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                                               NOTCH FILTERING – SOME NOTES 
 
  

THE CLASSIC R-L-C NOTCH – Adding LP+HP 
 
      Traditionally, engineering students (of all flavors) usually have a required course, 
called something like “electrical science”, at the sophomore level.   Often such a course 
has a major effect on a student’s choice of the particular field of engineering – sometimes 
toward, and sometime away from EE.  Typically the material looks more like physics and 
mathematics and less like “hobby” electronics.   But likely there was at least one circuit 
that tied the transform math and physics together with such apparently useful notions as 
“filtering” and this was even fun, particularly as this circuit often was compared to simple 
mechanical networks.  Even differential equations made some sense in this presentation. 
I am talking about the R-L-C circuits: the simplest possible combinations of a resistor (R), 
an inductor (L), and a capacitor (C).         

 
     Fig. 1 shows three typical R-L-C series circuits.   We do not propose to go over the 
solution which we assume is familiar or readily available.  We remind the reader that the 
order of the three components (R, L, and C) make no difference to the current that flows 
through the series.  The only difference is the component (or components) in the lower 
output leg.   Traditionally, the explanation of the Low-Pass (LP) is that the inductor tends 
to block high frequencies while the capacitor tends to short any residual high frequencies 
to ground. The High-Pass (HP) has the capacitor passing high frequencies (blocking low 
ones) while the inductor shorts any residual low-frequencies to ground.   The notch, where 
the output leg has both the L and the C was more mysterious – something to do with 
resonance.  It shunted the resonant frequency to ground.    
 
     Here our preferred analysis mode would be to use the complex impedances and the 
notion of a voltage-divider (to be mentioned below).  Keeping this in mind, we have one of 
our main themes – that the notch is the sum of a LP and a HP since both the L and the C 
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are in the output leg.     We note here that our choice of the three filters in Fig. 1 was to 
make just that point.   In a more traditional presentation, we would have likely had the R-L-
C series with the resistor R in the output leg as our third example: a Band-Pass (BP).  Or 
an introduction might have used a parallel L-C. 
 
     We might well have considered the idea that a notch filter or at least a band-reject filter 
(blocking a range of frequencies, not just one) would be accomplished by using a LP and a 
HP.   Or, we might have said that you could get a notch by subtracting a BP from unity.   It 
is more subtle than this though, largely because we have to consider phase and we can’t 
just add responses.   In particular, a sharp notch can be achieved not due to a frequency 
space between a LP and a HP but because the LP and HP responses cross each other 
(same magnitude) but are perfectly OUT of phase.  This was probably explained first as 
having a “complex impedance” going to zero.    
 
     In any event, it is easy to write down the transfer functions of Fig. 1 as simple voltage-
divider observations: 
 

                     
  
   

  

 
  

      
 
    

 
  

                                                                                   

                                                                   

                                 

        
  
   

   
    

      
 
    

 
  

                                                                                     

                              

                      
  
   

 
      

 
  

      
 
    

 
  

                                                                                        

 
and although not shown, if R is used in the output leg (BP) the transfer function would be: 
 

                        
  
   

   
   

 
  

  

      
 
    

 
  

                                                                                   

 
These are perfectly good transfer functions, although we often see them modified to a 
standard form so that the denominator becomes: 
                          
                                   

                                                                                                                     
                                                          

where D is the “damping  (1/Q) and    
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such that they have poles (roots of equation (2a) at (see also Appendix A): 
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Note that when L=1 and C=1 (a common normalization) we have simply D = R.  This is 
convenient, so while we could proceed here and convert everything to the standard form, it 
is perfectly good to just use the original transfer functions, and this we will do. 
 

 
     Fig. 2a shows frequency response magnitudes for the LP, HP, Notch, and BP 
according to equations (1a, 1b, 1c, and 1d) respectively with L=1, C=1 (ω0=1), and R=1 
(D=1), all done with Matlab’s freqs function.   The value D=1 is somewhat underdamped 

