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DTFT AND FOURIER SERIES: N EQUATIONS IN N UNKNOWNS 
 
 
 
We have long noted that the so-called DTFT (Discrete Time Fourier Transform) is 
essentially the time/frequency dual of the Fourier Series (FS): 
 
 
FOURIER SERIES 
 

      
 

 
         

      
 

   

    

                                                                        

   
 

                                                                                                      

 

    

 

                                                  
 
DISCRETE-TIME FOURIER TRANSFORM 
                  

                                                                                                    

 

    

  

 

      
 

  
           

    

     

                                                                        

 
Here P is the period of the time-domain periodic waveform and ωs = 2πfs = 2π/T where 
T=1/fs is the sampling time, fs being the sampling frequency.  It is somewhat traditional to 
assume that T=1 (thus fs=1, and ωs = 2π).   In this case, equations (2) would become: 
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It is useful as well to consider the case where X = H, a digital filter transfer function: 
  

                                                                                                       

 

    

  

 

      
 

  
          

 

  

                                                                                 

 
in which case equation (4a) is a means of computing the frequency response H(ω) based 
on the impulse response h(n), while equation (4b) is the most elementary method of 
designing a filter’s impulse response h(n) from a desired H(ω).   Indeed, persons familiar 
with digital filters probably understand the DTFT mainly in terms of filter responses H(ω) 
and h(n).  
 
     One final point is when we have a finite length x(n), from n=0 to N-1, and we evaluate 
H(ω) at N equally spaced frequencies ωk = 2πk/N.  Thus: 
 

                      
  
 

                                                                                          

   

   

  

 
with inverse: 

  

                      
  
 

   

   

   

                                                                                          

 
which is the Discrete Fourier Transform (DFT) almost always computed by the Fast 
Fourier Transform algorithm (exact answer – not approximation).  Do not confuse the DFT 
and the DTFT. 
 
     Directing our attention back to the DTFT of equations (2) or (3), we note that everything 
we know about the FS applies if we are able to invert our thinking with regard to time and 
frequency.  This, once done, is extremely useful.  So what do we know about the FS? 
 
 

TOY EXAMPLE OF FOURIER SERIES 
 
Here we will be looking at a toy example of a FS, but not the usual type of toy examples 
where we might be calculating the FS of a square or a pulse.   The first observation is that 
there are relatively few traditional examples where we can calculate a FS.  Most books 
might list a half dozen, while some reference works might have a hundred.   (But try to find 
a train of semi-circles!).  But it is after all just a matter of using equation (1a) – if we know 
the functional form of f(t) and can do the integration. 
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     Sooner or later a student will observe that the Fourier Series generally listed are not 
bandlimited!  That is, k runs from -∞ to +∞.     If we then ask what sort of periodic signal 
would have a FS that is bandlimited, we arrive at the circular conclusion that it is a signal 
composed of a finite sum of sinusoidal waveforms in harmonic relationship.  We can easily 
write down an example – here using a trig form alternate of equation (1b). 
 
     f(t) = a0 + a1 Cos(ωt) + b1 Sin(ωt) + a2 Cos(2ωt) + b2 Sin(2ωt)                                   (6) 
 
That is, we have a constant, a fundamental, and a second harmonic with the phase 
determined by choosing a Sine and a Cosine contribution for each frequency.  Finding the 
FS is just “by inspection” if there are actual numbers for the a’s and b’s in equation (6).  
But suppose we just had f(t) as data – at least a very dense set of samples so that 
numerical integration would be very accurate.  This is nothing more than the usual “inner 
product” calculation and would work (we will illustrate this in a bit). 
 
     But there is an easier way.  If we know that f(t) is of the form of equation (6), we just 
need five data points: f(t1), f(t2), f(t3), f(t4), and f(t5).   This permits us to solve for a0, a1, b1, 
a2, and b2.   This is far less calculation than the inner products, and we don’t need very 
much of the data.   This is pretty much “Part 2” of Prony’s method [1].  Recall that Part 
1 was “find the poles” and Part 2 was “apply initial conditions”.  Here the assumption that 
the correct expression is equation (6) is a declaration of having the poles.    
 
