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 INTRODUCTION  
 
In the previous application note, AN-407 [1] we discussed how we might approach an “Un-
Filtering” (deconvolution, equalization) problem relating to an often used Moving Average 
(MA) or Running Mean.  In addition to the fairly direct attack of AN-407, a somewhat older 
app note, AN-366 [2] that used a least-squares approach was discussed as well, where 
the least-square FIR fit was found numerically.   
 
     While the approaches (and complication of noise, etc.) in AN-407 were typical, here the 
least-squares approach will be examined for two other cases: trapezoidal smoothing [3] 
and Savitzky-Golay [4].  So we will begin with a slightly more general approach to direct 
computation, and then see how least-squares works out. 
 
 

DIRECT COMPUTATION 
 
The direct computation simply asserts that H(z)/H(z)≡1.    There is, however, a subtle 
difference when it comes to the actual implementation of this idea.  The identity equation 
could be decomposed in many different ways [many -  in the case where H(z) itself is 
factored].  We immediately think of H(z)•[1/H(z)] and [1/H(z)]•H(z)] as important cases, 
where we imply that the actual implementation occurs in a certain order.  Of particular 
importance here is the fact that zeros and poles of H(z) interchange in 1/H(z).  Since poles 
(and not zeros) are restricted to the interior of the unit circle, for stability, in using 1/H(z) as 
well as H(z) we seem to restrict the zeros to be inside the unit circle as well.  [Famously, in 
traditional “frequency sampling implementation”, we assert that if unit circle zeros are done 
first, we can place poles there after and weight the various paths for a desired response.]   
 
     Since here we are illustrating with FIR “smoothers” such as MA and Savitzky-Golay 
(SG) we, choose to consider H(z) to have a form: 
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which in turn makes the inverse 1/H(z) to be: 
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and this is not acceptable for and IIR structure (meaning Fig. 1) unless h0 = 1.  This is 
easily fixed by multiplying top and bottom by 1/h0: 
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which has the same poles. 
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     As stated [1, 2] there are possible problems with this direct approach relating to 
possible instabilities and possible noise or both.   Any H(z) that has zeros on the unit circle 
(e.g., MA), would lead to problematic, conditionally stable unit circle poles.  Worse, zeros 
of H(z) outside the unit circle (as SG and other linear-phase designs will have) will not 
work with this IIR inversion, and we must use the approximate FIR inversion [2].   
 
     A more immediate problem but one for which simple solutions are at hand is that it is 
not easy to write expressions for the impulse response of 1/H(z) in a closed from.  This 
would be the problem of calculating the inverse z-Transform of equation (4).   On the other 
hand, we can easily use a Matlab function such as hiir =filter(N,D,[1 zeros(1,99)]) where 
N is just the numerator coefficients (which is just a single 1/h0 in this case) and D is the 
denominator coefficients (h/h0) and [1 0 0 …..0] is a stand-in for a single impulse.  (No 
Matlab., etc.?   It’s trivial to write your own code.)  To evaluate results, we just try different 
values and see if the response dies off fast enough.  Or, it may be the case that the 
response does not die off, or blows up, in which case we hope our finding agrees with any 
determination of pole positions we have found.  
 
 

EXAMPLE 1 - MOVING AVERAGE 
 
    Here we will look at the case of a length-10 MA to see if it can be inverted with an IIR 
approach (as just above) and/or a FIR least-square approach [2].   Further we will choose 
a noise-free test signal for this, and for that which follows later in this note, consisting of a 
length-20 rectangle and then two cycles of 15 samples each of a sinewave (Fig. 2a).   
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     As we see clearly in Fig. 2a, the original test signal is smoothed (smeared if you prefer 
here) by the length-10 MA (middle of Fig. 2a) producing the result at the bottom of Fig. 2a.  
Note, as two examples of what happened, the gradual ramp-up of the rectangle, and the 
extended width of the last sinewave lobe.   Our goal is to now reverse this filtering.  
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     Equations (1) and (4) with all h(n)=1 apply here, and this is the problem of the previous 
app note [1].   In Fig. 2b, we show the calculated IIR impulse response.  Actually, we show 
the first 100 values of the impulse response, as it goes on forever without decay.  
Convolving the FIR smoother with the IIR inverter should give us an impulse at n=0, and it 
does (bottom line of Fig. 2b, at extreme left).  We also note the “echo” response that was 
due to the truncation of the IIR inverter response.  One goal is to make sure the IIR 
response is long enough (exceeding the combined length of the smoothing convolution by 
a comfortable margin).  That is, it should exceed the length of the test signal plus the 
length of the smoother minus 1; and then add some extra safety space.   
 