(D=2 is critically damped, D=   is Butterworth) so there is a bit of peaking in the LP and 
HP.  Another advantage of this choice is that the magnitude response of the LP and HP 
(and indeed the BP) is 1 at ω=1.  Since we have said that the notch is the summation of 
the LP and the HP, and the response of the notch at ω=1 is 0 (not 2!) it might appear that 
we should have said the subtraction.  The addition is correct however because it is the 
magnitudes that are equal –but the two response are exactly out of phase.  Another way to 
see this is that the numerator of equation (1c) has zeros at s = ±j.   These zeros at ω = ±1 
are independent of D.  The LP and HP magnitudes cross there (are equal) and are out of 
phase regardless of their particular common magnitude.   That’s what a notch is about.   
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     Fig. 2b is similar to Fig. 2a except we have changed R to 2, and thus D=2, and now the 
LP and HP overlap at a magnitude of 0.5, but cancel in the notch sum just the same. This 
value of D=2 (Q=1/2) is the so-called critically damped case.  [Keep in mind that reaching 
critical damping is the point where time-overshoot ends.  The frequency domain “ripple” 

disappeared at D=   (Butterworth).]  As we are about to suggest an alternative path to a 
notch by subtracting a BP from a constant, we have also put the second example (D=2) 
here as a way of reminding ourselves that the BP peak is not in general unity. 
 
 

Subtracting a Band-Pass to form a Notch 
 
     In many ways we tend to think of a notch as being the opposite of a BP filter.  The BP 
favors one frequency while the notch rejects one frequency.   We can almost see a 
subtraction in the works here.  However, we always need to keep in mind that in adding or 
subtracting AC signals we have to worry about phase.  First, what is the peak of the band-
pass TB(s) where: 
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which we see agrees with what we see in Fig. 2a (D=1) and Fig. 2b (D=2).  We are also 
proposing to form a notch TN(s) as: 
 
    

                       
            

       

             
    

                
  

             
         

 
which is a standard notch when α=D so that the coefficient of s in the numerator goes to 0.    
 
     In Fig. 3a, D=2 and α=1, so we do not have a proper notch.  Another way to say this is 
that we have not subtracted enough BP.  We see that we have instead a shallow dip to 1/2 
at ω=1.  Looking at the BP (green) it does look a bit like the proposed notch (black) is unity 
with the BP subtracted, but a closer look says it isn’t that exactly.   In fact, by solving for 
the poles and zeros of equation (4) we have both the poles at s=-1 (as we expect for D=2, 
critical damping), but the zeros are at s=-0.5 ±0.866j, not at s=±j as we expect for a proper 
notch.  Note that the zeros are at the correct radius of 1.  
 
     Fig. 3b is a surprising result.   We make D=1 again as in Fig. 2a.  Looking at the BP 
from Fig. 2a (repotted in Fig. 3b) we might expect a flat-bottomed notch response like Fig. 
3a, except reaching zero.  [The first time I tried this, I thought I plotted something wrong!]  
What happened?  Well making D=1 and leaving α=1, we have thereby set D=α and have 
the required condition that the zeros are at s=±j, the proper notch.   In fact Fig. 3b is not  
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flat-bottomed at all, but sharp, exactly the same as Fig. 2a.   Fig. 3c checks this idea by 
making D=2 again (critical damping) but now setting α=2, and we again get zeros at s=±j. 
The lesson is, that we get the same final result whether we use the notch=LP+HP or the 
notch=1-BP (with proper weighting).   We probably should have expected this. 
 
     The notches we have found and perhaps prefer have the zeros at s=±j, and thus have 
nulls at ω=ω0, while the poles are on a circle of radius ω0.  This means that the response 
levels, on either side of the notch, are equal (for DC and for high frequencies).  Nothing 
prevents us from moving the poles so that the sides are unequal, or moving the zeros off 
the jω-axis, if this results in a response that is more suitable in our application than what 
we have called here the “proper” notch.  
 
 

The “State-Variable” Notch – Step Response 
 
We started out with a classic R-L-C network, and then more or less abandoned it when we 
tried (successfully) to form a notch from a BP.  Still we want to get rid of the inductor (the 
L) because in many cases (like audio frequencies), inductors are bulky, heavy, and non-
ideal.  Traditionally we use active elements (op-amps) to get rid of the inductors – so-
called “active filters”.  Many active notch networks have been described and used [1 and 
Appendix D], and we often find we only need a single op-amp for a second-order notch 
equivalent to the R-L-C.  An exception is the popular “state-variable” (SV) circuit that uses 
three (or more) op-amps which is of interest (like in our music synthesizers) because it 
offers three or more filter type simultaneously (like LP, BP, HP, and Notch).  Here this SV 
structure will be very convenient for our continuing analysis.  Fig. 4 shows the structure. 
 

