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                         TIME DOMAIN WEIGHTED LEAST SQUARES  
 
 

INTRODUCTION: 
 
     Recently in Electronotes, EN#223 [1], we had a review of time series smoothing 
which, among many other things, looked again at Savitzky-Golay (previously here as 
AN-404 [2]), and identified it with least-squares-error smoothing.  At the very end, we 
briefly looked at a (point-by-point) individually weighted least-squares fit that extended 
an App Note from 1992, AN-318 [3], by using a simple example of a hand-derived 
case of weighted error.   Specifically, while the equal weighted error in AN-318 (a fit of 
a straight line to three points) gave a simple length-three moving average h(n) =  
[1/3 1/3 1/3], weighting the error on the middle point by 2 rather than all by 1 gave  
h(n) = [1/4 1/2 1/4].  The details were not given there, but seemed quite correct. 
 
     Here we will first review both length-3 straight line hand-calculated fits as reported  
[1,3].  Then we can use a general weighted least squares using the matrix inversion 
techniques.  Finally we will want to give an option for using a LOESS or LOWESS 
weighting [1].   This will be general in using higher-order polynomial fits. 
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Weighted Least-Squares Error Fit  
                      of Straight-Line to Three Points 
 
Here we propose to work out the simplest possible case “by hand” so as to offer a test 
result for our programs that follow.  Fig. 1 shows the setup that is the same as the 
presentation in AN-318 [3] EXCEPT we have added a weight w for the middle point 
instead of having all three points with equal weight of 1.  We saw [3] that the three 
filter coefficients were a standard length-3 moving average when the errors were 
weighted the same on all three taps, and were h=[1/4 1/2 1/4] when the weight on the 
center tap was set to 2 rather than to 1 [1]. Here we give the details on those simple 
yet tedious calculations.  We will see that the same result comes out in our general 
program below. 
 
     From Fig. 1 we see that there are three errors that result from trying to fit a straight 
line to three points (assuming they are not already on a straight line). 
 

                                                                                                                                                      
 

                                                                                                                                             
 

                                                                                                                                            
 
The right sides of these three equations are squared to give the squared error on each 
of the three points.  Then we want to calculate the total squared error, weighting the 
center error by w and the end terms by 1: 
 

        
        

     
                                                                                 

      

                                                                                                                                    
                                                                                                       

                                                                                                         
                                                                                                              

 
Now to minimize this, we take partial derivatives with respect to b and to m, set these 
to zero, and solve the two equations in two unknowns for b and m. 
 

   

  
                                                                           

 

   

  
                                                                                      

 
Which go nicely to matrix form; 
 

     
         

          
   

 
 

    
                

            
                                                                   

 
                                                  
                                                  AN-417 (2) 



which solve for : 
     

                           
         

 
                                                                                                                 

 

                   
                             

      
                                                          

 
Here equation (5a) is notable as it indicates that the slope is independent of the weight 
of the error at the center.  That this has to be so is easily seen be envisioning the line 
to pivot about its center. 
 
     What we have here is not yet a filter.  We have only a curve fit, not extended to an 
arbitrary center output point.  To find the filter, we can imagine an impulse passing 
through for x, and always solving for y(1) at the center.  This is our familiar ploy that 
the impulse response of the filter is the response of the filter to an impulse.  (A 
tautological but useful ploy at times as it really does suggest a methodology.)   Here 
we can simply and directly solve for y(1), y at t=1: 
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Which agrees with earlier findings.   Note also the limiting cases of w=0 means the 
center point is ignored and the output is the average of the endpoints.  If w=∞ we have 
only the middle point.  Makes sense.   
 
     We will plot some examples when we finish the general case (higher order 
polynomials). 
 
 

The General Problem 
 
The algebra above is of the sort I never enjoy – tedious to the point where one is 
tempted to take short-cuts that almost certainly guarantee error.  It took me three tries 
to get it to look right.   Certainly anything beyond a first-order fit to three points is 
daunting.  Fine – that’s why we have computers.   And there’s nothing like running 
“exercises” on a computer to see what the mathematics really means. 
 
     Keep in mind that here we are involved with curve fitting to data points.  Classically 
we begin with fitting N equation coefficients to N data points (see example below) and 
solving N equations in N unknowns (making the usual assumptions).   We carry this 
further to the case of extra points (just above, two coefficients and three data points) 
 
                                                         AN-417 (3)  



 
which requires a least-square solution, manifesting itself in a least-squares or “pseudo 
inverse”.  Finally, we can consider the case where not only are there excess points, 
but some are more important than others and we look to weight the errors associated 
with these points more heavily.   The simplest case of this weighting was given in the 
hand-example just above.    
 
