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INTRODUCTION: 
 
     Among my favorite topics are those that involve curve fitting and interpolation.  
Typically such “modeling” exercises involve some notion of an error criterion, and a 
minimization of that thusly defined error – a “best fit” in some well-defined sense.  We 
have recently looked at some issues in this regard [1-3] and these reach back to a 
1992 note [4].  Happily this has led to filter designs – another favorite topic of mine.  
Here we will look at a “fixed error” criterion and will relate this to least squares, 
exercising our analytical tools as we proceed. 
 
 

A CURIOUS EXAMPLE 
 
     In Fig. 1a, consider the problem of fitting a straight line to the three points x(0), 
x(1), and x(2).  In fact, try this by hand manipulation with a transparent ruler, such that 
the vertical error is equalized on all three points.  Pretty easy to estimate. 
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      In AN-417 [2], fitting with least squares, we began by adding a parameter (a free 
choice of weight w on the center point). By choosing w=1 or w=2, we arrived (happily) 
at two previous results [4,1]. These were the (respective) cases where we had equal 
weights (w=1) with our filter ending up as a length-3 moving average h(n) =   
[1/3 1/3 1/3] and when w=2 we got a different filter: h(n) = [1/4 1/2 1/4].   Here we are 
doing something that is actually simpler, but less familiar.  We are writing equations for 
what we did when we simply moved a ruler over Fig. 1.   We are allowing for an error 
E that can be the same on all three points.  This is NOT least squares.  What this does 
is add an unknown to the fitting process (we have to solve for E).  This gives us three 
equations in three unknowns (m, b, and E) with three input samples specified: x(0), 
x(1) and x(2), as in Fig. 1b.  (Note that we could have chosen to have three different 
errors, E0, E1, and E2, which would not have been a special case of interest, and 
would have permitted us to fit any line, most quite ugly to the given data.) 

 

 
      
Our three equations are: 
 

                                                                                                                                                        
 

                                                                                                                                             
 

                                                                                                                                            
 
which can be put in matrix form as: 
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which inverts to: 
 

                         
 
 
 
     

                  
        
            

  

    
    
    

                                                                      

 
When we take this further, an interesting result occurs.  First, the slope is: 
 

                            
            

 
                                                                                                                    

 
which is not that surprising.  The slope is still determined by the endpoints.  What is 
surprising is that the intercept b is given as: 
 

                             
                   

 
                                                                                        

 
which is exactly the result [equation (5b) of AN-417] for the w=2 case!   Unanticipated, 
but easily understood.   By choosing E above and below the line as unconditionally 
equal, it is the same as having two points above with weight 1, and one below with 
weight 2 when using least squares.  An accident – but a fun result.  Only for w=2 does 
least squares give the same error above and below (see Fig. 2 below). 
 
     The “take-away” here is that the best fit line, evaluated at the center is: 
 

                                
 

 
        

 

 
        

 

 
                                               

 
so the FIR filter has the impulse response: 
 

                          
 

 
    

 

 
    

 

 
                                                                                                                

 
which corresponds to the simple low-pass with a double zero at z=-1.  Here also: 
   
                                                                                                                            
 
 

FITTING EXAMPLES 
 

Weighted Squared Error Again: 
 
      We want to show a plot for various values of the center weight for weighted 
squared error vs. the equal error case, and this is shown in Fig. 2.  Here we have 
the three input points (arbitrarily chosen) at 2, 1, and 3, and for the least squares 
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plots, w is the weight on the center point (the weights on the first and last points being 
1).   As expected when w=1 the straight line fit (blue) is shifted toward the two points 
x(0) and x(2) on the top.  A contrasting case is where w=4 in which case the fit 
(magenta) is shifted downward toward the x(1) point.  The case in the middle is for 
w=2 and for the equal error case discussed above.  It is plotted in black and in red and 
appears as dotted black and red.  Thus the w=2 cases comes out equal error.  Is there 
any other way to do equal error? 
 
 

Straight Line Through Three Points – Other Choices? 
 
     When we began with Fig. 1a and the suggestion that the reader try a hand-fit with a 
ruler, we had in mind that most likely the reader had already glanced at Fig. 1b and/or 
that the result of Fig. 1b was likely what the reader would choose.    There are other 
possible choices, and we need to show that they are not good choices.  Note that Fig. 
1b has the “alternation” property in that the line is chosen in a below-above-below 
manner.  This we perhaps favor just on intuition, or on the basis of work in frequency-
domain filter design [5]. 
 