 
The SV structure is just a summer and two integrators (the 1/s boxes) in a loop, and the 
Notch is formed by summing the LP and HP.  [In music synthesizers this second summer 
was sometime done with two resistors of 2k each (averaging), providing the correct 
weighting and the desired 1k output impedance.]   Here we want to just have this structure 
in mind as a basis for examining the step response of the notch by simulation.  The step 
response of a notch filter has recently become an issue [2] in as much as it had mistakenly 
been claimed to be non-causal, while the step response should be and is or course causal 
(like all physical filters). 
 
                                                               AN-413 (7) 
 



     For our study here, we will simulate the network of Fig. 4.  We start with all the voltages 
VH, VB, VL, and VN=0 with a step arriving.  We then increment the simulation as in the 
Matlab code snippet here, for critical damping D=2: 
 
  

 

VH=zeros(1,5000); 

VB=zeros(1,5000); 

VL=zeros(1,5000); 

dt=0.002 

D=2 

for n=2:5000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ 1; 

end 

VN=VH+VL; 

figure(1) 

plot([0:4998],VH(2:5000),'r') 

hold on 

plot([-1000 0],[0 0],'c') 

plot([0 6000],[1 1],'c') 

plot([0:4998],VL(2:5000),'b') 

plot([0:4998],VN(2:5000),'k') 

plot([0,5000],[0 0],'k') 

plot([0 0],[-1 2],'k') 

plot([0 0],[0 1],'c') 

axis([-1000 5100 -0.2 1.2]) 

hold off 

figure(1) 

 

 

 

     Fig. 5 shows the result of this simulation with this code.   Note that the Notch step 
response is indeed causal and is the sum of the HP and LP step responses, as we have 
said.   A built-in Matlab function step can also be used to verify the calculation, and this is 
shown in Fig. 6, where we have shown an over-damped case and an under-damped case 
as well as the critical damping.   A very nice calculator for this problem is available online 
[3] and gives the same result (L=1, C=1. and R=2).    
 
 
 

An Experiment 
 
     Above we have shown some equations and some plots.  To paraphrase Feynman, 
none of the theory matters if the experiment disagrees.  Fig. 7 shows an experimental 
circuit and a photo of the scope trace showing a step response.    
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     The circuit I used is likely very familiar to readers of these notes, as it is the SV 
configuration similar to our electronic music modules.  I did use a total of 5 op-amps.  The 
first one is to simplify the feedback from the BP and the last one was to achieve a unity-
gain notch summer.  The three in the middle are the conventional SV.   In order to make a 
better demo, I used a damping of 1.47 so that there would be ever so slight overshoot.  
Note that the step at the top arrives, and then the response begins, very much like the 
calculated plots.  The experiment was not a surprise of course, but you have to show the 
actual experimental data so that there is no doubt the experiment was done. 
 
 

The Mechanical Analog 
 
     The R-L-C electrical circuit has a mechanical analog that involves a mass, a spring, 
and a rough surface for friction (damper).   Fig. 8 shows one such mechanical network, 
and is shown here to point out the similarity to our findings of the step response.   In 
particular, we will become interested in the critical damping cases.    
 
     If the damping were slight, we can easily associate the LP mode with the notion of the 
mass as driven by the red-ball-driver, thus by displacement.   The HP is associated with 
the elongation of the spring relative to an equilibrium position (hence by Hook’s law with 
the force and thus with the acceleration).  The BP is associated with the velocity of the 
mass.  Hence Fig. 4 shows that acceleration, velocity, and displacement are correctly 
arranged by the integrators (HP, BP, and LP).  Notch, being the sum of HP and LP is less 
easy to visualize.     One of the huge advantages of a mechanical analog is that we can in 
general visualize it.  In Fig. 8, we have eliminated gravity as an issue, but all of us have  
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played with a mass on a spring vertically (perhaps a rubber band standing in for a spring).  
So we can appreciate that if the red-ball-driver moves left←→right rapidly, the mass M 
stands virtually still due to inertia (LP) while the spring’s elongation changes with the drive 
(HP).  If the red-ball-driver moves very slowly, the mass moves obediently and patiently in 
parallel (LP) while the spring pretty much maintains its equilibrium elongation (HP).  We all 
know that if we move the driver at a frequency near resonance, the mass can not only 
move a large distance, but with considerable velocity (resonance endangering nearby 
flower vases!). That’s a response to periodic drive. 