     Finally we note that we are applying these ideas to two related but different-looking 
problems: that of basic curve fitting, and an unexpected bonus of a filter-design 
method.  An excellent and brief presentation of the least-squares matrix calculations is 
that of Jackson [4] while we have also done similar weighted least squares 
calculations in the frequency domain for filter designs in a frequency-sampling context 
[5]. 
 
     Just as a first-order polynomial is characterized by two coefficients (traditionally 
slope m and intercept b as x(t) = mt+b. we can have higher order polynomials such as 
for example a fifth-order: 
 

                                                                                                                   
               
For a given set of samples of x(t) we can write instances of the equation as: 
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or in matrix form:    
                                                                                                                                                 
 

where   is the vector stand-in for the coefficient a,b,c,d,e,f. 
 
     If we have exactly six such equations, we solve exactly for a,b,c,d,e, and f (the 
matrix is square).   If we have an excess of data points, equation (10) is solved to 
minimize the squared error, using conveniently, something called a “pseudo-inverse” 
which is available in many math packages.  The pseudo-inverse is usually equivalent 
to (TtT)-1Tt  or to just T-1 if T is square.  In the case of weighting, the inversion is done 
 with (TtWT)-1 TtW as was the case in the frequency domain [5].  Here W is a square 
matrix with the weights on the diagonal (0 else) and of size equal to the number of 
points in the data.  In Matlab code, the inversion of equation (10) is: 
 

      a = inv(T’*W*T)*T’*W*x'                                 (11) 

 
where T’ is the transpose.   This will appear in the two programs below. 
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Two Example Programs 
 
Why two programs?  Well there are two main applications.   The first application is 
classical data smoothing, curve-fitting, and/or modeling.  This could be a “scatter-plot” 
such as a plot of students’ physics scores against calculus scores (where we might 
expect to uncover a strong correlation) or it could be a plot of some variable as a 
function of time (or other running independent variable), often at discrete intervals as a 
sequence of series.   The second application jumps to what seems a complication: 
fitting a polynomial to a running set of neighboring data points of a series.  While 
signal processing engineers expect this to ultimately result in an FIR (Finite Impulse 
Response) digital filter, it is largely unappreciated that this is, first of all true; and that 
the FIR scheme means that implementation is thus barely more complicated than a 
moving average. 
 
  The first program here is WLS (weighted least squares) that has as its inputs a 
proposed polynomial order, a signal sequence x, and a vector of weights that is the 
same length as x.  (This weight vector could be the LOESS weights that are an option 
in Program 2).   The idea is to fit a polynomial to the data points, not to design a filter. 
 
 

PROGRAM 1 

function WLS(pord,x,weights) 

% plots weighted fit 

T=[] 

for t=0:length(x)-1  

      for k=pord:-1:0 

          T(k+1,t+1)=t^k; 

      end 

end 

  

T=flipud(T) 

T=T' 

  

W=diag(weights) 

a=inv(T'*W*T)*T'*W*x' 

 

t=0:length(x)-1; 

tt=0:0.01:length(x)-1;; 

xt=polyval(a,tt); 

 

figure(1) 

plot(tt,xt) 

hold on 

plot(t,x,'or') 

mx=max([x xt]); 

mn=min([x xt]); 

if mn>0 

   mn=o; 

end 

axis([-1 length(x)  mn-.2 mx+.2]) 

hold off 

figure(1) 
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     Fig. 2a shows the basic test where we are fitting a 3rd-order polynomial (two turn-
arounds) to 7 point, [2 3 1 -1 1 -1 4] with equal weighting.  We note that the curve 
does not go through any of the points exactly (in general, it might do very well at a 
point or two by accident).   Fig. 2b shows a corresponding case where we have 
increased the weighting on the 6th point from 1 to 200, and the curve does seem to go 
right through the 6th point.  Perhaps we have a desire to fit that point especially well. 
We can if we wish adjust the weights on multiple points – any two, three, four, or five 
of them.  What we can’t do is increase the weight on all six points with the expectation 
that we get anything except Fig. 2a back as a result.  So that’s the idea of weighting. 
 