     Fig. 2c shows the resulting recovery.   The top panel of Fig. 2c is the smoothed input, 
the same as the bottom panel of Fig. 2a.   The middle panel of Fig. 2c is the truncated IIR 
response, a truncated form of the “forever” suggested in Fig. 2b (middle panel). 
Convolving these two gives us, perhaps surprisingly the bottom panel of Fig. 2c, which is a 
recovery of the original input as seen on the left side with an inverted echo on the right 
side. This is quite tricky to see and to believe.  To see this “working” we have provided in 
the Appendix a block-by-block, shift-by-shift version of a simpler case.    
 
     It is tempting to try to write out a recipe for doing this inversion successfully.  In fact, we 
have probably done more than enough to illustrate how to do this.   Yet when it gets right 
down to attacking real data, there is a lot going on.  So the recommendation would be to 
set up the programming for your particular problem, test it, and then don’t believe anything 
that does not look reasonable until such time as you retry the same code on some well 
defined data which you can easily monitor, step-by-step.    
 
     A perhaps safer approach is to use the least-squares FIR equalizer method [2] where 
we do not have to deal with the IIR aspects of the problem.   This we expect to be an 
approximation, and the result has only z-plane zeros to deal with (and often, a mess of 
them – see Fig. 2f).  In this case, we have the same length-10 smoother, and we seek (our 
choice) a length 100 FIR equalizer.  The code for the least-squares approach was 
presented in [2] and an updated version is at the end of this note.   
 
     Fig. 2d shows the result of this computation, which has a resemblance to the IIR 
impulse response as we might expect.  The FIR response is non causal – indeed it is 
linear phase which we often desire anyway.   Thus it has a delay, which is often not an 
issue as smoothed data is not always (or usually) running time, or even has time as an 
independent variable.  Note the particular symmetry, and the expected tapering.  [Recall 
from [1] the artificial tapering of the IIR response by moving poles slightly inside the unit 
circle.]  The convolution of the original smoother with the FIR equalizer should give us an 
impulse.  We have a length 100 equalizer, which we see tapers but evidently has non-zero 
residuals.  In consequence, the recovered impulse (bottom panel of Fig. 2d) is imperfect.  
Note the delay that was expected.    
 
     The recovery with the FIR equalizer is seen in Fig. 2e, and is relatively good.  Fig. 2g 
shows the frequency responses of the smoother, of the equalizer, and their product.  Note 
the “lack of interest” of the FIR equalizer in compensating for the smoother nulls!   In fact, 
it puts additional nulls there – hence the rounded bottoms of the nulls in the product.  The 
product (green) is nonetheless showing an interest in approximating 1.   
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NOISE    
 
     Here we have found that the ubiquitous rectangular MA smoother has yielded not only 
to the least-squares approach in providing a stable FIR inverter, but even an IIR inverter 
seems possible in the absence of noise.   We need to be clear about noise.  A signal may 
well be noisy in the sense that obtaining it involves measurement errors and or roundoff 
errors.  It may also be the case that the signal “looks like noise” in that it looks like a lot of 
random stuff and that if there are certain trends and components, they are small compared 
to the noise.  Things as crude as MA smoothers are often used with such noise-like 
signals.   This is not the “noise” that we worry about with messing up reconstruction.    

