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                     DO RANDOM SEQUENCES NEED “IMPROVING”?  
 
  
    Let’s suppose you have become disillusioned with methods of generating a random 
sequence.   You may have decided that there are artifacts associated with PRBS 
(Pseudo-Random Binary Sequences) [1] and/or are wary of software noise generators 
[2].  Too many unanswered questions.  Perhaps you think it is time to look to something 
like random thermal noise or radioactive decay.   Or perhaps just coin flips.  It is well to 
keep in mind that not all applications of random noise generators require the same rigor.   
If you are using a “white noise” generator to produce snare drum sounds for music 
synthesis, you can get away with something crude like a reversed-bias transistor junction 
or indeed, a PRBS.  If however you are testing a theory with a Monte Carlo approach, on 
the other hand, you may well need to look at subtle irregularities and effects.  
 
     The output of a PRBS generator is often described as a coin toss sequence.  It is not 
– at least because the PRBS is deterministic, and as discussed [1,3,4] it has structure 
(and can even be audible). One can get into involved philosophical arguments as to 
whether a physical coin toss is deterministic.  Of course it is – if you have a detailed 
enough physical description.  “John tossed a spinning coin high in the air and it fell to the 
sidewalk” is not enough. While we generally know exactly what someone means by “coin 
toss” (implications of a fair coin, a vigorous toss, 50%:50% probability etc.) we may have 
in the back of our minds the notion that in some cases, the outcome is possibly subject 
to deliberate influence.   
 
     So let’s say you do decide that you really want a million coin flips.  You start out with 
great enthusiasm; toss a coin high in the air with lots of rotations.   One result – 999,999 
to go.  After perhaps 20 tosses, you decide to calculate how long this is going to take.  
Something like a year of 8-hour days!   This won’t do.   If you are lucky at this point it 
may be the case that you have at your disposal a captive workforce of 300 students in a 
class and can get each of them to flip coins as a week’s homework assignment.   The 
only question would be if they would do it right - or take shortcuts.   
 
    What could go wrong?  Everything.   Different students will throw coins in different 
ways with different reliability, and possible injection of non-random patterns.  Some may 
suppose they can “make up” random data – a known failing of human beings.   
Sometimes, students copy each other’s homework assignments.  Many will write a 
simulation program instead of toss a real coin. Since you plan to concatenate all the 
homework-generated sequences into one, any “bad apples” might well poison the result.  
Is it possible to examine any one student’s contribution and vet it as a legitimate tossing 
effort?  Suppose as an initial test you ask each student to submit the results of a length-
10 trial. Suppose you see such things as: 
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     (1)       H T H T T H H T H T 

     (2)       H H H H H H H H H H   

     (3a)     H H H H H T H H H T    where the H is an apparent erasure replaced by: 

     (3b)     H H T H H T H T H T 

 
Of course there is nothing “wrong” with any of the four length-10 sequences.   
 
     But, (1) has no runs of three (or more) H’s or three (or more) T’s.   For length 10 we 
should expect a run of three in about 83% of cases (program on page 15 bottom).  So (1) 
is unlikely, but very far from actually suspect.  If we had a large number of students 
reporting similar to (1) we would be justifiably suspicious. Or if we had a longer length 
(say 100) of no triples, we would expect someone was just writing things down, and that 
person erroneously suspects that runs of three should be rare (Figs. 5a and 5b below). 
 
     The run of 10 H’s in (2) is perfectly okay.  We expect that in one of 210=1024 cases.  
A run of 10 H’s or T’s is expected in 512 trials.   Here we speculate that we had 
submissions from 300 students, so this is quite likely.  Had we had only 10 submissions 
(not 300), we might suspect a prank of some sort. 
 
     In (3a) and (3b) we have postulated some evidence of erasure, which might indicate a 
recording error.  Or you might suppose the student got HHHHHTHHHT and become 
alarmed at having 8 of 10 as H, and the long runs (5 and 3) of H’s.  Fearing a poor 
grade, the student decided to amend the result for what seemed more random.  Both (1) 
and (3b) are possibly indications of a poor idea many people have of what a random 
sequence should look like. 
 