     Now, suppose we just move the red-ball-driver once in a step (Fig. 8).  We envision the 
mass starting to move following the driver, and when the driver stops, we probably 
envision the spring compressing and then pushing the mass back, and so on.  BUT we are 
here postulating critical damping (as in Fig. 5). 
 
     Things become confusing until we remember that the voltages (or numbers) in the SV 
system are representing actual physical quantities that are not necessarily voltages.  
(They might be electrical currents, for example.)  In the mechanical system, the variables 
are not all displacements as is the LP (the mass), but may be velocity (or momentum) at 
the BP, and acceleration (or force) at the HP.  This makes a drawing such as we are 
attempting in Fig. 8 very difficult, as we readily show only displacement in the diagram. 
 
     What does happen for critical damping is that the mass approaches but never reaches 
the actual level of the step.  The force that is drawing the mass to the displacement of the 
step is being resisted by the friction that is drawing out the energy, and in turn, resisting 
the push-back as the mass tries to compress the spring.  By far, critical damping (because 
of a double order pole) is more difficult to understand than under- or over-damping.  For 
the step response of the notch, it begins with the full elongation of the spring (acceleration 
= HP) and then the displacement (LP) adds, as the spring contracts, as in Fig. 5. 
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     We apparently have a good understanding of notch filtering the frequency domain, and 
know the basics of the time response to a step input.  Some important additional details of 
computing the step response are found in Appendix B and Appendix C. 
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APPENDIX A:   Pole/Zero Plot (A Popular Case) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here (Fig. A1) we remind the reader that many notch filters have a response that has 
exact nulls determined by jω-axis zeros at ±j and a pair of poles at the radius of 1 in the 
negative half of the s-plane.   The case D=1 is used in several examples above, as is the 
D=2 critical damping case which has a pair of real poles at s=-1.   The popularity of the 
choice of zeros at ±j is in large part due to the fact that the “shelves” on either side of the 
notch tend to equal values, so that the notch is largely removing one frequency completely 
while tending to leave the remainder of the frequency response flat.  As can be seen in 
Fig. A2, the poles have a sharpening effect on the notch as they approach the zeros.  This 
is understood in terms of moving up the jω-axis from zero, looking ahead to the pole and 
zero, which while being nearby to each other, still being relatively far away.   The pole 
partially hides the zero until we get close to the notch frequency.  Very far away (high 
frequencies) looking back two poles and two zeros cancel.                                                               
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APPENDIX B:  A Few “Closed-Form” Results 
 
 
The photo in Fig. 7 is clearly an experiment, while Fig. 5 is a calculation, but not from 
closed-form, so is more closely related to an experiment.  It is a simulation.  One way we 
check a simulation is to see if it matches closed-forms where we have them.  Fig. B1 
shows the simulated curves of Fig. 5 with the closed from expressions added.  This graph 
shows only the case of D=2, critical damping.   Where did the closed-from expressions 
come from.  From inverse Laplace transforms and various manipulations (and guesses).   
Ultimately the expressions were programmed and overplot the data of Fig. 5 (exactly).   
Portions of the Matlab code for Fig. B1 and for Fig. B2 and Fig. B3, is included below. 
   
   One thing probably occurs to the reader as to whether the closed-from expressions in 
Fig. B1 represent any sort of basis set to find a more general step response.  This is true, 
at least for the critically damped case here.  One example of the success is that the notch 
response is an equal sum of the LP and the HP.  That is 
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This is a special case since we have used D=2 (critical damping), the zeros are exactly on 
the jω-axis, and the poles and zeros have the same radii, ω0. We can however freely 
move ω0 in or out – this is how we design a desired filter from a normalized prototype.  We 
can make it less special (still keeping D=2 however) by putting the poles and zeros on 
different radii: 

                                                      
       

 

             
                                                                                       

 
and then we can allow the zeros to move off the jω-axis with a more general form with 
choices of a, b, and c (b not required to be 0): 
 

                                                           
              

 

             
                                                                                      

  

Note that if we were to divide ωz and ωp by ωp in equation (B3) we would have a 
normalized and (with D=2) critically damped case, for some value of zero position other 
than the restricted case of ±j.   
 