    As an example, suppose a0=1, a1=2, b1=1, a2=0, and b2=3.  We can then plot the 
function f(t) which is shown with a fundamental period of 500, so the plot of Fig. 1 shows 2 
full cycles (to keep the periodicity in mind). We want to recover the a’s and b’s from 500 
samples of data (or fewer!).  Some Matlab code and the resulting printout is on page 5. 
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% Generate Test Signal 

t = 0:1000; 

x = 1 + 2*cos(2*pi*t/500)+ sin(2*pi*t/500) + 3*sin(2*2*pi*t/500); 

figure(1) 

plot([0:1000],x) 

axis([-100 1100 -4 7]) 

figure(1) 

  

% Here are the possible basis functions 

cos0=cos(0*2*pi*[0:499]/500); 

cos1=cos(1*2*pi*[0:499]/500); 

cos2=cos(2*2*pi*[0:499]/500); 

sin1=sin(1*2*pi*[0:499]/500); 

sin2=sin(2*2*pi*[0:499]/500); 

% 

% Do the inner products 

a0=sum(x(1:500).*cos0)/500 

a1=sum(x(1:500).*cos1)/250 

b1=sum(x(1:500).*sin1)/250 

a2=sum(x(1:500).*cos2)/250 

b2=sum(x(1:500).*sin2)/250 

 

% Or just do 5 equations in 5 unknowns 

%  Choose times 0, 1, 2, 7, and 77 arbitrarily 

m=[1 1                0                1                0               ; 

   1 cos(2*pi/500)    sin(2*pi/500)    cos(2*pi/250)    sin(2*pi/250)   ; 

   1 cos(2*2*pi/500)  sin(2*2*pi/500)  cos(2*2*pi/250)  sin(2*2*pi/250) ; 

   1 cos(7*2*pi/500)  sin(7*2*pi/500)  cos(7*2*pi/250)  sin(7*2*pi/250) ; 

   1 cos(77*2*pi/500) sin(77*2*pi/500) cos(77*2*pi/250) sin(77*2*pi/250)] 

% 

c=inv(m)*[x(1) x(2) x(3) x(8) x(78)]' 

 

Which runs to give: 
  
a0 = 1.0000 

a1 = 2.0000 

b1 = 1.0000 

a2 = -6.4126e-016 

b2 = 3.0000 

 

 

m =    1.0000    1.0000         0    1.0000         0 

       1.0000    0.9999    0.0126    0.9997    0.0251 

       1.0000    0.9997    0.0251    0.9987    0.0502 

       1.0000    0.9961    0.0879    0.9846    0.1750 

       1.0000    0.5673    0.8235   -0.3564    0.9343 

 

 

c = 

 

    1.0000 

    2.0000 

    1.0000 

    0.0000 

    3.0000 
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     The example shows success with both the inner product approach and the linear 
equations approach, with an immense reduction in calculations for the latter approach. 
The lines for the generation or the basis sinusoidal waveforms are standard, as are the 
point-by-point multiplies and sums of the inner (dot) products. 
 
     To be completely clear about the alternative N-equations in N-unknowns, we can write 
down the five equations from equation (6): 
 
     f(t1) = a0 + a1 Cos(ωt1) + b1 Sin(ωt1) + a2 Cos(2ωt1) + b2 Sin(2ωt1)                                     

     f(t2) = a0 + a1 Cos(ωt2) + b1 Sin(ωt2) + a2 Cos(2ωt2) + b2 Sin(2ωt2)                                               

     f(t3) = a0 + a1 Cos(ωt3) + b1 Sin(ωt3) + a2 Cos(2ωt3) + b2 Sin(2ωt3)                        (7)                                              

     f(t4) = a0 + a1 Cos(ωt4) + b1 Sin(ωt4) + a2 Cos(2ωt4) + b2 Sin(2ωt4)                                     

     f(t5) = a0 + a1 Cos(ωt5) + b1 Sin(ωt5) + a2 Cos(2ωt5) + b2 Sin(2ωt5)                                     

 

Note here that ω is known, being the fundamental frequency, and we choose the five 

values of time fairly arbitrarily.  Thus the Cos and Sin terms are all just constants.  The five 

samples f(t1) to f(t5) are then numbers which the function f(t) is expected to obtain at the 

five times.   Hence just five linear equations in five unknowns.   In the program shown, the 

times selected (on the possible interval of 0 to 500) were 0, 1, 2, 7, and 77.  These do not 

have to be integers as long as we calculate the test f(t) value at the corresponding times.  

For example, t5 can be changed from t=77 to t=77   = 108.8944 and substitute the value 

of x at the new t.  The five coefficients all come out the same. 

 

     So what we are doing here is not so much FS as it is Prony’s Method.  In our 

discussions of Prony’s Method we often emphasized that we were NOT doing N-equations 

in N unknowns until after the transformation to linear difference equations.   Here we are 

eliminating the first part by declaring the frequencies.   Surprisingly, when we look at the 

“dual” problem, the DTFT, we may have a more familiar example with more insight. 