     How hard is it to do an honest series of flips?  Not hard at all.   The difficult is in 
reporting your results.  This is the situation where one might be tempted to change a 
H←→T for a better balance and/or to break up a long run.  Or at least, do a new run!  
Nope – not allowed, although we have sympathy for an author who wants neither to give 
an untypical impression, nor a long-winded apology for an untypical result.   Perhaps 
several examples can be given at times – perhaps expressly to show the variability. 
 
     However, bravely I am going to throw a coin 10 times and report exactly what I get 
(Pause): 
 
     (4)     T T H H H H H T H T 
 

Not bad, although I was a bit worried after that 5th H in a row.  
 
 

LOOKING AT THE DETAILS – OF THE WHOLE THING? 
 
Just above we are looking at some very short sub-sequences of what we presume must 
be a much much longer Pseudo-Random Generator (PRG) or perhaps a true random 
generator based on same physical process (perhaps cosmic rays!).  In postulating the 
involvement of numerous student contributors, the viewpoint was pretty much that of 
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“vetting” the contributions of the individual by looking at their small subsequence 
contributions.  Another view might be to look at sub-sequences of the PRG device to see 
if they themselves look random, or are consistent with a random origin.  PRG’s are often 
tested mainly for desired amplitude distribution [5].   This is straightforward for the most 
part.  Less easy to access are matters of correlation and spectral aspects and artifacts 
(like [1], Fig. 1a and Fig. 1b; and [2], Fig. 2).  
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In Fig. 1b (from [1]), we show a rather “typical” portion of a PRBS generator output.  This 
is from a length 22 shift register version.   More fundamental to understanding the PRBS 
generator is Fig. 1a which shows an atypical and potentially disastrous portion of the 
guaranteed output sequence.   While this is supposed to be a coin-flip (say H=1, T=0) it 
is clear that should you be in the vicinity just beyond about sample 50, we hope you bet 
on tails!  Less you suppose that this is unlikely poor timing, note that it follows rather 
directly what would be a standard initialization to all 1’s.  Further, while extreme, the 
example of Fig. 1a has similar additional (but shorter) artifacts as discussed in [1].  If you 
must use a PRBS approach, it is not enough the simply run off a lot of samples after 
initialization.  You should probably “chop up” sequences by multiplying (Exclusive ORing) 
sequences from several (perhaps 3 or more) generators of different lengths.   
 
     We also know full well that we can intentionally shape the spectrum of the random 
noise with a filter, for example as red noise [6].  We want to believe that the spectrum 
should start out white (uncorrelated) but we found evidence in [2] that when we tested 
the spectrum with an FFT, there was a dip to about 90% (23/2/π) below white at DC, and 
in the case of an even length FFT, at half the sampling rate, and it is argued in the 
reference that this is a fundamental finding (Fig. 2).  Perhaps it is the case that the FFT 
should be seen as only an ESTIMATE of the spectrum – not THE spectrum. 

     
     What we have looked at, in these examples of previous findings, is basically analysis 
of existing noise sequences – finding unanticipated results.  Here we will next be 
supposing that there might well be consequences to any attempts to “improve or correct” 
individual contributions to random procedures.  We will be thinking in terms of smaller 
pieces constituting a full sequence. This might be in the context of assembling a full 
sequence from vetted pieces, or it may be the extraction of a sub-sequence for actual 
use (as would often be the case when we need random numbers). 
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GENERATION AND VETTING OF PIECES 
 
The thought here was inspired by comments on the “Watts Up With That” blog [7] by 
Robert G. Brown of the Physics Dept of Duke (screen name rgbatduke) which is one of 
the rare cases where anyone discusses actually testing noise generators.  Brown points 
out that small sequences may well pass a test for randomness while combined into 
longer sequences the result may fail.  This was the origin of the scenario of having 
students construct a long sequence by individual sub-sequence submissions, and of the 
thoughts about how the students might try to “improve” their homework submissions.    
 