     Probably it seems sensible that if we want a fit a straight line to a cluster of points, 
the line should go through the cluster. In fact, if we consider the possibility that all 
three points are on the same side of the line, we get a useless solution (Fig. 3).   If the 
line goes through the point cluster, there are only the usual possibilities where two are 
on one side of the line and one on the other side.  Now, if we further stipulate that the 
points are  in time order, then the single-sided point is either in the middle, or on one 
(or the other) ends.  We have already discussed the case where it is in the middle (the 
“alternation” case) which results in the w=2 least squares: h(n) = [1/4 1/2 1/4].  Is THE 
other uniquely distinct case any different? 
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     In Fig. 4a we show the (alternation) case where it is the middle point that is on a 
side of the line by itself [lower in this example of x(0)=2, x(1)=1, and x(2)=3].  This was 
developed as equations (1) to (7).   Fig. 4b and Fig. 4c shows two other cases.  We 
could give other examples, but the two here and any additional ones we try will lead to 
identical conclusions.   For Fig. 4b the line that is fit is parallel to the first two points 
which are below the line.  For Fig. 4c the line that is fit is parallel to the last two points 
which are also below the line.  Let’s first develop Fig. 4b.  
 
     Corresponding to equation (2a) we have instead: 
 

                        

    
    
    

    
    
    
   

  
 
 
 
                                                                                               

 
which inverts to: 
 

                         
 
 
 
     

                   
          
             

  

    
    
    

                                                                      

 
so now the slope is: 
 
                                                                                                                                                     
 
as determined by first two points.  The intercept b is given as: 
 

                             
                 

 
                                                                                         

 
 and the error E is: 
 
                                                                                                                             
 
which is exactly twice the error of equation (7), as also looks to be the case from the 
plot of Fig. 4b.    The FIR filter for this case is found from:   
 

                                
          

 
                                                                        

 
so the FIR filter has the impulse response: 
                   

                                 
 

 
         

 

 
                                                                                                           

 
This has the disconcerting feature that the estimate of the middle point, y(1), does not 
seem to involve the original data point x(1) at t=1.  So while Fig. 4b looks like a poorer 
choice just from the figure, there seem to be two deficiencies analytically: twice the 
error E, and no involvement of x(1).  Note that this result does not depend on the 
actual data points in the example. 
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     Just to sharpen the point, we also develop Fig. 4c analytically.  Corresponding to 
equation 8a we have instead: 
 

                        

    
    
    

    
   
    
    

  
 
 
 
                                                                                              

 
which inverts to: 
 
 

                        
 
 
 
     

                   
          

              
  

    
    
    

                                                                   

 
so now the slope is: 
 
                                                                                                                                                    
 
as determined by last two points.  The intercept b is given as: 
 

                           
               

 
                                                                                              

 
 and the error E is: 
 
                                                                                                                             
 
which is again exactly twice the error of equation (7).  The FIR filter for this case is 
found from:   
 

                                
          

 
                                                                        

 
so again the FIR filter has the impulse response: 
                   

                                 
 

 
         

 

 
                                                                                                           

 
Because of symmetry, the fundamental outcomes of Fig. 4c are the same as for Fig. 
4b.    
 
 

FURTHER DETAILS 
 
     Fig. 5 shows the frequency response curves of three of the examples above: the 
three tap moving average (red), the fixed error case which is the w=2 least squares 
case (black) and the poor choice of straight-line fit (green).  We are very familiar with 
the moving average frequency response, and we see the flattening of the response at 
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half the sampling rate (due to the second-order zero) for the black curve.  The green 
curve just seems wrong for smoothing, which we would expect to be low-pass.   In 
fact, it is a length-2 moving average for a doubled delay, so had a high-pass as well as 
a low-pass.   So, the fixed-error used here results in a particular special case of the 
frequency response.  
 
     Above we have calculated the impulse responses on the basis of mathematics: 
equations (6), (13) and (19).  Fine – but can we also get the same results by a 
different procedure, and if possible, one more intuitive than just a healthy respect for 
mathematics.  Yes.  Perhaps the refrain that follows is getting old, but it results in a 
remarkably convincing and intuitive understanding of the results.   In particular here 
there is the curious result that the center term is left out of the cases of equation (13) 
and (19) and it is less than obvious why.   So, once again, “the impulse response of a 
system is the response of the system to an impulse”.   To use this idea, we consider 
an impulse to enter the system in question.  Our understanding of the system tells us 
how it responds to an arbitrary signal, so this understanding applies to a particular 
input signal (an impulse).  In fact, the corresponding output, for this particular time-
instance of the input, is often simpler to calculate, the impulse being uniquely simple.  
Each successive time instance follows, and the impulse response is found point-by-
point as is of interest.   Here there are three time instances before the input impulse 
exits.  
   
     Fig. 6 shows the case where the impulse response is for the preferred case.  This 
is fit to the three cases where the impulse is in time positions 0, 1, and 2.   We fit the 
straight line to these cases, and evaluate it at t=1.   For this case we see the 
sequence 1/4, 1/2, and 1/4 as outputs, according to the way the line is defined to fit.  
This is a direct and convincing demonstration.  Note also the symmetry.   
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   Fig. 7 shows the case where two consecutive samples are on the same side of the 
line.  Here we see clearly (middle panel of Fig. 7) why the middle term of the impulse 
response is zero.   The best fit goes right through 0 at t=1.  For the other two times 
(top and bottom panels of Fig. 7), the best fit line goes through 1/2.  We might well 
have expected the two results yielding 1/2 would be symmetric.  They aren’t, one of 
the best fit lines is flat, and the other tips.  They do go through 1/2 at the required time 
points.    
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