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 INTRODUCTION  
  
     In AN-384 (“Fun with Red Noise”) [1] we discussed issues with so-called “Red Noise” 
signals (also called brown noise, random walk, or “drunkard’s walk”) that are the result of 
integrating white noise signals.  So there is a unique relationship between any instance of 
white noise and a corresponding instance of red noise, with some obvious refinements 
relating to the “constant of integration” familiar since Calculus 101. 
   
     Red noise really is more “fun” than white.  The reason I think is that we can without 
much difficulty show a “typical example of white noise”.   Anyone who has had occasion to 
write or discuss white noise probably realizes that when you work with what you call a 
random signal, you really should not select from several or many to illustrate a “typical” 
signal.   You use the first one you get, or perhaps decide ahead of time to use the 17th 
example, and when you get it, that’s it.  I guess you could plead special exceptions.  For 
example, when you display a run of coin flips, what if you got a length 25 sequence of 24 
heads and a terminating isolated tail at the end?  You could spend a few paragraphs 
apologizing or just make a new run.  We don’t expect a run of 24 heads to occur.  In fact, 
and this is the point, we have almost no problem obtaining an honest typical white noise. 
  
     The same is NOT true of red noise.  We can honestly calculate and plot one, but we 
may fear that the reader will get the wrong idea unless an array of possibilities is 
presented, and this we saw in AN-384 and will continue to see below.    
 
     There are two additional points to be made here.   (1) While it is possible to simply 
integrate white noise (AN-384 as partly redone below) it is also possible to calculate the 
FFT of a white signal, shape it to fall off as 1/frequency, and take the inverse FFT of the 
result.  (2)  It is the case that while red noises wonder about with many shapes, more than 
one might at first expect  will have their extreme values relatively close to the ends.  I think 
this is easily understood – but we need to observe that it is true. 
 

INTEGRATED WHITE NOISE 
 
     Recalling here from AN-384, we can generate red noise easily, digitally, by integrating 
a white noise sequence (a random number generator).  All we need to do in add up the 
sequence.  Fig. 1 shows the absurdly simple digital filter integrator that we will use here. 
So it is very similar to adding up heads and tails, except here there is no requirement that 
the white noise is binary (heads/tails being binary).  We generally would use a uniform or 
Gaussian distribution for the input. So a white noise algorithm and a few lines of code do 
what we need.  
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      Here is the Matlab code: PROGRAM 1 
 
 
% Red Noise Test   redtest1.m 
% m signals 
S=zeros(1,501);    % correction to AN-384 (does not change results of AN-384) 
for m=1:10000      % more signals than AN-384 
  
  sw=2*(rand(1,1020)-0.5);  % white, uniform 
    
   % red filter - pole at z=+1, (integrator) 
     sr(1)=sw(1); 
     for k=2:1000 
       sr(k)=sr(k-1)+sw(k); 
     end 
 
    %  FFT analysis and sum 
       SR=abs(fft(sr)); 
       SR=SR(1:501); 
       S=S+SR; 
end 
 
figure(1) 
plot([0:500],S) 
figure(2) 
loglog([0:500],S) 
grid 
axis('square') 
figure(2) 
 
 
 
     The Matlab code generates 10,000 red signals of length 1000, calculates the FFT’s of 
each signal, computes the magnitudes, and sums them.   The result (Fig. 2) shows that 
the spectra of the red signals average to 1/f, the roll-off we expect from the integrator.   
This is a 45° angle on the log-log plot.   The same spectral shape, in the form of a 
frequency response of the discrete integrator is available (Fig. 3) by the Matlab lines: 
  
 
     H =0.5*abs(freqz(1, [ 1 -1],500))       % arbitrary scaling 
     loglog([0:0.001:0.499,H) 
     grid 
     axis(‘square’) 
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     Thus it is easy enough to generate a red noise signal – but quite difficult to select one 
example and call it “typical”.   For the most part, we will generate groups of 10 signals, 
each as an unselected (as is) sequence, as a means of illustrating a variety.  Nonetheless, 
the signal in Fig. 4 is offered to show one red signal.  We indicate on the figure that it is 
very long, 160,000 samples, far far more than we can expect to resolve in a plot.   Indeed, 
had we chosen just the first 40,000 samples, we would have a far different impression of 
what a red signal might look like, assuming it had a preference for a certain (positive) 
polarity.   It is probably a surprise to see that it comes back down, going below zero by 
nearly the same amount it went positive, then up again, and so on.  Indeed, quite a show.  
We should keep in mind the ever-increasing amplitudes of lower frequencies as an 
explanation. 
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          While the example of Fig. 4 started at zero, the starting point is arbitrary (because it 
is an integration).  In general, we want to look at red noise signals that were either started 
at some random value, or which are selected well into the integration process.  Some may 
well be all positive (for the selected region observed), all negative, or have several or  
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many zero crossings.  (In Fig. 5, a blue axis is included in the three examples that do 
cross zero).   The 100 samples for each of the ten examples are actually samples 500-599 
of sequences started at zero.  Note the variability. 
 
