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                        STEP RESPONSE FROM LAPLACE TRANSFORM 
 
 
In the last app note, AN-413 [1] we looked at notch filters and paid special attention to the 
step response.  We found a good number of possible ways of determining the step 
response, all of which happily agreed.  Yet we did not use the most classic way of finding 
a step response of a filter T(s): by finding the Inverse Laplace Transform (LT) of T(s)/s.   
Like most LT problems, the procedure can be tedious. 
 
     Here we will look at the step response of a low-pass filter (one of the component 
responses of a notch).  This is in fact a problem we did some 36 years ago in a previous 
app note, AN-103 [2].   Happily the result agrees with the most recent.  At the same time, 
we get to compare the way our new tools make the job easier than it was way back then. 
One of the unexpected things was that for the original case, it was hard to get an answer 
written down that was easy to plot and verify.  Today we can program “un-simplified” 
intermediate expressions and let a program immediately grind out and display the result.  
An additional goal of the present note is to make sure we understand the “calibration” of 
the time axis with relation to the step response. 
 
     The general form of a 2nd-order low-pass transfer function is:  
    

                
    

  

             
                                                                                                                

 
where D is the damping (1/Q) while ω0 is the pole radius.  The damping can be any value 
greater than 0, but typically is between 0 and 2 (complex poles).   For lower values of D 
(say 1/2 or smaller) the step response (or the impulse response) will “ring”, looking quite a 
bit like a superimposed sinusoidal waveform.  The frequency of the sinusoidal ringing is ω0 
in radians/second.  In many cases, ω0 is “normalized” to 1 radian/second.   Thus it takes 
2π seconds to complete one cycle.  So if the step response for this normalized case is s(t), 
it takes 6.28… seconds for one full cycle.   Another significant aspect of ω0 is that the 
frequency response, usually taken to be the magnitude of T(s=jω), will have a bump or 

peaking in the vicinity of ω0 if D is less than    (like 1 or less).  We look at all these things 
we expect them to check with each other. 
 
     The first step in doing an inverse LT problem is to find the poles so that we can write 
T(s) in terms of partial fractions. Setting the denominator equal to zero and using the 
quadratic formula, we get: 
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which may look a bit odd as we have taken a “j” outside the radical sign and reversed the 
signs of the terms inside.  We can always do this.  Here it is convenient because we are 
thinking of cases where D is no larger than 2, and we are most interested in the 
corresponding complex conjugate poles.  Note that the poles are stable for positive D 
(negative half-plane poles).  For the normalized case, set ω0 = 1.  Accordingly, we see that 
a particular choice of ω0 simply scales the poles in or out, at an angle determined by D. 
 
 

PARTIAL FRACTIONS 
 
     Our goal is to invert the LT of the step response: 
           

      
 

 
        

    
  

               
  
                                                                                                     

 
For the normalized case ω0 = 1, this becomes: 

      
 

 
        

    

              
                                                                                                             

 
This inversion will be done by putting equation (3b) in the form of partial fractions: 
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where the normalized poles are now at: 
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note that p1p2=1 and A, B, and C are coefficients to be determined.  So the next step is to 
continue to develop equation (4) as:     
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Equating powers of s [middle term of equation (4) to the right-side term of equation (6)] we 
find three equations in three unknowns and immediately see that Ap1p2 = 1 or A=1 (power 
of s0), leaving two equations in two unknowns: 
 

                                                                                                                                                           
                                                                                                                                      
 
Which solve for B and C to give us in total: 
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     So we are close to having a computable form.   We have only to invert the three terms 
in the sum (each now first-order) individually.  Likely you remember that these single-order 
poles invert to exponentials.  But is it ept or e-pt where p is the pole!  Probably e-pt looks 
right (decaying), but p probably already has a negative real part (stable).  Three things to 
do:   First, if you try one, and it blows up, you guessed wrong!  A second thing is to 
remember that a first-order low-pass is T(s) = (1/RC)/(s + 1/RC), so the pole is at -1/RC.  
(See Appendix).  At the same time, the exponential decay of this filter is e-t/RC, so ept must 
be right.  Third, all else failing, tables always have 1/(s+a)←→e-at or 1/(s-a)←→eat.  So we 
plug in A, B, and C: 
 

        
 

 
        

 

             
   

 

 
     

  
     

    
     

 
  

     

    
                                                                           

 
which can be inverted, term by term at first-order (the LT being linear). Calling s(t) the step 
response, the inverse LT of T(s)/s is: 
 

                       
  

     
       

  

