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                              WIENER ALTERNATIVE TO LMS ALGORITHM   
 
In this app note the purpose is first (and not too essentially) to update some adaptive filter 
code presented previously [2,3].  More importantly, we also want to give the code for an 
alternative calculation method (Wiener solution) [1], which although said code is 20 years 
old and used in teaching, I believe it was not published here.  The previous presentations 
[1-3] gave a wealth of information and examples of adaptive filtering.  Here the main 
message is that the Wiener solution gives the correct solution as a one-time calculation, 
the same solution as the iterative LMS algorithm.  Nothing too much that is new here.  
 

     Here is the adapt.m program that uses the LMS algorithm: 
 

function [y,e,w]=adapt(d,x,L,mu,W0) 

%-------------------------------------------------------------------% 

%  function [y,e,w]=adapt(d,x,L,mu,W0)                              % 

%                                                                   % 

%      LMS ALGORITHM ADAPTIVE FILTER SIMULATOR (adapt.m)            % 

%                                                                   % 

%  INPUTS:                                                          % 

%  d is desired signal, x is reference signal, both the same length % 

%  L is the length of the adaptive linear combiner                  % 

%  mu is the convergence factor (try about 0.01 to start)           % 

%  W0, when included, is an initial weight vector of length L       % 

%                                                                   % 

%  OUTPUTS:                                                         % 

%  y is the output of adaptive linear combiner (correlated signal)  % 

%  e is the error (uncorrelated signal)                             % 

%  w is the final weight vector                                     % 

%-------------------------------------------------------------------% 

%                     1         2         3              L-1        % 

%      x            -----     -----     -----           -----       % 

%      ___________ |  -1 |___|  -1 |___|  -1 |___   ___|  -1 |__    % 

%              \   | z   | | | z   | | | z   | |       | z   |  |   % 

%               \   -----  |  -----  |  -----  |        -----   |   % 

%                \ W0    W1 \       / W2      / W3              /   % 

%                 \         -----------      /                 /    % 

%                  \-------|    SUM    |----/           <-----/     % 

%                           -----------                             % 

%                                |                                  % 

%                                |--------------------------- y     % 

%                             (-)|                                  % 

%                         (+)  -----                                % 

%  d -------------------------| SUM |------------------------ e     % 

%                              -----                                % 

%                                                                   % 

%     LMS Algorithm    Wj(n+1) = Wj(n) + 2*mu*e(n)*xj(n)            % 

%                                                                   % 

%                                          B. Hutchins   Fall 1993  % 

%                                               revised March 2014  % 

%-------------------------------------------------------------------% 
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if exist('W0')==1 w=W0;   % check for user-given initial weights 

else w=zeros(1,L);        % else set taps to zero 

end 

 

xj=zeros(1,L);            % initialize linear combiner delay line 

 

for n = 1:length(d)           %  for each iteration 

     xj=[x(n),xj(1:L-1)];     %  move data up line 

     y(n)=xj*w';              %  compute y 

     e(n)=d(n)-y(n);          %  compute e 

     w=w+2*mu*e(n).*xj;       %  update taps w(n+1)=w(n)+2mux(n)e(n) 

end                           % 

 

 

% Done Calculations - Rest Just Display 

hm=-0.1*length(x); 

hp=1.1*length(x); 

vm=1.2*min(x); 

vp=1.2*max(x); 

 

figure(1); 

clf                           %  plot the four signals 

subplot(221)                  % 

stem(x)                       %  x 

axis([hm hp vm vp]) 

title('reference')            % 

subplot(222) 

stem(y)                       %  y 

axis([hm hp vm vp]) 

title('y - correlated')       % 

subplot(223) 

stem(d)                       %  d 

axis([hm hp vm vp]) 

title('desired')              % 

subplot(224) 

stem(e)                       %  e 

axis([hm hp vm vp]) 

title('error - uncorrelated') % 

figure(1) 

 

clf  

figure(2)                     %    now plot the impulse and freq. resp. 

subplot(221)                  %    of the final taps.  This is strictly 

stem([0:L-1],w)               %    valid information only if the error is zero. 

axis([-0.1*(L-1) 1.1*(L-1) 1.2*min(w) 1.2*max(w)]) % . . . . . 