 

 

THE DTFT – BACK TO GENEALIZED FREQUENCY SAMPLING 

 

Here is where things should get worse.   We need to take something very familiar, the FS, 

and reverse the roles of time and frequency to arrive at the DTFT.  Flipping all the 

switches is notoriously difficult. The saving thing here will be that we will end up with 

something we are comfortable with, if not very familiar with – the Generalized Frequency 

Sampling (GFS) method of digital filter design [2, 4].     
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     The first of these is easy.   In the FS we have, underling the whole thing, a continuous 

periodic function of time, and thus in the DTFT we have a continuous, periodic function of 

frequency (the frequency response in the case of a filter) [3].  The “output” element in the 

FS was the coefficients, a discrete equally spaced set of numbers representing spectral 

strengths. This was a finite (bandlimited) set in our example here.   In the DTFT, the output 

is a discrete set of numbers in time, equally spaced, a finite length set representing the 

impulse response of the digital filter.  Exactly parallel in the dual.   For the FS here, the 

“input” was the known (chosen) samples, x(t), for discrete values of t, not necessarily 

equally spaced.  The idea was that the FS sum is to be forced to go through these input 

samples.  In the DTFT we would have a set of frequency samples, not necessarily equally 

spaced.  The notion then becomes that the frequency response of the filter goes through 

these “target” samples.   We have seen this as the case of “Generalized Frequency 

Sampling”.  [In the case of equal spacing, we just had “Ordinary” frequency sampling and 

used the DFT←→Inverse DFT].     Essentially what we did above with the FS itself we 

already looked at for digital filter design, IN THE DTFT DUAL, many years ago [4]. 

 

     The app note AN-337 [4], “A General Review of Frequency Sampling Design” contains 

many derivations, Matlab programs, and examples. Here we will just show Fig. 2 produced 

by the program amp.m (code below, dated 1996 and 2004) which shows a filter design 

that is not offered as a good filter, but which illustrates a DTFT with unequally spaced 

samples.  Thus it is the counterpart to the FS example above.  
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HERE IS CODE FOR amp.m 
 
function [ho,he]=amp(f,a) 

% 

%   [ho,he] = amp(f,a) 

%        f = frequency vector on 0 to fs/2 (fs/2 = 1/2) 

%        a = corresponding amplitudes 

% 

%   Does both even and odd length filters based on amplitude 

% 

%   B. Hutchins                Jan 1996, Spring 2004 

 

N=length(f); 

w=2*pi*f;  

 

  

% Matrix for even length  

  for n=1:N  

     for k=1:N 

          ME(k,n)=cos((n-1/2)*w(k)); 

     end 

  end 

 

 

% Matrix for odd length 

  for n=1:N  

     for k=1:N 

          MO(k,n)=cos((n-1)*w(k)); 

     end 

  end 

 

aae=inv(ME)*a.'; 

aao=inv(MO)*a.'; 

 

 

% even length case 

  for n=1:N 

     he(n)=aae(n)/2; 

  end 

  he=[he(N:-1:1),he(1:N)]; 

 

 

% odd length case 

  for n=2:N 

       ho(n)=aao(n)/2; 

  end 

  ho=[ho(N:-1:2),aao(1),ho(2:N)]; 
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% plot odd length result 

k=0:(length(ho)-1); 

figure(1); 

subplot(221) 

stem(k,ho); 

axis([-2 2*N -.3 .7]); 

MHO=abs(freqz(ho,1,500)); 

MHO=MHO/MHO(1); 

subplot(222);plot([0:.001:.499],MHO) 

axis([-.02 .52 -.1 1.3]); 

grid 

subplot(224) 

pzplot1(ho,1) 

  

% plot even length result 

k=0:(length(he)-1); 

figure(2); 

subplot(221) 

stem(k,he); 

axis([-2 2*N -.3 .7]); 

MHE=abs(freqz(he,1,500)); 

MHE=MHE/MHE(1); 

subplot(222);plot([0:.001:.499],MHE) 

axis([-.02 .52 -.1 1.3]); 

grid 

subplot(224) 

pzplot1(he,1) 

 

 

AND HERE IS CODE FOR PZPLOT1 

 
function [z,p]=pzplot(b,a) 

%  function [z,p]=pzplot(b,a) 

%  Plot the poles and zeros of a transfer function in z-plane 

%    z are zeros of numerator polynomial b 

%    p are poles of denominator polynomial a 

%    z (plotted as o) and p (plotted as x) in the z-plane 

%    multiple-order singularities are only indicated as single-order 

%  B. Hutchins, EE425, Cornell Univ. Fall 1993 

 

%  find roots 

z=roots(b); 

p=roots(a); 

 