                                                           
                        

 

           
                                                             

  

In this case, the basis set of Fig. B1 should work.  Fig. B2 shows the preliminary 
calculations from the blog entry mentioned [2] which has two real poles and zeros slightly 
in the left half-plane, the poles being further out than the zeros as well.  We show the  
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pole/zero plot on the left with the frequency response (note unequal shelves) on the right. 
The dip in the response is very close to the radius of the zeros (1 in this case) so the time 
will be 1/2π, so if the period corresponding to the notch frequency is 11 here, a time value 
of 1 will be 1.75.  The blue step response in Fig. B3 is from Matlab’s step function while 
the curve is also overplotted with dotted red representing the weighted sum of the closed- 
form components.  The time axis is compressed (see program code) such that the red 
overplotting stops about time 7.  Note that the step response converges on a value of 
0.4773, which is appropriately, the DC response of the filter (Fig. B2, right figure). 
 
     Because the method is not general as presented here, but only used to verify that the 
Matlab step function agrees with a known closed-form, we give Matlab code here for 
completeness and to avoid any ambiguity. 
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The Matlab Code for Appendix B is here: 
 
 
% stepbystep 

 

% Step by Numerical Integration, D=2 

VH=zeros(1,5000); 

VB=zeros(1,5000); 

VL=zeros(1,5000); 

dt=0.002 

D=2 

for n=2:5000 

   VL(n)=VL(n-1)+VB(n-1)*dt; 

   VB(n)=VB(n-1)+VH(n-1)*dt; 

   VH(n)=-VL(n-1)-D*VB(n-1)+ 1; 

end 

VN=VH+VL; 

figure(1) 

plot([0:4998]/500,VH(2:5000),'r') 

hold on 

plot([-2 0],[0 0],'c') 

plot([0 12],[1 1],'c') 

plot([0:4998]/500,VL(2:5000),'b') 

plot([0:4998]/500,VN(2:5000),'k') 

plot([0:4998]/500,VB(2:5000),'m') 

plot([0,5000]/500,[0 0],'k') 

plot([0 0],[-1 2],'k') 

plot([0 0],[0 1],'c') 

axis([-2 11 -0.2 1.2]) 

hold off 

 

% Check Closed Forms 

figure(2) 

plot([0:4998]/500,VH(2:5000),'r') 

hold on 

plot([-2 0],[0 0],'c') 

plot([0 12],[1 1],'c') 

plot([0:4998]/500,VL(2:5000),'b') 

plot([0:4998]/500,VN(2:5000),'k') 

plot([0:4998]/500,VB(2:5000),'m') 

plot([0,5000]/500,[0 0],'k') 

plot([0 0],[-1 2],'k') 

plot([0 0],[0 1],'c') 

axis([-2 11 -0.2 1.2]) 

% check Kuo for Notch - dotted green 

t=0:.01:10; 

VNCheck = 1 - 2*t.*exp(-t); 

plot(t,VNCheck,'g:') 

VBCheck= t.*exp(-t); 

plot(t,VBCheck,'g:') 

VLCheck= 1 - (t+1).*exp(-t); 

plot(t,VLCheck,'c:') 

VHCheck= -(t-1).*exp(-t);  

plot(t,VHCheck,'c:') 

hold off 

figure(2) 
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% Now use David's Poles/Zeros, both poles real and same, zeros not on j-omega 

z=[-0.0047578+.0907845*j -0.0047578-.0907845*j]  

p=[-.131579 -.131579]/0.0909091  

n=poly([-0.0047578+.0907845*j -0.0047578-.0907845*j]/0.0909091) 

no=n; 

d=poly([-.131579 -.131579]/0.0909091) 

do=d; 

z=roots(n) 

p=roots(d) 

% Matlab's step function 

figure(3) 

t=0:0.002:10; 

y=step(n,d,t); 

ymax=max(y) 

[ymin,ix]=min(y) 

tmin=(ix-1)*0.002 

plot(t,y,'b') 

yend=y(5000) 

hold on 

plot([-2 11],[0 0],'k') 

plot([0 0],[-5 15],'k') 

plot([-2 0],[0 0],'r:') 

plot([0 0],[0 1],'r:') 

plot([0 11],[1 1],'r:') 

if ymin>0; axis([-2 11 -0.2 ymax+0.2]);end 

if ymin<0; axis([-2 11 ymin-0.2 ymax+0.2]);end 

% divide omegas by omega pole 

div=d(3)  

n(2)=n(2)/sqrt(div);   

n(3)=n(3)/div; 

d(2)=d(2)/sqrt(div); 

d(3)=d(3)/div; 

n 

d 

VNCheck=VH + VB*n(2) + VL*n(3); 

