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 INTRODUCTION 
 
    When we filter something, in the everyday sense of something like a coffee filter, we 
are separating components.  In the case of coffee, there is a component we usually keep 
(the liquid coffee) and the one we toss (the grounds) at least as far as the compost heap.  
That is, we primarily want the filtered product.  This is what filtering is about.  Or we might 
turn down a treble control when playing an old vinyl recording so as to remove the noise of 
accumulated surface dirt.  Again - we filter out something and discard it.   
 
     We can also think of filtering in terms of analysis.  I believe they use certain ceramic 
filters in biological laboratories to see if certain tiny critters make it through or are blocked.  
Perhaps we don’t particularly care to have either of the tiny critters, but we are trying to 
find out what a certain substance contains by using a specific filter.   A bank of electrical 
filters can analyze a sound in this general manner.    
 
     So there can be two cases in which filtering is used: for actual removal of something 
undesired, and for analysis. 
 
     Electrical and mathematical filters are designed to have general capabilities, and in 
addition, are often addressed to a specific application.   There are way too many cases to 
even briefly list here.  One question we do address here is whether it is possible to “un-
filter”?   In the mechanical filter instances above, likely we can, perhaps by just pulling the 
partitioning filter out and allowing remixture.   In the electrical case, we might be able to 
remix – as for example the reconstruction (usually called synthesis) of prefect 
reconstruction filters (PRF), which can follow the analysis bank of the PRF. 
 
     It should be obvious that in order to “un-filter” (sometimes called equalization and 
sometimes deconvolution), you must have somehow kept the material originally filtered 
out.  In the case of the PRF, the full set of analysis filters contains the various parts. In the 
case of ordinary filtering, we may be out of luck if we expect a complete recovery.  Clearly 
if we have merely attenuated a particular frequency or band of frequencies, we can amplify 
them back.  But, if we have in fact completely nulled a frequency (at least in terms of a 
realistic steady-state), it’s gone.  If we have a signal that has frequencies 100 Hz and 300 
Hz, and a filter with notches at 100 Hz and 200 Hz, the output will contain only 300 Hz and 
you won’t know about 100 Hz or 200 Hz.  While thought of here in terms of constant 
frequencies, note that more transient signals will only present a more difficult situation. 
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TALKING ABOUT AVERAGES AND MOVING AVERAGES 
 
We can begin with an example of a Moving Average (MA) filter, also known as a Running 
Mean or traditionally as a “Boxcar”, and probably by other terms.  For example, a length-7 
MA would have an impulse response of: 
 
     hMA7 = [1/7 1/7 1/7 1/7 1/7 1/7 1/7] = (1/7)[1 1 1 1 1 1 1]                                              (1) 
 
Now, a MA is not an average.   To get a length-7 average, we add up 7 things and divide 
by 7, and that’s it.  To get a MA, we would have this average as one of several or many 
successive outputs.   That is, a MA is not a number, but a sequence (or signal).  
Particularly as we might have a very long MA we note the computational situation that a 
new MA is available from the old value by removing the oldest contribution and adding the 
newest incoming contribution.   (This is sometimes called a “Head/Tail” computation of a 
MA – quite obvious).  Also, we usefully just think of the computation as a convolution of 
the impulse response with the contributions.   What is the relationship of the MA sequence 
to the contributions? 
 
     First, what is the relationship of the average to the contributions.  Clearly the average 
does not retain the original information.   If you and 6 friends are contemplating having 
lunch at a burger joint and are assessing in-pocket funds, you might find that the average 
is $55.22.   This tells us that all together, the seven of you have $386.54, which should be 
enough for your modest lunch plans.   What it does not tell you, for example, is, if you all 
forget to take you wallets except for Sally, does Sally have enough money to cover the 
total bill?   In fact, she could have any amount from $0 to $386.54.  In taking the one-time 
average, information is lost.   
 
     So the next thing we might want to investigate is whether the MA sequence contains 
more information, and clearly it does.   We can watch the computation advance as each 
friend is queried.  If the first average is $2.87 we conclude that this first person has  
$2.87 x 7 or $20.09.  If Sally is next and the average jumps to $12.91, this number, and 
the previous value of the MA, allows us to conclude that Sally has $70.28.  Indeed, each 
person has 7 times the increment in the MA.  Obvious enough.   
 