% find max for plotting 

pmax=max([abs(real(z)); abs(real(p)); abs(imag(z)); abs(imag(p)) ]); 

sc=ceil(pmax); 
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% begin plot 

% prepare circle 

n=0:500; 

r=exp(j*2*pi*n/500); 

axis([-sc, sc, -sc, sc]); 

plot(r,'g') 

grid 

hold on 

% plot real and imag, not just z itself or else the real part 

% may be plotted as verticle if singularities are not complex 

plot(real(z),imag(z),'o') 

plot(real(p),imag(p),'x') 

 

hold off 

axis('equal') 

axis([-sc sc -sc sc]) 

 

            ******************************************* 

 

 

     The discussion in AN-337 [4] goes somewhat further.  In the amp.m program (and in 

another one) we used unequal spacing.  In AN-337 we also went in the direction of equal 

spacing but an excess of samples.   Below we will address the use of excess samples 

AND unequal spacing, in the context of the original FS.  (Because we were interested in 

input to the design programs that automatically generated the samples, when we went to 

excess samples, any consideration of the freedom to choose sample frequencies 

arbitrarily seemed of little practical use.)    

 

     Accordingly we considered M equations (M samples) in N unknowns (length-N impulse 

response) where M was greater than N.   This was very useful in practical cases.  For 

example, a cutoff frequency could be specified with considerable precision.  Or we could 

describe a magnitude function in great detail.  Because the excess equations could not be 

solved exactly, but only by least squares (pseudo-inverse) we no longer had the eventual 

response going through all the samples, but none the less approximating all of them well.  

The program fsamplms.m, and a weighted version, were offered in AN-337. 

 

 

EXCESS EQUATIONS AT ARBITRARY TIMES  

                                      – BACK TO FOURIER SERIES 

 
At this point we will extend the discussion as advertized above: the case of over-

determined equations and arbitrary times.   There is no reason this should not work.  At 

this point we write a program that sets up and solves a set of equations for specified times, 

such as in equation (7) and with the same five FS components, except we can have  
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a lot more equations.  We then run this for a variety of conditions.  We could have five 

consecutive times (like 0,1,2,3,4) or five times like in the example (0,1,2,7,77) or we can 

include irrational times like (0,1,2,7,77  ).   All these choices give us the perfect result of:  

 

            [a0, a1, b1, a2, b2] = [1  2  1  0  3]                                                                            (8) 

 

We can then go to the over-determined cases.  Here we will use the Matlab pseudo-

inverse pinv instead of the square matrix inverse.  For example, we might have 50 times  

(0,1,2,…49).  Or we would have irrational times.  Or we could have random times (not 

even ordered).   All of these give the correct result as in equation (8).   The program 

fstest3.m is here: 

  

    **************************************************** 

 

% fstest3 

 

% Test Signal Plotted for Reference 

t1=0:1000; 

x1= 1 + 2*cos(2*pi*t1/500)+ sin(2*pi*t1/500) + 3*sin(2*pi*t1/250); 

figure(1) 

plot([0:1000],x1) 

axis([-100 1100 -4 7]) 

figure(1) 

 

nt=50              % number of equations 

t=[]; 

% choose times 

%t=[0 1 2 3 4] 

% t=0:nt-1 

t=500*rand(1,nt)  

 

% Form Matrix for Equations 

M = zeros(nt,5); 

for k=1:nt 

   M(k,1) = 1; 

   M(k,2) = cos(2*pi*t(k)/500); 

   M(k,3) = sin(2*pi*t(k)/500); 

   M(k,4) = cos(2*2*pi*t(k)/500); 

   M(k,5) = sin(2*2*pi*t(k)/500); 

end 

M 
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xx=[]; 

for k=1:nt 

   xx(k)= 1 + 2*cos(2*pi*t(k)/500)+ sin(2*pi*t(k)/500) + 3*sin(2*pi*t(k)/250); 

end 

 

% Add Noise 

an=0; 

xx=xx+an*randn(1,nt); 

 

% Show Data Used 

figure(2) 

plot(t1,x1,'r:') 

hold on 

plot(t,xx,'*') plot(t,xx,'*') 

axis([-100 1100 -4 7]) 

hold off 

 

% Pseudo-Inverse 

c=pinv(M)*xx' 

 

                  ****************************************** 
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     In Fig. 3, we have run the program to give 50 randomly timed samples, so have 50 

equations in 5 unknowns.   The 50 samples are the blue stars, and the dashed red line is 

simply the original signal from which these times were taken.   So the finding is that we get 

the coefficients back, as in equation (8), perfectly.   The new thing here, beyond the 

corresponding fsamplms.m (over-determined), is the uneven spacing of the samples. 