% Note: d not actually used here 

plot((0.0909091/0.131579)*[0:4999]/500,VNCheck,'r:') 

hold off 

figure(3) 

 

% Supplemental - Check Freq Resp 

T=abs(freqs(n,d,[0:.01:6])); 

figure(4) 

plot([0:.01:6],T,'b') 

figure(4) 

T(1) 

 

T=abs(freqs(no,do,[0:.01:6])); 

figure(4) 

plot([0:.01:6],T,'b') 

figure(4) 

T(1) 

 

 

Below is a portion of the printout of the Matlab code for Appendix B 
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dt = 0.0020 

D =  2 

z =  -0.0048+ 0.0908i,  -0.0048- 0.0908i 

p =  -1.4474,   -1.4474 

n =    1.0000    0.1047    1.0000 

d =    1.0000    2.8947    2.0949 

z =   -0.0523+ 0.9986i, -0.0523- 0.9986i 

p =   -1.4474,  -1.4474 

yend = 0.4773 

 

div =    2.0949 

n =    1.0000    0.0723    0.4774 

d =     1     2     1 

ans =    0.4774 

ans =    0.4774 

 

 

  
 
 

 APPENDIX C:  Matlab’s step and Numerical Integration Compared 

 
 
At this point we have established likely agreement between the Matlab step function and a 
known closed-form solution.  Further we find the general use of “basis functions” for closed 
form is not immediately promising.  When we look to the Matlab code we find that the 
script code for step is not available (as is the case for many built-in functions).  What we 
do find is a suggestion that step simply uses numerical integration, the way we have done 
in our own code here.   This suggestion is that when a user specifies the time vector, a 
parameter they call “dt” is the difference between consecutive times.  Accordingly a goal 
here next is to write a general script similar to that used above to accommodate a general 
set of poles/zeros.   That is, a kind of “reverse engineering” of the step function.  This 
turns out to be simple and effective, and the whole procedure is summarized in Fig. C.  
The full code for this Appendix C is reproduced below, but note well that the core code is 
nothing more than the 12 lines of Fig. C (and more to the point, the 6 lines of the “for 
loop”).    
 
     The upper left of Fig. C is just the usual state-variable structure that solves transfer 
function in the Laplace domain.  It modifies the earlier notch example of Fig. 4.   Here we 
have replaced the continuous integrators with discrete integrators, which should not be a 
problem as long as we keep “dt” small enough. Setting dt smaller should not be a speed 
issue with most processors.   
 
     The result is virtually a complete success. This is evidenced by the near-perfect 
overprint of the results of our step2 with Matlab’s step.  The agreement is better than the 
plotting error.  We have computed and printed out the maximum error (see example 
printout below the code listing) and in the example the max error was 0.0032 for a step 
response on the order of 1 (or 0.6 at the end).  It should be noted that it was necessary to 
shift the result of step2 to the left by 1 step.  This was because the iterative integration 
needs to reach back one step.  This is just “bookkeeping” and does not matter overall. 
 
 
                                                   AN-413 (19) 
 



 

 
 
    The example used here just set zeros back away from the jω-axis a bit (-0.2±0.95j) with 
sharpening poles at -0.8±0.9j, an arbitrary choice, with results as shown.   
 
     As with Appendix B, the code here is offered with many features that were for 
development and testing.  For example, the comparison plot of figure(3) of the code (not 
shown) is not supposed to work unless both poles are real and the zeros are on the jω-
axis, or the accommodation as in Appendix B is made.  We emphasize the simplicity of the 
code in Fig. C, and expect that the procedure could be easily written in just about any 
other language beside Matlab.  
 