     Being free to have imaginary friends and corresponding funds, let’s suppose the 7 
friends have funds at: 
 
          x =     20.09    70.28     0.77    35.14   128.10    49.49    82.67                             (2) 
 
for which the sum is 386.54 and the average is 55.22.   As we described in words above, 
we can compute moving averages by convolving x with a sequence [1 1 1 1 1 1 1].   This 
convolution of two length-7 sequences is of course a length-13 sequence: 
    
  y= 20.09  90.37  91.14 126.28 254.38  303.87  386.54  366.45  296.17  295.40  260.26 132.16  82.67    (3) 
 

Here we have listed the total amounts.  To get the average, we just divide by 7.   We 
perhaps suppose that here we have obtained more information as we have 13 numbers 
where we previously had only 7.    
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     But it is also clear that the sequence y, for the first seven values, is the accumulated 
total.   If we further convolve y with a sequence [1 -1] we can extract the differences.  
Thus: 
 
            z =  20.09    70.28     0.77    35.14   128.10    49.49    82.67   
                   -20.09   -70.28    -0.77   -35.14  -128.10   -49.49   -82.67                              (4) 
 
We now have 14 numbers in total, and we immediately notice that the first 7 (top line of 
equation (4) are a recovered form of x.  This was expected.  Perhaps less expected is that 
the second line of equation (4) is just the negative of x.  If you think of what is going on, 
this just means that the component amounts exit from the summer in the same order they 
entered.  
 
     Thus we see that the MA (here actually the moving sum – which gives the same 
illustrations) does retain the original information, unlike the fixed average.  This is  
somewhat intuitively understood.  What may be less clear is exactly what is going on, and 
how much care goes into looking in the right places to find the output numbers. 
      
 
 

THE INVERSE FILTER 
 
     In a previous app note, AN-366, “Unfiltering – Equalization”, May 2006 we looked at 
some aspects of this problem [1]: 
 
http://electronotes.netfirms.com/AN366.pdf 
 
 
There we considered the general problem and some specific least-squares based 
approaches to finding inverse filters that were at least approximations.  
 
     The approach was simple enough.  We filter with a filter H(z) and convert an input 
signal X(z) to an output signal Y(z) = H(z)X(z).    Clearly the way to un-filter this is to 
multiply by a filter 1/H(z).  As shown in the reference at the link above, or in many texts, 
this is not always, or even often, possible.   The reason is simple: lots of filters H(z) that we 
use have unit circle zeros (and/or zeros outside the unit circle).   This is because lots of 
(most) useful filters have stopbands – they are trying to filter something out.  Yet the 
frequency response of a filter, if it is of the common LTI (Linear Time-Invariant) type can 
be zero only at isolated points (nulls or notches – unit-circle zeros), and we rely on the fact 
that the response in the vicinity of these nulls is relatively small as well.  This is how 
stopbands are achieved.   Thus we immediately understand that some signal components 
will be blocked by a notch, and thus lost.  As for the inverse filter 1/H(z), it will have unit-
circle poles at the same unit circle positions, and will require infinite response there.   Filter 
with zeros outside the unit circle will have inverses which additionally blow up.  Even if we 
believe we have zeros coming first, blocking any nasty poles, any noise in the data can 
cause a response to blow up even where numerically it seems to sneak by. 
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INVERTING THE MOVING SUM 
 
At this point, we will look explicitly at the “Moving Sum” which is just the MA without the 
confusing division (we will freely jump back and forth).  Recently we have looked at MA 
and related smoothing [2-8].  We will continue to use length 7, and Fig. 1 shows H(z) and 
the inversion 1/H(z) for this case.  Note the subtractions in the feedback (green oval).  H(z) 
is simply a length-7 delay line with unity taps.  Its impulse response is seven ones.  It is 
easy to write down 1/H(z) as in Fig. 1.  It is not obvious (to me at least) what the impulse 
response is, but it is easy to calculate:  it is an infinite length sequence that repeats the 
length-seven sequence [1 -1 0 0 0 0 0].   
 