     Fig. 2c and Fig. 2d are control cases.  In Fig. 2c we have simply plotted the 
polynomial outside the original range.   There are no points there to restrain the 
polynomial, and in consequence it is free to wonder about and thus reduce the error 
on the 7 points given.  As expected of any polynomial, outside some central range it 
rather rapidly heads for +∞ or -∞.    This is why polynomials which have vertical 
tendencies are not good models for signals (which have horizontal tendencies) except 
in a central region.  The other control that had to be shown was that if you increase 
the order from 3 to 6 (Fig. 2d), the polynomial can go through all seven points. 
 
We have not offered here as an option the idea of using a LOESS (or LOWESS) 
weighting, which looks like an envelope.  This will be offered with the filter design.  
The reason we do not offer it here is that when we are fitting a curve to displayed 
points, we have no prior expectation that we have less concern for the points near the 
end relative to those near the middle.  The program does however offer us a weight 
vector as an input, so we can of course try any weighting we want to look at – not just 
equal weighting.  This LOESS is seen in Fig. 2e, and we see that the result pays less 
attention to the ends, but otherwise makes little difference – at least in this example. 
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Program 2  
 

function h=wlsfilt(M,N,Weights)  

% Calculates h(h) 

% M = order 

% N = number of points 

% Weights = weights on error of N points 

% 

%  If no weight, use LOWESS weightm or remove comment for uniform weight 

if nargin==2 

   s=-1:2/(N+1):1;      % span 

   ww=(1-abs(s).^3).^3; % tricubic 

   Weights=ww(2:N+1)    % weights  

   %  Weights=ones(1,N) 

end 

 

  

h=[]; 

for n=1:N 

   x=zeros(1,N); 

   x(n)=1 ; 

      T=[]; 

   for t=0:length(x)-1  

      for k=M:-1:0 

          T(k+1,t+1)=t^k; 

      end       

   end 

   T=flipud(T); 

   T=T' 

     

   W=diag(Weights); 

   a=inv(T'*W*T)*T'*W*x';  % Polynomial coefficients 

   h(n)=polyval(a,(N-1)/2); 

end  

MAT=inv(T'*W*T)*T'*W   

% 

figure(1) 

subplot(211)    

stem([0:N-1],h) 

hold on 

plot([-2 N+2],[0 0],'k:') 

hold off 

mih= min(h); 

if min(h)>0; mih=0;end 

mih=mih-.2; 

mxh= max(h)+.2; 

axis([-1 N mih mxh]) 

%  

subplot(212) 

plot([0:.001:.499],abs(freqz(h,1,500))) 

hold on 

plot([-.1 .6],[0 0],'k:') 

plot([0 0],[-.2 1.5],'k:') 

hold off 

axis([-.02 .52 -.1 1.2]) 

figure(1) 

 

 

 

 

                                                            AN-417 (9) 



     The second program wlsfilt computes the weighted-least-squares filter and has 
options for LOESS (LOWESS) weighting.   The main output is the impulse response 
and the frequency response of the FIR filter that does this fit on a running basis, and 
thus is an alternative to moving-average or related smoothers.   Fig. 3a and Fig. 3b 
show the previously claimed results of h=[1/3 1/3 1/3] with equal weighting and  
h=[1/4 1/2 1/4] when the center is weighted by 2 instead of by 1. 
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 Fig. 3c is actually the default of our program.  If you do not actually include a 
weighting, the program interprets this as a request for LOESS weighting.  We are of 
course limited by what we can properly infer from length-3 examples, but it is clear 
that there is not much dramatically happening here.                                                 

 
                                                               
 

 
                                                         AN-417 (11) 
 



 
     Fig. 4 shows how the LOESS weigh curve (called “tri-cubic”) is calculated.  This 
curve is then “sampled” for the number of points in the fit (7 in Fig. 2e, 3 in Fig. 3c).  
Since the weight curve is 0 at -1 and at +1, we have chosen not to have samples 
there.  If you wish, consider the number of samples as two longer, and these are cut 
by the weight curve.   See the program code if this is not clear. 
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     Fig. 5a shows an example for length-15, order-5 filter with equal weighting.   This is 
simply the least squares we also saw with Savitzky-Golay.  In fact, the exact same 
impulse response of obtained with the program h=sg(5,15) from AN-404 [2].  This 
leaves Fig. 5b, which uses the LOESS weights.  The results are quite typical looking – 
similar to those we obtain with windowing such as Hamming  [6].   
 
     Here we are unsure what advantages, if any, come from the LOESS (LOWESS) 
approach.   It does appear that the method (as implemented in some software 
packages, but not very well documented) does deal with end effects by modifying the 
weight window at the ends in what seems to be a useful way.  In such an eventuality, 
the implementation would likely not be FIR.   
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