                                                
                                                             AN-413 (20) 



Here is the code relating to Appendix C: 
 
% step2 

%p1 = -1 

p1=-0.8 + 0.9*j 

p2 = p1' 

z1 = -.2 +0.95*j 

z2 = z1' 

 

figure(1) 

subplot(221) 

plot([-10 10],[0 0],'k') 

hold on 

plot([0 0],[-10 10],'k') 

plot(real(p1),imag(p1),'rx') 

plot(real(p2),imag(p2),'rx') 

plot(real(z1),imag(z1),'bo') 

plot(real(z2),imag(z2),'bo') 

maxrpz=max(real([p1 p2 z1 z2]))  

minrpz=min(real([p1 p2 z1 z2]))  

maxipz=max(imag([p1 p2 z1 z2]))  

minipz=min(imag([p1 p2 z1 z2]))  

if maxrpz<0; maxrpz=0; end 

axis('equal') 

axis([minrpz-0.2 maxrpz+0.2 minipz-0.2 maxipz+.2]) 

title('Poles x, Zeros o') 

hold off 

 

N=poly([z1 z2]) 

D=poly([p1 p2]) 

T=abs(freqs(N,D,0:.01:5)); 

subplot(222) 

plot([-1 6],[0 0],'k') 

hold on 

plot([0 0],[-1 10],'k') 

plot([0:.01:5],T,'b') 

axis([-1 6 -.1 max(T)+.2]) 

hold off 

title('Frequency Response with Matlab freqs') 

 

s=step(N,D,[0:.01:6]); 

subplot(223) 

plot([-1 7],[0 0],'k') 

hold on 

plot([0 0],[-10 10],'k') 

plot([-1 0],[0 0],'r:') 

plot([0 0],[0 1],'r:') 

plot([0 7],[1 1],'r:') 

plot([0:.01:6],s,'b') 

mins=min(s) 

if mins>0; mins=0; end 

axis([-1 7 mins-0.2 max(s)+.2])  

hold off 

title('Step Response with Matlab step') 
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% 

%  Main Code 

vs=zeros(1,601); 

vh=zeros(1,601); 

vb=zeros(1,601); 

vl=zeros(1,601); 

dt=0.01 

for n=2:1:601  

   vl(n)=vl(n-1)+vb(n-1)*dt; 

   vb(n)=vb(n-1)+vh(n-1)*dt; 

   vh(n)=1-D(2)*vb(n)-D(3)*vl(n); 

   vs(n)=N(1)*vh(n) + N(2)*vb(n) + N(3)*vl(n); 

end 

vs=vs(2:601); 

% 

% 

subplot(224) 

plot([-1 7],[0 0],'k') 

hold on 

plot([0 0],[-10 10],'k') 

plot([-1 0],[0 0],'r:') 

plot([0 0],[0 1],'r:') 

plot([0 7],[1 1],'r:') 

plot([0:.01:6],s,'b') 

plot([0:.01:5.99],vs,':r') 

 

 

mins=min(s) 

if mins>0; mins=0; end 

axis([-1 7 mins-0.2 max(s)+.2])  

hold off 

title('Step Response: Matlab step (blue); Numer. Integration (dotted 

red)') 

 

 

 

figure(2) 

% check Kuo for Notch - dotted green 

t=0:.01:6; 

VKuo= 1 - 2*t.*exp(-t); 

plot(t,VKuo,'k') 

hold on 

VBCheck= t.*exp(-t); 

plot(t,VBCheck,'m') 

VLCheck= 1 - (t+1).*exp(-t); 

plot(t,VLCheck,'b') 

VHCheck= -(t-1).*exp(-t);  

plot(t,VHCheck,'r') 

hold off 

figure(2) 
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figure(3) 

% This is not supposed to work except for two real poles 

scheck=N(1)*VHCheck + N(2)*VBCheck + N(3)*VLCheck; 

plot([-1 7],[0 0],'k') 

hold on 

plot([0 0],[-10 10],'k') 

plot([0:.01:6],s,'b') 

plot(t,scheck,'r:') 

minscheck=min(scheck); 

if minscheck>0;minscheck=0;end 

axis([-1 7 minscheck-0.2  max(scheck)+0.2]) 

hold off 

title('Matlab step (blue) and Closed Form (dotted red)') 

figure(3) 

 

 

And here is some of the printout of this program: 
 
 
step2 

 

p1 =  -0.8000+ 0.9000i 

p2 =  -0.8000- 0.9000i 

 

z1 =  -0.2000+ 0.9500i 

z2 =  -0.2000- 0.9500i 

 

N =    1.0000    0.4000    0.9425 

 

D =    1.0000    1.6000    1.4500 

 

 

dt =    0.0100 

 

mins =    0.3656 

 

 

maxerror =    0.0032 
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APPENDIX D:   Analog Notch Examples 
 
In as much as most of what we have done above does not involve actual circuitry, we here 
show some of the actual circuits extracted from the App Notes and other publications from 
as far back as1980 [1]. 
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