                                                              AN-407 (4) 



  
    Now we have H(z) and 1/H(z) and their impulse responses should cancel.  If we analyze 
Fig. 1, we see that H(z) loads 1/H(z) with an impulse, which comes immediately out.  After 
the shift, another “1” is loaded to 1/H(z), but the original impulse at Y has been shifted 
down, subtracted, so that the current Y is zero.   It is less clear that a string of zeros is all 
that happens – in theory.  Fig. 2 shows the convolution situation.  Note the initial “1” at the 
light blue Start.   Then there is a region of red All Zeros, and this would seem to be 
ongoing indefinitely.  As long as we don’t stop.  Note that if the response stops, we get a 
departing green “-1” at the End.   It is extremely entertaining to watch numbers move 
through the networks, cancelling, but it had to happen!    
 
     Note that the impulse response of 1/H(z) is IIR (Infinite Impulse Response).  Because 
of the unit circle zeros, this IIR response with its corresponding unit-circle poles does not 
decay.  In many cases, AN IIR impulse response does decay and may get negligibly small 
and end “quietly” (see below). 
 
 

CONTINUING THE EXAMPLE 
 
     Next we continue this example in some detail.   Fig. 3a shows the impulse response, 
frequency response, and zero-plot for the length-7 Moving Average [2].  Note that the 
frequency response has notches at frequencies 1/7, 2/7, and 3/7.  Our “test signal” here 
will be a length-10 rectangle, not to be confused with the smoother’s length-7 impulse 
response. The unit circle zeros shown correspond to the notches in the frequency 
response, and are perfectly acceptable for a filter as far as stability goes.  When we put 
H(z) in the denominator to form 1/H(z), we put poles at the exact same position as the unit 
circle zeros (Fig. 3b) and this has two important effects on the filter’s responses.  First, the 
impulse response not only is no longer finite duration, but does not decay at all.  Here we 
plot only 111 values in Fig. 3b, (upper left – see also Fig. 2), although the actual program 
that we use here kept 300 samples (which will be important for Fig. 3c).   Secondly, 
because the filter 1/H(z) has unit circle poles, the response blows up to infinity at 
frequencies 1/7, 2/7, and 3/7 while our plot (Fig. 3b, upper right) is of course clipped.    
 
     Now it is curious that the filter 1/H(z) being unstable (conditionally stable?) allows us to 
see anything useful.  When we bring noise into the picture, we will see obvious problems.  
The fact that we see an interesting result (Fig. 3c) is a consequence of the same curious 
special loading of samples that we described above as extremely entertaining. 
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     Fig. 3c shows a time-domain view of what is happening.  In the top line we see the test 
signal (length-10 – darker blue) and the impulse response of H(z) (length-7 – lighter blue) 
as they are about to be convolved, resulting in the trapezoid of the second line.  
Accordingly the step edges are made gradual (smoothed).   The question is whether we 
can remove this smoothing, and the unlikely answer – is Yes.   In Fig. 2, we saw that H(z) 
convolved with 1/H(z) gave back an impulse.  So we should not be surprised (because of 
superposition) that we get the length-10 rectangle back (third line of Fig. 3c).   Now, from 
Fig. 2 we also saw that if we DID truncate the IIR response, we got a late inverted “echo” 
of the impulse response.  Here (bottom line of Fig. 3c) we see the rectangular signal is 
likewise echoed because, as we said, we truncated the IIR response at length 300, where 
it was still going strong (no decay at all).  The green line from the bottom line to the one 
above reminds us where this bump really is. 
 
     All this is amusing, and perhaps misleading.   We have three more things to look at: (1) 
what happens if the poles move inside (or outside) the circle; (2) what happens for a 
frequency of exactly 1/7 and is this information lost (and what does that mean); and (3) 
what happens with noise added prior to reconstruction? 
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DECAYING POLES 
 
Here we really don’t need to do anything except rerun Fig. 3a, Fig. 3b, and Fig. 3c with the 
zeros slightly inside the unit circle.   Actually, we started with a rectangular smoothing 
function and calculated the zeros as being on the unit circle.   At this point, how do we 
choose the smoothing taps?  In full disclosure, I guessed, guessed correctly, and lost 
interest in the derivation.  The verification was just a matter of starting by setting zeros at 
the same angles as the original, moving the radius of the zeros from 1.00 to 0.98, and 
using Matlab’s poly on these.  This in fact gives h(n) as (0.98)n for n=0 to 6. In fact, doing 
the same thing by hand convinces us that we understand the necessary derivation steps if 
we were so inclined.  Thus, instead of h(n) = [1 1 1 1 1 1 1] we would have: 
 
    h(n) =   [1  0.98  0.9604  0.941192  0.92236816  0.9039207968  0.885842380864 ]    (5) 
 