 
     Fig. A shows a larger picture where we suggest that there are three types of “noise” 
here.  We have in mind that there is a “true” signal S that is noiseless.  The signal data X 
we have on record includes S, but there may be substantial measurement errors (NM) and 
in addition, the data itself may be “Noise-Like” (NNL) due to confounding influences and 
possibly chaotic behavior, etc.  In such cases, we may be employing a smoother H(z) in 
an attempt to make the hidden S, in some sense, more apparent (Does W “Reveal” S ?) or  
does H(z) reduce NM and NNL?  At this point, any inversion by 1/H(z) is not even involved.    
 
     The complications with 1/H(z) may be an ongoing problem, such as we have suggested 
would be the case where H(z) is not something we have intentionally put in, but something 
like a communications channel.  We need 1/H(z) to fix undesired distortions in the 
channel.  The channel may well involve extra random noise, a processing noise, NP.  In 
the case of intentional smoothing, NP may be such things as data recording noise (like 
roundoff - a table keeps number to only one decimal place) or recovery from a plotted 
graph.   The question here is (Does Y Look Like X ?).  It depends on how bad NP is, and 
on whether or not 1/H(z) is satisfactory.  Perhaps we just want X back to try a different 
smoothing.  The third question (Does Y Look Like S ?) is not a primary question here. 
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TRAPEZOIDAL 

     
     The apparent success with the rectangular MA might well encourage us.   In particular, 
as we have discussed in the section above on NOISE, we may have no NP of any real 
consequence, and just want X back for another try – perhaps a different smoothing.   In 
another app note [3] we suggested a ploy of increasing the length of the MA by 1 and 
making the end taps 1/2 instead of 1.  The idea was primarily to place the output at the 
center in the case of what started as even length where there would have been a 1/2 
sample offset.  For example, our length-10 MA with impulse response [1 1 1 1 1 1 1 1 1 1 ] 
would be modified to length-11 as [ 1/2 1 1 1 1 1 1 1 1 1 1/2 ] which is trapezoidal.   We 
saw [3] several advantages to this.  It might seem a minor change. 
 
     In fact, there is a major complication here.   We can still do a least-square inversion 
quite satisfactorily, but the IIR inversion does not work.  It can be seen that the length-11 
trapezoid is the convolution of a length-10 rectangle with a length-2 sequence [1/2 1/2].  
This adds an extra zero (that we expected to obtain), and puts it at z=-1, which was 
already occupied by an original zero from the length-10.  Hence we end up with a second-
order zero at z=-1, which actually makes a better FIR low-pass.  However, in the IIR 
inversion, we get a second-order pole on the unit circle which does blow up.  [Recall that a 
unit-circle pole is generally “conditionally stable”, neither causing a blow-up or a decay. A 
second order pole blows up.]  This is the simple reason the IIR inverter does not work. 
 
     In making graphs, we could run the same Matlab program that produced the series of 
Figures 2a through 2g.  Here we will do this run, and for the trapezoid, number them with a 
3 instead of a 2.   (Shortly we will use SG and use a numbering starting with 4.)  However, 
while we will use the same letter for corresponding graphs, we do not need all the graphs.  
Only about half of them are included.   
 
     The smoothing by the trapezoid is very similar to Fig. 2a, but when we compute the 
impulse response of the IIR inverter, it blows up, as seen in Fig. 3b.  We could perhaps 
work around this for a range of input samples, but numerical problems soon come in.    
 
     Fig. 3d shows the case where the least-squares FIR inverse is computed, and we see 
a reasonably-well recovered impulse in the bottom panel of Fig. 3d.   The actual structure 
of the impulse response is curious (steps of 5 here!) and would require somewhat more 
study to understand.   It is not always similar, depending on the number of ones between 
the 1/2 ends, particularly as they change from an even to an odd number.  For odd 
numbers of ones (like the 9 here), we seem to have steps.  For even numbers of ones, 
half the steps are more or less gone.   Curious. 
 