     
                                                                                                                                                                   

 
This is the answer.  [ Note that here 1/s = 1/(s-0) inverts to 1•e-0t = 1.]   We can compute it, 
for t = 0 to 20, for example.  Here is some Matlab code: 
 
% AN414.m 

 

D=1/2 

poles=roots([1 D 1]); 

p1=poles(1) 

p2=poles(2) 

t=0:.01:20; 

sstep = step([0 0 1],[1 D 1],t);   % Matlab step function for comparison 

scomp = 1 +(p2/(p1-p2))*exp(p1*t) - (p1/(p1-p2))*exp(p2*t);  % eqn (9b) 

figure(1) 

plot(t,sstep,'r') 

hold on 

plot(t,scomp,'b:') 

plot([-2 22],[0 0],'k') 

plot([0 0],[-1 5],'k') 

plot([-2 0],[0 0],'b') 

plot([0 0],[0,1],'b') 

plot([0 22],[1 1],'b') 

plot([2*pi 2*pi],[-1 5],'c:') 

plot([4*pi 4*pi],[-1 5],'c:') 

tt=[2*pi:2*pi/100:4*pi];  

yc=0.25 - 0.1*cos(tt);     % comparison cosine segment 

plot(tt,yc,'b') 

ymax=max(sstep); 

axis([-2 22 -0.2 ymax+0.2]) 

hold off 

figure(1) 
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     Fig. 1 shows the plot from this code.  The first thing to note is that the curve from  
equation (9b) rather exactly overplots the curve from Matlab’s step function.  We have in 
the plot a superposition of a red curve with a dashed blue curve.  This is the same step 
response we saw [1] and it agreed with other calculations.  So here we have added the 
use of the partial fractions inverse LT procedure to our previous toolkit.  We have added 
the little inset section to remind ourselves that the step response “rings” or oscillates 
resembling a frequency of ω0 = 1, something we said was useful in “calibrating” our time 
axis. 
 
 

GRINDING IT OUT TO BE REAL 
 
     Despite the fact that the calculation of equation (9b) seems to work perfectly, it does 
not exactly satisfy us because it involves coefficients and exponentials that are complex, 
while the result must be, and is, purely real.   Some imaginary stuff must be cancelling out 
or somehow disappearing.  While this sort of result is not at all uncommon, it is always 
comforting to see the details of how it happens.   That is, we would like to further develop 
equation (9b) until it is purely real.  Yes, it may be tedious.   
 
     So to progress with equation (9b) we need to actually plug in the expressions for the 
poles from equation (5).      The expressions for the coefficients will become: 
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(one is the negative of the conjugate of the other) and the exponentials are: 
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so the elements in the equation remain complex when written out, but we do see the 
promising symmetry which may lead to simplifying combinations.  So we have: 
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where we have used the familiar Euler relationships: 
 

             
          

  
                                        

          

  
                                                       

 
These Euler equations are what gets the job done here.   Equation (14) is clearly purely 
real and we see that the step response is the sum of a constant (the step = 1) and two 
exponentially decaying sinusoidal terms – something that we probably do not see in 
equation (9b).  The result of equation (14) is easily programmed as:  
 
scomp2 = 1 -(D/sqrt(4-D^2))*exp(-D*t/2).*sin(sqrt(1-D^2/4)*t) 

                   - exp(-D*t/2).*cos(sqrt(1-D^2/4)*t); 

 

and gives us the same result as seen in Fig. 1.   
 
 

JUDGING THE TIME RESPONSE 
 
     We want to do a few more things with Laplace, since that is all that is new here relative 
to AN-413, but first, let’s be sure we understand the “calibration” of the time response.  
Fig. 2 (all using Matlab’s step) show us that, for ω0 = 1, D=1/2, the step responses have 
“first bumps” that are roughly at a time of π/2 for Band-Pass (BP) and Notch and at 
roughly π for Low-Pass (LP) and for High-Pass (HP).   The “time” here can be considered 
actual time, or phase angle for ω0 = 1. 
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STEP RESPONSE OF HIGH-PASS BY LAPLACE 
 
We found that calculating the step-response of a LP by the Laplace method was feasible 
but ever so slightly tedious. Mainly we wanted to see if it agreed with other methods.  It 
did.  We can remark here briefly on the use of the Laplace transform for HP.  Note the 
curiosity that: 
 

           
 

 
         

      

              
     

    

             
                                                        

 
or the step-response of the HP will be the same as the impulse response of a BP.  Thus: 
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From which (equating powers of s in the numerator) we have: 
     
                                                                                                                                                                
 
                                                                                                                                                            
 
which solve easily for: 
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so sHP(t), the high-pass step response is: 
 

                           
   

     
       

  
     

                                                                                         

 
 
which is programmed as: 
 
    scomphp=(-p1/(p2-p1))*exp(p1*t) + (p2/(p2-p1))*exp(p2*t); 

 

and can be plotted as in Fig. 3 (D=1/2), along with the Matlab step result. 
 