     Fig. 6 is an entertaining case where we have two red noise signals (red and magenta) 
generated by separate white noise sequences.  A third, perfectly good sequence (blue) is 
generated by jumping from one white noise to the other every 250 samples.  This is 
equivalent to chopping out a segment of the red or magenta sequences and splicing it to 
the blue, matching the endpoint of the so-far constructed blue segment.  The arrows show 
the apparent displacements of the segments.   This is of course not the same as one 
would obtain if we were to splice the segments without matching the ends. 
            
 

FILTERING WITH THE FFT 
 
     We mentioned above that we were interested in generating red noise in the spectral 
domain.   This is of interest beyond offering an alternative to the integration, as it is more 
obvious how weighting an FFT could allow a highly customized spectral shape.   The 
following code snippet shows the general idea for generating length 1000 red noises. 
 
 
% fft method  
 
k=0:500; 
rk=1./k;                           % reciprocal 
fil=[rk  rk(500:-1:2)];        % “filter” 
fil(1)=0;                            % throw out infinity at 0 
% 
x=2*(rand(1,1000)-0.5);   % white 
X=fft(x); 
XF=X.*fil; 
xr=500*real(ifft(XF)); 
 
 
     We are about to run away and look at a second interesting topic (positions of maxima 
and minima) so for the moment we will just plot a selection of 10 red noise signals (Fig. 7) 
as generated by the FFT process, similar to those from the integration process in Fig. 5.  
Later we will again use the FFT generation process. 
 

 
POSITIONS OF MAXIMA AND MINIMA 
 
     Fig. 4 was our length-160,000 red noise signal.  If you look closely at the plot, we see 
for one thing, a maximum sample (red) and a minimum sample (blue) have been circled. 
This simple location and marking is easy enough to understand.    We note in passing as 
well that the local extremes here are quite large (over 100) so the “balance” between 
positive and negative contributions can conspire to keep much (most) or the curve well        
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away from zero.  Here we are integrating Gaussian noise, but it is similar to a coin-flip 
random walk.  So the imbalance is something like 100-200 heads (or tails) in 40,000 or so 
trial flips.  A lot - but not that surprising.  But then it turns around and heads not only to 
zero but to large negative values.  This is perhaps more of a surprise.  We kind of have to 
believe that the signal really has (eventually) larger and larger amounts of lower and lower 
frequencies.  Quite fascinating. 
 
     So we are left to speculate about where (at what time instances) we expect maxima 
and minima to occur.  Likely we suspect that since the signals are based on random noise 
that it would be equally likely that they could occur anywhere. In fact, this is true for white 
noise.  And, unless one has had occasion to look (with amusement) at a lot of red noise 
signals, we might not appreciate that the finite duration red signals, due to low frequency 
trends, will have an predilection for maxima/minima relatively close to the ends.  Examine 
the curves of Fig. 5 and Fig. 7 to get the general idea.    Recently [2] on a blog posting it 
was noted that extreme values of certain time sequences (said there to be autocorrelated) 
tend to occur near the ends.  As we say, if we think of red-signals (or many other if not all 
non-white signals) as being correlated, this is immediately plausible.  If we had to guess 
the next value of a white noise sequence, we would guess 0 (or whatever the mean is 
known to be).  If we had to guess the next value of a red noise sequence, we would guess 
the current value.   So an intuitive explanation is at hand.    It is not so easy however to 
clearly quantify this tendency, nor is it obvious (to me at least) how one would calculate a 
theoretical imbalance.  Arbitrarily we will just choose to say that a maximum or minimum is 
“close to an end” if it is within 10% or an end, and is not close to a end if it is in the middle 
80%.   This is what we will use here. 
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     In Fig. 8a and Fig. 8b, we see 10 examples of red noise signals generated by the 
integration procedure.  Fig. 8b shows sequences that are 16,000 samples long while the 
ones in Fig. 8a are just 100 long, being samples 4000-4099 of corresponding sequences 
(same subplot position) in Fig. 8b.   Here we again (as in Fig. 4) mark the maximum (red) 
and the minimum (blue).  In addition we have vertical red dashed lines to indicate the first 
10% and the last 10%.  Thus we can more easily judge a particular maximum or minimum 
to be close to an end.  Each run has a maximum and a minimum of course, giving two 
opportunities for a max/min to be close to end.  So each of the 10 runs is scored at 0, 1, or 
2.   Fig. 8a has seven such occurrences, or 7/20 = 35%.  By chance we might have 
expected 20%.    
 