     So the viewpoint is first one of “synthesis” where we want to see if we can put pieces 
together, particularly as each piece is individually “tested” to see if it is random.  For 
example, a sub-sequence of [1 1 1 1 1 1 1 1 1 1 1 1 1 1] (14 ones) is perfectly fine, and 
popped out during testing of some ideas here.   However, by itself it doesn’t look 
random. Perhaps we should toss it (as one in 16,384).  What if we just decide to toss 
anything more rare than 1/128, for example?   The essence of Brown’s point is that if you 
toss some proposed component as being unexpected (rare) for a particular length, for a 
much larger length it is almost guaranteed to be there somewhere - but if tossed as a 
component, it would then become conspicuous by its absence, and the full sequence 
could fail a test of randomness.  
 
     Fig. 3a and Fig. 3b show an example that looks very similar to that of Figures 1a, 1b, 
and 2.  Looking at Fig. 3a we see that it is defined on levels +1 and -1 instead of +1 and 
0, which is not too important, but here we note that Fig. 3a is NOT the output of a PRBS 
but rather was generated by Matlab’s rand function [ as 2*round(rand) - 1 ].  What is 
important about this is that the sequence is NOT subject to the feedback generation 
process, and this makes a huge difference.  Note that Fig. 3a resembles the “scrambled” 
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PRBS example of Fig. 1b.   Fig. 3a in fact shows a repeat of six 1’s (probability 1/64 
which we expect to see in 100 samples).  We generated millions of samples, and 
happened to observe, by eye (observing plots like Fig. 3a), repeats of 11, 10, 9, and 14, 
among many shorter ones, like the six actually seen in this Fig. 3a.   Looking at versions 
of Fig. 3a, people tend to suppose that there are too many clusters of repeats, a human 
failing we have mentioned above.   We note that the long clusters are expected, and that 
we would find clusters as long as 22 (as in Fig. 1a) and longer.  The essential difference 
between the Matlab rand approach and the PRBS is that when we do find the length-22 
repeat using rand, we would NOT expect to have it followed by a sequence of 21 zeros, 
nor would we expect it to be preceded by an alternating sequence, as in Fig. 1a, etc.  
Rather we would expect it to be flanked by more typical random-looking portions.     
 
     Keep in mind that Fig. 1a and Fig. 1b are PRBS outputs while Fig. 2 (the FFT 
spectrum) is Matlab rand. (They are from two separate reports [1] and [2].)  Fig. 2 was 
from rand.  Fig. 3b is from 2*round(rand)-1 and is thus binary (+1 and -1).  Fig 3b is 
actually the average of 1,000,000 trials of length 200.  The important thing is that we get 
the same 90% dips in the spectrum from the binary case here, Fig. 3b, that we got in the 
uniform distribution of rand in Fig. 2.  This we would have guessed would have occurred.  
 
     In total, Figs. 3a and 3b are a baseline case where we have not employed any 
attempts at making the sequences LOOK more random.   Below we will make some 
(erroneous) attempts to “fix” the appearances.  Our principal tool for analyzing the results 
will be averaging of FFT’s as in Fig. 2 and Fig. 3b.  We will note that the endpoint dips 
will remain.  Direct examination of small portions of sequences in the time domain will 
also continue to be informative and useful. 
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     Our first “refinement” ploy is related to the classical problem of throwing out outliers.  
In some cases, these are obvious mistakes – perhaps what might well be a transcription 
error of someone’s age as 350 instead of 35.  (This leaves the problem of whether or not 
you choose to then discard, or to correct.)   Yet an outlier from a normal distribution 
(Gaussian) could be more of a mathematical prank of nature.  If you had numbers like 
117, 189, 177, 215, 148, and 350, the number 350 might by an outlier at perhaps five 
standard deviations relative to the first five numbers.  Mathematically, it could happen.    
 
     Perhaps we tend to forget that, matters such as the “central limits theorem” 
notwithstanding, it is hard to guarantee (thus to even claim) that a distribution is normal.  
A distribution of ages of a person with a popular name might be a reasonable match to 
normal, but how would one address the fact that the distribution predicted a person with 
that name of age -7!  Distributions are originally just the results of plotting actual data.  
Mathematical equations of distributions are models, often known not to be correct in fact, 
or even found contrary to a reasonable theory of a phenomena.   
 