This is the only change.  Note that because we started with the z-plane, an overall gain 
factor is arbitrary.   (Any transfer function can be multiplied by any constant factor and still 
has the same poles/zeros.)   From Fig. 4a, upper left, we see the impulse response is 
slightly decaying instead of being exactly rectangular.  In consequence, the frequency 
response nulls (Fig. 4a, upper right) are not exactly to zero.   This is important because it 
means nothing is completely lost – not even at isolated frequencies. On the scale plotted, 
it is difficult to see, but the zeros are slightly inside the unit circle (Fig. 4a, lower left). 
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     In Fig. 4b, we have the corresponding 1/H(z).  The impulse response now decays, as is 
obvious in the upper left.  There we plot 111 values of the impulse response, but in the 
actual calculation we keep 300 values.  The frequency response (upper right of Fig. 4b) 
now shows peaks at 1/7, 2/7, and 3/7 that do not blow up to infinity, and the poles are 
inside the circle exactly as the zeros were.   We might expect the reconstruction to be 
apparently better, and it is seen in Fig. 4c.  In fact, it looks pretty much the same as Fig. 
3c, with the notable exception that the “late echo” at the right side of the bottom line is 
gone (POOF).  This is because instead of being a truncated version of a non-decaying 
impulse response, it went away exponentially and gradually.  Yet the cancellations beyond 
the original recovery are complete because we have the same values in the impulse 
responses of H(z) and 1/H(z).    Something a bit magical still is going on it seems.  Well, 
it’s just math. 
 
 

LOSS OF INFORMATION? 
 
Recently I took a part in an online discussion of whether or not filtering means that 
information is lost.   A good part of the disagreement was semantics, one of the most 
difficult things to settle with blog comments.  To me, clearly, when you filter something 
information is lost (missing from the filter output), regardless of whether or not you can 
fully recover the input signal, or if you have stored away a copy of the input in reserve!   
 
     In the present discussion, we are talking about “un-filtering” so we have full recovery in 
mind.   This requires, at the very least, a full knowledge of the filtering involved and an 
absence of random noise, as we have done so far.   Our immediate task now is to show 
what happens when we clearly remove information from the signal.   
 
     The MA filter, first of all, has a specific purpose of reporting out a moving mean, which 
is clearly low frequency and thus something for which we would expect to see a low-pass 
filtering.  It is also true that the MA, in addition to passing DC, has specific notches, as we 
have seen at 1/7, 2/7, and 3/7 in our example.   Suppose we want to use the MA to block 
signal components of frequency 1/7.  A sine wave of frequency 1/7 (period 7) is thus 
exactly what we would hope to block, and this looks easy to show.   In Fig. 5a (X) we form 
an input signal as 28 zeros, 6 full cycles of frequency 1/7, and 28 more zeros.  This is 
filtered with a length-7 moving sum (impulse response [1 1 1 1 1 1 1] ) to give W, which 
does seem to put a big hole in the middle of the sinewave cycles. We might have expected 
everything to disappear, but there are the end transients to consider, and these remain. 
 
    Looking ahead we see that the bottom line of Fig. 5a shows the recovery of X as Y 
(along with the echo as we truncated 1/H(z) at length 154).  So while we can do this, we 
rely on our knowledge of the specific filter to get the right inversion.  For the moment, 
looking at W, we see that information has been lost.  Anything we expected to use or infer 
from looking at the W is confounded at best.  One good way of looking at this situation is 
to consider, as we often do, the FFT of the output, choosing as we would generally do, the 
region of the most energy.  From Fig. 5a, we would use samples 29-70 of X and samples 
29-77 of W (W having become longer, like any convolution).  Conveniently we take FFT of 
length N=42 for X, and of length N=49 for W, and the results (magnitude FFTs) are shown 
in Fig. 5b. 
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     Here we find an agreeable result.  In Fig. 5b top, for X we see that all the energy is 
concentrated in the FFT bin for k=6 (and k=43-6 = 37) indicating that all the signal is 
periodic at frequency 6/42 = 1/7.  Yes, this involved a special setup for the clear 
interpretation that results here.  Similarly, W had absolutely no energy at the frequency for 
the k=7 FFT bin, or 7/49 = 1/7.   So, at this point, we have a reasonable interpretation of 
the result that the presence of a periodicity of frequency 1/7 is lost.  The notion that Y can 
be recovered from W, requiring us to specify the exact filter, is equivalent to storing the 
original signal.   But this is an assumption.  In general, we just will be observing that we 
have only W, and make of it what you can, which is less than getting X back.  
 