     Shortly we will do many more trials and use automatic counting, in a test that makes 
use of the FFT method.  For the moment we note that the corresponding length-16,000 
cases (Fig. 8b) have a similar result, 8 possibilities out of 20 or 40% of min/max near the 
ends.   This was done in case there was reason to suppose that the result depended on 
the length, which it apparently does not.  Roughly speaking, based on what we have 
plotted here, we seem to have twice as many cases as the expected 20% with white 
noise.    
 
 

SPECTRAL SHAPES: WHITE, RED, OTHERS 
 
     At this point, we have two remaining things to look at.  First, we can consider some 
additional shapes other than just white or red.  Second, we understand pretty well the fact 
that for white noise 20% of the min/max fall in a end range totaling 20%.  We also got 
something like 40% for red.  We want to pin these down a bit more by making a very large 
umber or trials. 
 
      Our trial Matlab code used here is shown below, and it uses the FFT method from the 
snippet on page (6) and then runs 1,000,000 trials and counts up min/max occurrences 
close to the ends.   A few things about the program may be noted.  First, instead of 
forming the FFT “filter” as 1/k we form it is 1/ka.   This makes the a=0 case just white 
noise, and the FFT←→IFFT is really unnecessary for this case (we do it anyway).  The 
a=1 cases is red noise.  We will try two other cases, a=1/2, a form of “pink” noise and a=2 
which is very highly correlated and which we will call here “Dark Brown”.      
 
                                   PROGRAM 2                          
% redex11   
% fft method, length 1000, test max/min to ends  
endguys=0 
a=1            % red 
%  form filter 
k=0:500; 
k(1)=0.000001; 
rk=1./(k.^a); 
fil=[rk  rk(500:-1:2)]; 
fil(1)=0; 
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N=1000000     % trials 
for mmm=1:N  
x=2*(rand(1,1000)-0.5); 
X=fft(x); 
XF=X.*fil; 
xr=500*real(ifft(XF)); 
xrtest=xr(500:599);     % select sub-sequence 
 
[xrtestmax,ixmax]=max(xrtest);  
if ixmax<11; endguys = endguys+1; end 
if ixmax>90; endguys = endguys+1; end 
[xrtestmin,ixmin]=min(xrtest); 
if ixmin<11; endguys = endguys+1; end 
if ixmin>90; endguys = endguys+1; end 
 
end 
  
endguys 
endguyspercent=endguys/(2*N) 
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     Fig. 9a shows the white noise case.  As we said, it is easy to believe that just about any 
of the white noises is “typical” but we need 10 here to show a very rough idea of the 
occurrences of min/max in the end regions.   This particular case has in fact exactly 4 
extreme values in the end regions.  Since there are 10 trials, and since each trial has two 
possible instances of extremals near the ends, we indeed kind of expected 20 x 20% or 
four of them.  Other runs (100 trials) gave from 1 to 12, with an average of 4.29.  The 
computer eventually runs a million trials. 
 
     Fig. 9b is a “Pink” noise case which we would expect to be somewhere between white 
and red.   The 10 trials here have in fact 7 extremal values in the endpoint region, but we 
learn very little from 10 trials.   Below we will be doing a million of these too.  It is probably 
evident that if we compare Fig. 9b to the red cases (compare Fig. 5, 7, and 8a) we see the 
pink cases seems to have a bit more “fuzz” on it.   Pretty much an expected result. 
 
     The third new (non-red) case here uses the 1/k2 roll-off which is pretty drastic as seen 
in Fig. 9c.   (Keep in mind that we are skipping the red examples between Fig. 9b and Fig. 
9c).   These are little more than slightly curved titled lines for the most part.  Now most all 
the extreme values are in the end regions, often at the very ends.  The computer counted 
14 of the extremals in the end regions (70% in this very limited trial).    This too will get 
1,000,000 trials. 
 
 
     So – here is the data for a million trials (two million possibilities actually, max and min). 
 
 
                    COLOR          __a__          % in End Regions 
 
                      White                0                    19.96 
 
                      Pink                 1/2                   27.05 
 
                      Red                   1                     40.78 
 
                   Dark Borwn         2                     80.76 
 
     Nothing here is much of a surprise.  Unfortunately, except for the white noise case, we 
don’t have much of an idea if there is a theoretical basis for these experimental results. 
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