     The key result though has to be whether or not the inverter does a reasonable job of 
undoing the smoothing, and this is seen in Fig. 3e, where there is a credible result. 
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SAVITZKY-GOLAY 
 
     Our third example of 
a FIR smoother will be 
the Savitzky-Golay [4].  
Once again we can just 
plug in the impulse 
response and out will 
come the graphs a to g.  
These will have the 
number 4, and we will 
only include a few of 
them here.  It is easily 
seen that the direct IIR 
inversion will have 
problems even worse 
than the trapezoid: the 
SG is linear phase with 
some zeros inside the 
unit circle, demanding  
zeros outside at 
reciprocal positions, 
and thus the IIR inverse will include poles outside the unit circle (Fig. B).  The examination 
begins with the SG program hsg=sg(5,10) from [4].    
 
    hsg = [  0.0391 -0.1172  0.0117  0.2148  0.3516  0.3516  0.2148  0.0117 -0.1172  0.0391]      (5) 
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     In Fig. 4a, we have shown the shape of the smoothed test signal corresponding to the 
FIR smoother of equation (5).   Note that we see less tapering of the edges of the 
rectangle, corresponding to the higher frequencies allowed by the SG (see Fig. 4g, red 
curve, or [4]).  At the same time, there is far less elongation of the final lobe of the second 
sinusoidal cycle (Fig. 4a as compared to Fig. 2a). 
 
     As suggested, the IIR inversion fails.  In fact, the calculation shows a blow-up at the far 
end amounting to 1044 !  We do not explore this further – we expected poles outside the 
unit circle to blow up (Fig. B shows the zeros, and the poles are in the same locations).  
Fig. 4d shows however that the FIR least-squares methods still works just fine, with the 
impulse response in the middle panel and the recovered impulse in the bottom panel.  
 
     Continuing, we see that the FIR equalizer works quite well in recovering the original 
test signal (bottom panel of Fig. 4e) where we see some “jitter” but note that the overshoot 
on the rectangular corners is removed.    
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 APPENDIX:  Here we show in great detail to use of the inverting impulse response 

(length-4 MA) to deconvolve the tapered step back into and original signal that was just six 

ones in a row (green numbers → x ). 
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The portion below, which eventually follows the beginning on the page above, shows how 
an “inverted echo” results from a truncation (end) of the equalizer impulse response as it 
moves out. 
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MATLAB CODE FOR LEAST-SQUARES INVERTER 
 
 
function [h1,h2,h3]=lsi(h1,N) 

% function lsi(h1,N) 

%   h1 = FIR to invert 

%   N = length of inverting FIR 

%   h2 = inverting FIR (to calculate) 

  

m=convmtx(h1,N)'; 

sm=size(m);  

r=zeros(1,sm(1)); 

lr=length(r); 

if mod(lr,2)==1; 

   r((lr+1)/2) = 1 

end 

if mod(lr,2)==0; 

   r(lr/2)=1  

end 

% least squares inversion 

h2=pinv(m)*r' ; 

% test - does this look like r 

h3=conv(h2,h1) ; 

h2=h2' ; 

h3=h3' ; 

 

figure(1) 

Lh3=length(h3); 

h1=[h1 zeros(1,(Lh3-length(h1)))] 

h2=[h2 zeros(1,(Lh3-length(h2)))] 

% PLOT h1 

subplot(311) 

stem([0:Lh3-1],h1) 

hold on 

plot([-2 100],[0 0],':k') 

title('Smoothing Filter  h1') 

hold off 

if min(h1)==0 

   m1=-0.2*max(h1); 

   else 

   m1=1.2*min(h1) 

end 

axis([-1 Lh3+1 m1 1.2*max(h1)]) 
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% 

% PLOT h2 

subplot(312) 

stem([0:Lh3-1],h2) 

hold on 

plot([-2 100],[0 0],':k') 

title('FIR Inverter (Least Sq.) h2') 

hold off 

axis([-1 Lh3+1 1.3*min(h2) 1.3*max(h2)]) 

 

% 

% PLOT h3 

subplot(313) 

stem([0:Lh3-1],h3) 

hold on 

plot([-2 100],[0 0],':k') 

title('Convolved h1 h2') 

hold off 

axis([-1 Lh3+1 1.5*min(h3) 1.3*max(h3)]) 

figure(1) 

 

figure(2) 

c=exp(-j*2*pi*[0:359]/360); 

plot(c,'c') 

hold on 

plot(roots(h2),'or') 

hold off 

axis equal 

figure(1) 
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