 
 
 
 

IMPULSE RESPONSE OF HIGH-PASS BY LAPLACE 
 
     While we have concentrated on step-responses, the LT is probably most used for 
impulse responses: the impulse response g(t) being the inverse LT of T(s).  We want to 
show here the complications of applying the methods to the HP case, but first we will 
calculate the impulse responses of the LP, BP, HP, and Notch using simulation.  Fig. 4 
shows the results (with two dashed overplots to be described), and the Matlab code 
(similar to the step response code of AN-413), is shown below: 
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VH=zeros(1,8000); 

VB=zeros(1,8000); 

VL=zeros(1,8000); 

dt=0.002 

D=1/2 

imp=500  

for n=2:8000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ imp; 

   imp=0; 

end 

VN=VH+VL; 

figure(6) 

plot([0,20],[0 0],'k') 

hold on 

plot([0 0],[-2 2],'k') 

plot([0:7998]/500,VH(2:8000),'r') 

plot([0:7998]/500,VL(2:8000),'b') 

plot([0:7998]/500,VN(2:8000),'k') 

plot([0:7998]/500,VB(2:8000),'g') 

plot(t,scomphp,'k:') 

plot(t,hpir,'k:') 

plot([2*pi 2*pi],[-1 1],'c:') 

axis([-1   16  -1.2 1.2]) 

hold off 

title('Impulse Responses LP=Blue  HP=Red  BP=Green  N=Black') 

figure(6) 
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     Less we have left the impression that the LT method is without complications, we will 
look at the case of finding the impulse response of the HP using the partial fractions 
approach.  Something different happens here.  Suppose we try:  
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This can’t possibly work, because the numerator on the far right of equation (21) has no 
terms in s2.   We must add a constant term, and this in turn means that the inverse 
transform will have a peaky Dirac delta function.  Thus we try instead: 
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So the numerator on the far right term of equation (22) is: 
 
 

                                                                                                                           
  
from which we match to the s2 term to give A=1, with two equations in two unknowns 
remaining: 
 

                                                                                                                              
 
                                                                                                                                      
 
So our coefficients become: 
 
                                                                                                                                                                        
 

                              
        

     
                                                                                                                  

 

                              
        

     
                                                                                                                     

 
So the partial fraction expansion of TH(s) is: 
 
 

                            
 
        
     

 

    
    

 
        
     

 

    
                                                                     

 
with corresponding impulse response: 
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     Equation (26b) is overplotted in Fig. 4 as a dashed black line overploting the red 
simulation curve, with an excellent matching.  Here is the Matlab code line for the HP 
impulse response of equation (26b)(The Dirac delta can not be plotted):  
 

hpir=((-1-D*p1)/(p1-p2))*exp(p1*t) + ((1+D*p2)/(p1-p2))*exp(p2*t); 

 
     Fig. 5 shows an experimentally observed curve for the same circuit as in AN-413 Fig. 7 
(except D=1/2, so the 68k resistor there was changed to 200k here), and the input was a 
narrow (but not too narrow so that some energy gets in, pulse approximating an impulse).  
Not the easiest of experiments.    
 

 
  
The agreement here is quite good. 
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APPENDIX – FIRST-ORDER 
 
As mentioned, there is at time confusion about the signs of poles (sign in the 
denominators) and in the exponentials.  In addition to generally noticing if we did it wrong, 
because the result blows up, we suggest that one can resort to a first-order LP, which is 
likely very familiar.  We know for example that the pole is real and negative (at -1/RC, 
stable), and that the impulse response should decay exponentially to zero.  The figure 
below reminds us that we can think of an impulse as the instantaneous transfer of an 
amount of charge q0 to a capacitor at time 0. with q0C=1.  In terms of a Dirac delta, this is 
a very large (“infinite”) pulse of zero width, but unit area!  For all time except exactly t=0, 
the “input” is in effect, grounded, so the capacitor discharges exponentially for positive 
time.  It is exactly the same discharge we would get if the input had been 1 from t = -∞ to 
t=0, and then suddenly fell to zero.   
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