     All this being said, we can postulate data segments being analyzed and then possibly 
tossed out if they have what we choose to regard as outliers.    Likely in a binary case we 
would agree that finding runs of five 1’s or -1’s are not unusual, but here we will choose 
this exclusion because we want to exaggerate the effect.  To generate the data seen in 
Fig. 4a, we have taken length-5 random segments and if they are [1 1 1 1 1] or  
[-1 -1 -1 -1 -1] we toss them and try again.  Clearly the result in Fig. 4a shows runs of 5, 
and indeed of 6 and 7 here.   Our procedure does not exclude runs of 5 or greater than 5 
in the final result, but only in the component sub-sequences.  Back-to-back components 
of [-1 1 1 1 1] and [1 1 1 1 -1] would pass the test and give [-1 1 1 1 1 1 1 1 1 -1], a run of 
8 in the output.  Indeed, it is a simple matter to find many examples similar to Fig. 4a and  
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visually scan them; and after perhaps a hundred or more trials, 10 runs of 8 were found, 
but not a single example of a run of 9, so the coded procedure seems to work.   
Examining hundreds of graphs of a hundred or so samples is tedious.  Can we learn 
anything from the spectrum (the FFT)?  Yes.   
 
     Fig. 4b is the average of 1,000,000 runs of length 200 samples which eliminate runs 
of 5 (either +1’s or -1’s) and tries again.  The spectrum shows three interesting things.  
First, there are the endpoint dips which continue to appear.   Secondly there is a high-
pass reduction in low-frequency.  This too we might have expected in some general way, 
since we are eliminating some constant segments.  More curious is perhaps the obvious 
“ripple” which seems to be related to increments of k=5, best seen perhaps from k=45 to 
k=75.  This we have not investigated enough to discuss this except to note that 5 is the 
length of the segments tossed.  The important thing is that the manipulation (some 
manipulation) becomes quite obvious in the spectrum, so we have a useful tool.     
 
     We postulated the “mischief” of Figs. 4a and 4b as being the result of our supposed 
contributing conscript (students) not wishing to turn in conspicuous homework.   What is 
again actually just another example of an unwarranted but ubiquitous human prejudice 
against long runs, would be a “forced choice” by which a student figures that a run of two 
of anything is enough, and that certainly a break must follow (in the extreme, the 
proverbial “gambler’s fallacy”).  Fig. 5a shows a sequence that is generated by starting 
with two random samples.  From then on the procedure codes by looking back at the 
previous two samples, and if they are the same, we must make a forced change.   If they 
are different, we again make a random selection.  Then we consider the two that are now 
the most recent, and so on.   The result as in the example of Fig. 5a is remarkably 
smooth.  There is never a case where more than two or anything occurs.  Lots of [ 1 1 -1] 
and [ -1 -1 1 ], alternating [1 1] and [-1 -1], and some [1 -1] stuff. 
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     As smooth as the sequence (Fig. 5a) appears to the eye, the average spectrum (Fig. 
5b) is very peaked.  Again we have the endpoint dips, but the striking result is the band-
pass like peak just above k=60.   Because this is an average of length 200 sequences, 
the peak at about 65 is a frequency of 1/3 the sampling frequency, and thus of period 3.  
This we interpret as the dominance of segments like [ 1 1 -1] and [ -1 -1 1] as broadened 
a bit by the other common elements.   Once again, the spectrum makes the anomaly 
obvious.   
 
     Originally thought of as a “control” we have also tried a case where instead of tossing 
out trial blocks we inserted runs of 5 with a probability the same as the exclusion (1/16).  
This does not show very well in the time domain, likely because of the low probability, 
and because we have no way of knowing if any run of 5 is artificial.  In fact, Fig. 6a looks 
very untypical, and repeats of the program do show runs of 6, 7, 8, etc.  (All code is 
attached so you can make your own runs).  But we are committed to NOT selecting here, 
so we stick to the first one that came out.  To see what happens, more typically, we will 
go right to the spectral view as seen in Fig. 6b. 
 