 

      

AND WHAT HAPPENS WITH NOISE? 
 

     The final wrinkle here is to add noise to the target sample values.  Here we are looking 

at a case similar to what we would expect if we had a large number of noisy data point but 

had some reason to suppose that they should fit a few sinusoidal components, for which 

we had reason to suspect a particular fundamental frequency.  Here we will look at four 

cases: (1) the case of just 5 noisy equations, (2) the case of 6 noisy equations, and (3,4) 

cases (two) of many noisy equations.   We shall be interested in how well we can calculate 

the underlying FS coefficients, and how well the resulting curve fits the actual data.   

 

     Here we use the program fstest3 above where we now make the noise amplitude 

equal to 0.2 instead of 0.  This means that the answer of equation (8) is not obtained.  We 

can use the new (calculated from noisy samples) coefficients and plot that series, and this 

we added to the program and plot in green. 
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    In the case of 5 samples (Fig. 4a), the green curve goes exactly through the noisy point.   

Note that the calculated coefficients are of course no longer (1 2 1 0 3), as they should not 

be.   Further we have seen in our runs examples where the green curve was all over the 

place (and running off scale), so results are not always (not usually) even this good.  But 

they always go through the original five noisy points.  This example is 5 equations in 5 

unknowns, so we expect the green curve to go through the five blue stars. 

 

     Fig. 5b shows the change from 5 to 6 points, which seems a minor change, but which 

presents a fundamental change.   This example happens to be what seems to be a better 

fit to the original red curve.  It is in general true that the more noisy points we add, the 

better the fit to the red curve.  This varies according to the particular noise for a particular 

run (again – some curves run all over the plot).  And the fit to the red is not the point here 

(we will see this later in Fig. 4c and Fig. 4d).  Here, the point is that the green curve no 

longer goes through the 6 blue stars.  We have 6 equations and only 5 unknowns.   Note 

as well that the coefficients are changed and not well approximating the original red case. 

 

      

     While the change from 5 equations in 5 unknowns to 6 equations in 5 unknowns is a 

fundamental departure into over-determined land, often times the most impressive 

examples of the  least squares and “pseudo inverse” involve many many excess 

equations, not just one extra (from 5 to 6, as in Fig. 4b) as we can see an improvement 

occurring with many extra equations.   That is, not only does the least squares approach 

permit us to solve the over-determined set, but shows useful results. 
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     Fig. 4c shows the case of 15 noisy samples (three times the original number) while Fig. 

4d shows 150 noisy samples.  At this point, we see that as expected, the green curve 

does not in general pass through the 15 blue stars, although the coefficients are starting to 

move closer to the coefficients of the original signal.  This proceeds as in Fig. 4d where we 

have 150 noisy samples.  Here the green curve pretty much overplots the dashed red 

curve.   That is, the noise has sufficiently averaged out that the correct original coefficients 

have been obtained, and this can also be seen in the calculated coefficients as printed in  

the figures.   With 150 points (or more) we have obtained almost the correct result, even 

with considerable noise.   

 

     The final test here is to look at the case where we have pure noise and no signal.  Thus 

we make the noise amplitude 1 and multiply the original signal by 0, and this is shown in 

Fig. 5.  As expected, by chance there is some relatively small frequency content at dc, the 

first harmonic, and the second harmonic, such that we see a small amplitude green curve 

that changes completely with every run.  While we plot the red dashed curve in Fig. 5, for 

reference back, we expect none of it, and see none of it, except by chance. 
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SUMMARY 
 

     We tend to think of the FS equations as an essential pairing, while in fact each is 

individually valid.  Equation (1b), the series sum, is rather simple in suggesting that a 

periodic function is a sum of sinusoidal waveforms (or complex exponentials).  Once we 

decide on the fundamental and the bandwidth (how many terms) we then may have 

several paths to determining the coefficients.  Here the lesser known path of solving linear 

equations has been explored.  Along with the standard N equations in N unknowns, often 

thought of as equally spaced samples, we have looked at unequally spaced samples, an 

excess (perhaps a large excess of equations) to be solved in the least squares sense, and 

arbitrary spaced samples.  We have found it very useful to relate this to the “frequency 

sampling” digital filter design methods which are really FS with the time domain an 

frequency domains reversed, as these are somewhat  familiar and known to be useful.  

This is not to say that the ramifications are immediately obvious.  These connections are 

well worth pursuing.   

 

     We have also brought in the often present complication of noisy data, and found that 

over-determined solutions are extremely useful.  Finally, looking at this procedure as 

essentially the same thing as the second part of Prony’s method seems quite revealing. 
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