title('tap weights at end')   %    If the error is very small, 

subplot(223)                  %    and/or if mu is very small, 

H=freqz(w,1,500);             %    the result may be valid if thought of 

plot([0:.001:.499],abs(H),'r')%    as an instantaneous frequency response 

axis([-.05 0.55 -.1 1.1*max(abs(H)) ]) 

grid                            

title('magnitude at end')      

subplot(224) 

plot([0:.001:.499],angle(H),'r')    

axis([-.05 0.55 1.1*min(angle(H)) 1.1*max(angle(H)) ]) 

grid                            

title('phase at end')           

figure(2)                       
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     Fig. 1 and Fig. 2 give the results of our demonstration, and as we have said, the 
references [1-3] have similar and many more examples.   We start with an input signal x 
and a desired signal d (see diagram at top of adapt.m program, and the upper right of Fig. 
2) that are samples of a sinusoidal waveform with frequency 0.1, differing in phase by 45°. 
We have further chosen a length L = 2 for the adaptive linear combiner – ALC) and a 
convergence factor of mu=0.4.   Note that the iterative LMS algorithm (see y growing, error 
e decreasing) converges and shows that d and x (as modified by the ALC) can cancel.  
Note the two tap weights.  So we see from Fig. 1 that the algorithm does work, and from 
Fig. 2 we see why.  The ALC becomes stationary enough that it can be considered a 
pseudo-fixed FIR filter, and we compute the magnitude and phase response of the two 
weights w.   These are shown in Fig. 2, and at the frequency of interest, 0.1, the 
magnitude response is 0.9999 and the phase is 45.0011°, which is nearly exactly what we 
needed.    [If we had chosen a longer ALC, we would have still gotten a similar 
cancellation, but there would have been three tap weights giving a different solution except 
at the critical frequency of 0.1.  Here we rigged things so that we get the one answer the 
Wiener calculation gives.  Again see the first two references. ]    
 
     Now here is the wiener.m program.  
 

 

 

function w=wiener(d,x,L) 

% function w=wiener(d,x,L) 

% WIENER FILTER DEMO            wiener.m 

%   d = desired input (typically one cycle of periodic sequence) 

%   x = reference (typically one cycle, same length as d) 

%   L = number of adaptive filter taps 

% B. Hutchins                                          Fall 1993 

%                                             revised March 2014 

 

Lx=length(x);          %  basic length 

R=zeros(L,L);          %  zero R 

P=zeros(1,L);          %         and P 

  

 

for row=1:L 

    for col=1:L 

         for v=0:(Lx-1)/2 

             R(row,col)=R(row,col)+x(row+v)*x(col+v); 

         end 

    end 

    for v=1:Lx/2 

           P(row)=P(row)+x(v)*d(row+v-1); 

    end 

end 

R                              %   Input Correlation 

P                              %   Cross Correlation 

w=inv(R)*P'                    %   Wiener Weight Vector 

 

  

wr=flipud(w); 

for v=1:Lx-1                          %   compute 

     y(v+L-1)=x(v:v+L-1)*wr;          %          the 

     e(v+L-1)=d(v+L-1)-y(v+L-1);      %             error 

end                                   % 

 

                                 AN-406 (4) 



% Computations Done - Rest Just Display 

hm=-0.1*length(x); 

hp=1.1*length(x); 

vm=1.2*min(x); 

vp=1.2*max(x); 

 

figure(1); 

clf                           %  plot the four signals 

subplot(221)                  % 

stem(x)                       %  x 

axis([hm hp vm vp]) 

title('reference')            % 

subplot(222) 

stem(y)                       %  y 

axis([hm hp vm vp]) 

title('y - correlated')       % 

subplot(223) 

stem(d)                       %  d 

axis([hm hp vm vp]) 

title('desired')              % 

subplot(224) 

stem(e)                       %  e 

axis([hm hp vm vp]) 

title('error - uncorrelated') % 

figure(1) 

 

clf  

figure(2)                     %  now plot the impulse and freq. resp. 

subplot(221)                  %  of the taps.    

stem([0:L-1],w)                    

axis([-0.1*(L-1) 1.1*(L-1) 1.2*min(w) 1.2*max(w)]) 

title('tap weights at end')        

subplot(223)                       

H=freqz(w,1,500);                  

plot([0:.001:.499],abs(H),'r')     

axis([-.05 0.55 -.1 1.1*max(abs(H)) ]) 

grid                               

title('magnitude at end')       

subplot(224) 

plot([0:.001:.499],angle(H),'r')    

axis([-.05 0.55 1.1*min(angle(H)) 1.1*max(angle(H)) ]) 

grid                            

title('phase at end')           

figure(2)                       

 

 

     In this case  we used the same x and d as above, and the command line was then: 
 

           w=wiener(d,x,2) 
 
with results: 
                         R =   25.0000   20.2254 
                                  20.2254   25.0000 
 
                         P =  17.6777    3.9109 
 
                         w =    1.6804    -1.2030 
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     Here there is no algorithm to converge.   Rather the autocorrelation (R) and cross-
correlations (P) are computed from available data.  Here, we used all the data possible, 
which is about half the signal, so that the correlations overlap.  The Wiener weight vector 
is the classic:   
                          w = R-1P 
 
and this is virtually identical to the LMS algorithm.   If fact, the result is so nearly exact that 
the plot of the results corresponding to wiener.m perfectly overlaps Fig. 2 for the LMS and 
need not be separately presented here.  
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