 
 

AND – NOISE DOES WHAT?  
 
     Here when we speak of added noise we are asking about noise that is added to the 
filtered output before we try the inversion.   This is typically something like what we try to 
achieve by “equalizing” a communications channel (reducing its amplitude and phase 
distortions) while at the same time recognizing that the channel has added random nose 
as well.  Any noise that is in the input signal will just be handled exactly as the signal itself.      
Here we will start with a signal that has just over four full cycles or a frequency 1/10, and 
will use a length-7 MA filter that has zeros at a radius 0.98, so that the inverse will be 
stable (although it will “ring” considerably) .  Fig. 4a shows that this MA filter had no null at 
a frequency 1/10 so that means that the signal is not blocked outright.    
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    In Fig. 6a we show the noiseless case and this is a pretty good example of what we 
might chose as a typical application.   Although very hard to see, the small “echo” up 
around 200 in Fig. 6a for Y is pretty much the only indication that anything is going on. 
 
     In contrast, the noisy case of Fig. 6b is pretty much a disaster.   Here the noise added 
is about 20% of the signal level at that point.   In W of Fig. 6b, we see the noisy signal 
awaiting inversion.  In Y of Fig. 6b there is very little to suggest that the input signal can be 
recovered.  About all we can say is that the signal ended somewhere around sample 100 
when the IIR reconstruction filter just rattles as it decays.   
 
 
 

APPLICATION OF FINDINGS 
 
Since the MA filter is so common we might have reason for attempting to invert data from 
an MA smoothed output.   Most people who use it tell you the length, and whether or not 
anything else special was used.   Often however there are unwarranted assumptions 
about the frequency response other than at DC.   There is no reason not to investigate the 
entire range however, and this is very possibly the most important thing about using a MA.   
There are many alternatives. 
 
     There is also the possibility of an approximate inversion of a MA using an approximate  
reconstruction that is stable.  That is, use an IIR that has its poles slightly inside the unit 
circle.   So we use half our findings above.  We saw that we could invert using a stable IIR 
if we started out with a MA-like smoother that had weights that decayed.  The pairing was  
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still H(z) and 1/H(z).  Given that so many (all?) use ordinary equal weigh MA, the 
alternative to do smoothing a new way may have passed.  As such, particularly as the 
smoothed data may have become itself noisy (such as by roundoff), attempting an 
inversion with unit-circle poles begins as something worse than a bad idea!   But - nothing 
prevents us from trying an inversion with poles inside the unit circle.  It might work well 
enough. 

     Fig. 7 shows such an example.   The input is a length-20 rectangle X and it is 
smoothed with a length-7 MA, resulting in W.   Then we do the inversion not with the usual 
1/H(z) but with the IIR with poles moved to a radius of 0.98 rather than the original radius 
of 1.  To be more specific, it is too late (we suppose) to fix the smoother, but we will try to 
fix the inverter.  The hope is that it is good enough, and perhaps it will work in cases where 
the poles on the unit circle would have been just a disaster.   Perhaps.  Y is not all that 
bad.  
 
      Fig. 8 shows a second test example.  Here we start with a Signal consisting of four 
sinusoidal cycles, and add noise.  The Noise has a “marker” artificially put in – six ones 
from samples 60-65 just to help identify.  The Signal + Noise constitutes X, which is then 
subjected to a length-10 MA rectangular smoother, producing W.  Normally we think of W 
as the presentation of the filter output – enhancing the signal and rejecting the noise. 
 
     Here we are interested in seeing if we can recover the variability – the noise.  We know 
the smoother was rectangular, but we want to avoid unit circle poles, so we construct an 
impulse response for the Proposed Inverter as suggested above by repeating the 
sequence [1 -1 0 0 0 0 0 0 0 0] ten times and then multiplying by (0.98)n where n runs from 
0 to 99.  This we convolve with W to produce Y.  While we did not expect nor achieve a 
perfect reconstruction, we have little doubt that we are recovering much of the variability.   
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