -1 2 -2 5 ] 

p=polyfit(x,y,8) 

xx=[-1:.01:9]; 

yy=polyval(p,xx); 

x2=[2 3 4 5 6 7  ] 

y2 = [5 4 -2 5 -1 3 ] 

p2=polyfit(x2,y2,5) 

yy2=polyval(p2,xx); 

figure(1) 

plot(xx,yy,'b') 

hold on  

plot(xx,yy2,'r') 

plot(x,y,'ob') 

plot(x2,y2,'or') 

plot([-1 10],[0 0],'k:') 

axis([-1 10 -100 100]) 

%axis([-1 10 -20 20]) 

hold off 

figure(1) 

 

 

% Code makes Fig. 2a 

x=[0 1 2 3 4 5 6 7 8 ] 

y = [1 -1 1 -1 1 -1 1 -1 1 ] 

p=polyfit(x,y,8) 

xx=[-1:.01:9]; 

yy=polyval(p,xx); 

yyy=yy(101:800); 

[yyymax1,ix1]=max(abs(yyy)) 

figure(2) 

plot(xx,yy) 

hold on  

yyy(ix1) 

ix1*.01 

plot(ix1*0.01,yyy(ix1),'ro') 

plot(x,y,'*r') 

plot([-1 10],[0 0],'k:') 

axis([-1 10 -12 12]) 

hold off 

figure(2) 

 

% Code made Fig. 2b through Fig. 2f 

% x below is for last iteration 

x=[ 0 .31 1.17 2.48 4 8-2.48 8-1.17 8-.31 8] 

y = [1 -1 1 -1 1 -1 1 -1 1 ] 

p=polyfit(x,y,8) 

xx=[-1:.01:9]; 

yy=polyval(p,xx); 

yyy=yy(101:800); 

[yyymax1,ix1]=max(abs(yyy)) 

figure(3) 

plot(xx,yy) 

hold on  

yyy(ix1) 

ix1*.01 

plot(ix1*0.01,yyy(ix1),'ro') 

plot(x,y,'*r') 

plot([-1 10],[0 0],'k:') 

axis([-1 10 -5 10]) 

hold off 

figure(3) 
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% not part of AN419  shows offset and scaling 

figure(4) 

t=-5:.01:10; 

p8=[128 0 -256 0 160 0 -32 0 1]; 

yt=polyval(p8,t); 

plot(t,yt) 

hold on 

plot(xx,yy,'r') 

axis([-2 10 -2 2]) 

hold off 

figure(4) 

 

% calculating without polyval 

t1=-1:.001:1; 

t2=4*(t1+1); 

P1=128*t1.^8-256*t1.^6+160*t1.^4-32*t1.^2 + 1; 

P2=p(1)*t2.^8+p(2)*t2.^7+p(3)*t2.^6+p(4)*t2.^5+p(5)*t2.^4+p(6)*t2.^3+p(7)*t2.^2+p(8)*t2+p(9); 

t4= (t2/4-1); 

P2Ck = 128*t4.^8-256*t4.^6+160*t4.^4-32*t4.^2 + 1; 

%  Fig. 4 of AN-419 

figure(5) 

plot(t1,P1,'r') 

hold on 

plot(t2,P2,'b') 

plot(t2,P2Ck,'c:') 

plot([-10 20],[0 0],'k:') 

hold off 

axis([-2 9 -1.5 1.5]) 

figure(5) 

 

 

% Iteration to -1 to +1 range - Fig. 3 of AN-419  

%x=[-1 -.75 -.50 -.25 0 .25 .50 .75 1] 

x=[-1 -.923 -.705 -.38 0 .38 .705 .923 1] 

y=[1 -1 1 -1 1 -1 1 -1 1 ] 

p=polyfit(x,y,8) 

xx=[-1:.001:1]; 

yy=polyval(p,xx); 

[yyymax1,ix1]=max(abs(yy)) 

figure(6) 

plot(xx,yy) 

hold on  

ix1*.001 

plot(ix1*0.001-1,yy(ix1),'ro') 

plot(x,y,'*r') 

plot([-1 10],[0 0],'k:') 

axis([-1.2 1.2 -1.5 1.5]) 

hold off 

figure(6) 
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