     As expected, we see the endpoint dips.  We also see the enhancement of low-
frequencies, and this is what we would expect if we note that we are adding in long runs 
to what would otherwise be random.  So it more or less looks like the reflection of Fig. 4b 
– except – what happened to the ripples?   In the sense that this was a control or a test 
we were kind of expecting the length-5 ripples.  But as much as we don’t really 
understand the ripples on Fig. 4b anyway, their disappearance should not upset us.   
The evidence is probably trying to tell us something.   If only these tests were not so 
tedious.  The code is not difficult, but proper observation of the time sequence requires 
detailed examinations.  The code to manipulate takes a lot of time (or needs to be written 
in a more clever manner), not to mention that and runs of spectral averaging require at 
least a million runs to clearly show ripples.   In short – a good project for another time. 
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PROGRAM 
 
Program here is offered for complete documentation as to how figures were produced.  
Code likely could be improved. 
 
 
% randstudy.m 
 
 
% Original – No manipulations 
% Fig. 3a and Fig. 3b 
N=1000000    
XT1=zeros(1,200); 
x=[]; 
for k=1:N 
   for n=1:200 
      x(n)=round(rand);  
   end 
   x=2*x-1;  
   X=abs(fft(x)); 
   XT1=XT1+X;  
  
   if k==1 
      figure(1) 
      plot(x(1:100),'*')  
      axis([-5 105 -1.2 1.2]) 
   end 
   end 
 
XT1=XT1/N; 
figure(2) 
plot([0:100],XT1(1:101)) 
axis([-5 105 -2 20]) 
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% 
% Discard cases all 1's and all 0's and replace with new component of 5 samples 
% Fig. 4a and Fig. 4b 
N=1000000    
XT2=zeros(1,200); 
x=[]; 
for k=1:N 
   x=[]; 
   n=1; 
   while n<41 
      for nn=1:5 
         xx(nn)=round(rand); 
      end 
      g=1; 
      if sum(xx)==0;g=0;end 
      if sum(xx)==5;g=0;end 
      if g==1 
      x=[x xx]; 
      n=n+1; 
      end 
   end 
     
   x=2*x-1; 
   if k==1 
      figure(3) 
      plot(x(1:100),'*')  
      axis([-5 105 -1.2 1.2]) 
   end 
 
   X=abs(fft(x)); 
   XT2=XT2+X; 
end 
XT2=XT2/N; 
figure(4) 
plot([0:100],XT2(1:101)) 
axis([-5 105 -2 20]) 
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% 
% Discard three-peats – forced choice  
% Fig. 5a and Fig. 5b 
N=1   
XT2=zeros(1,200); 
x=[]; 
for k=1:N 
   x=[]; 
   n=1; 
   x(1)= 2*round(rand)-1; 
   x(2)= 2*round(rand)-1; 
   for n=3:200 
      x(n)=2*round(rand)-1; 
      if x(n-2)*x(n-1)==1 
         x(n)=-x(n-1); 
      end 
   end 
    
   if k==1 
      figure(5) 
      plot(x(1:100),'*')  
      axis([-5 105 -1.2 1.2]) 
   end 
    
   X=abs(fft(x)); 
   XT2=XT2+X; 
end 
XT2=XT2/N; 
figure(6) 
plot([0:100],XT2(1:101)) 
axis([-5 105 -2 25]) 
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% 
% Control – insertion of runs of 5 
% Fig. 6a and Fig. 6b 
N=1000000  
XT2=zeros(1,200); 
x=[]; 
for k=1:N 
   x=[]; 
   n=1; 
   while n<41 
      for nn=1:5 
         xx(nn)=round(rand); 
      end 
       
      if rand<0.01625; xx =(2*round(rand)-1)*ones(1,5); end 
      x=[x xx]; 
      n=n+1; 
  end 
     
   x=2*x-1; 
   if k==1 
      figure(7) 
      plot(x(1:100),'*')  
      axis([-5 105 -1.2 1.2]) 
   end 
 
   X=abs(fft(x)); 
   XT2=XT2+X; 
end 
XT2=XT2/N; 
figure(8) 
plot([0:100],XT2(1:101)) 
axis([-5 105 -2 20]) 
  
*******Program for 83% calculated for page (2)*****************                
% randstudy1.m 
M=0 
N=1000000  
for k=1:N 
   for n=1:10 
      x(n)=round(rand);  
   end 
   y=conv(2*x-1,[1 1 1]); 
   if max(abs(y))>2 
      %     if max(y)>2  
      M=M+1; 
   end 
end  
R=M/N 
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