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  “Savitzky-Golay: or Least Square Polynomial Smoothing” *  
 
     The area of Digital Signal Processing (DSP) is extremely broad and rich.  Anyone who 
has ever organized a course in DSP at any level needs to select from among myriad  
topics and examples.  At the same time, we often marvel at the fact that most of the ideas 
we use can be understood in at least several ways, and many of the procedures employed 
are found to be reinventions, developed as needed, or in new forms.  [For example, the 
relatively “recent” techniques of Fast Fourier Transform and of discrete-time exponential 
modeling trace back to work done by mathematicians (Gauss and Prony respectively) 
roughly 200 years ago.   
 
     The present topic of this note is the Savitzky-Golay (S-G) filter, also found listed as 
least square polynomial smoothing.   Nearly every DSP engineer has heard the term S-G, 
and for periods of time, may even have known a bit about them.  The present author first 
heard about S-G from Tom Parks at Cornell, and remembers that the recommended 
reference was part of a chapter by Schuessler in a somewhat neglected book edited by 
Lim and Oppenheim [1].  Previous to that (late 1980’s) Allan Steinhardt (also then at 
Cornell) had suggested a problem for students that was essentially the problem of finding 
a filter by fitting a straight line to three points (minimizing squared error) which reappears 
below.   This simple problem has also been outlined in our own publications [2] and has 
been a recurring student exercise.   
 
     More recently in finding topics for student projects, Tom Parks included a general 
reference to S-G, and this in turn has led to some interesting findings, historically.  First, 
the original paper by Savitzky and Golay is apparently in the journal Analytical Chemistry 
[3] which is not a place one would think to look for notions about DSP (although, evidently, 
about data smoothing).   Secondly, the popular program Matlab has a S-G function 
(sgolay.m) which was not immediately decipherable, but it did yield an important 
reference: S-G had been lurking all the time in the popular DSP text by Orfanidies [4].   In 
addition, Hamming [5,6] had the material covered concisely under least-squares 
smoothing. 
 
                                  -    -    -    -    -     -    -    -    -    - 
* This text was begun in 2002 and I recently found when I was looking for Savitzky-Golay 
work I thought I had published somewhere!   It was on a memory stick that condensed 
some 258 floppy disks!  Fortunately the machine did the search. 
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Filtering by Fitting a Straight Line to Three Points: 

 
      In as much as S-G is polynomial fitting, it seems closely related to our use of 
polynomials for interpolation [7].   Indeed this is so, perhaps contributing to the confusion 
as I remember wondering again about S-G and thinking – that’s just polynomials.  The 
difference, as we hope to show here, is in the use of the output.  In the case of 
interpolators, we are (obviously) computing samples between existing samples.  In the 
case of the smoothing filters we consider here, the output is a replacement sequence that 
is smoothed.   The simple moving average [2, 11] is the simplest S-G filter possible.  It fits 
a straight line to data points.    
 
     Here we will establish a useful perspective,  Consider that we have three points x1, x2, 
and x3.  Initially I will assign values of 1, 3, and 2 to these samples.   (Another possible set 
are 0, 1, and 0 if we want to look at some sort of impulse response – see Fig. 2).   In Fig. 1 
we show the three initial points.  The red “curve” is a straight line fit to the first two of the 
three points.  We can only exactly fit two of three points.  The green curve is a 2nd-order 
(parabolic or quadratic) fit exactly to all three points.  The two cases (red and green) are  
useful for interpolation.  For example, we might want to estimate a point as interpolated at 
1.75.  Neither of these is useful for smoothing as they just give back the original points. 
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     The blue curve (straight line) is in fact an S-G smoother.   Here we have fit a straight 
line to three points by minimizing the squared error as in [2].  The Matlab code that                                                             
generates Fig. 1 is at the end here as Program 1.  There we see that fitting the blue line is 
a matter of using the “pseudo inverse”, pinv, in Matlab applied to three equations in two 
unknowns (two parameters of the line to three given points) instead of three parameters 
for three points (the green parabola) from Matlab’s “ordinary” matrix inerter, inv. 
 
     For this particular example, the blue line has a total squared error of (1/2)2 + 12 + (1/2)2 
= 1.5.  One can become convinced that this is a minimum squared error by manipulating 
the line up/down or tilting it about (2,2) a bit (left as an exercise to the reader or see 
Program 1). What we evidently should learn from the blue curve is that it is telling us that 
in light of the fact that the two end points are lower, the midpoint (2,3) is perhaps a bit 
high, and vice versa, the “corrections” appearing as light-blue arrows.   This “smoothing 
suggestion” applies only to the middle point (at horizontal axis value 2).  If we want to 
know what value is suggested in a smoothed case at horizontal axis value 3, we might 
consider the blue straight line in Fig. 2 (suggesting 2.5 there) but we are better served by 
shifting one position to the right.   Thus we consider the familiar case where we look for an 
FIR filter, as in [2].  But how do we get this to be a FIR filter? 
 
     The ploy here is a “trick question” that we have used in the case of interpolators and 

smoothers.   We simply need to provide an answer to the question: 

 

     Q:  What is the impulse response of a smoother that fits three points to a straight line? 

     A:   It is the response of a smoother that fits three point to a straight line to an impulse. 
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     Trick answer?  Not at all.  It’s a method.  All we need to do here is to replace the three 
values that were used in making Fig. 1 (1, 3, and 2) with a length-three impulse (a one and 
two zeros).   This is shown in Fig. 2 (also from Program 1) where we have also shifted the 
input to have the impulse at the zero the horizontal axis.  Note that the impulse response 
is “reconstructed” from the polynomial fit to different original points.   
  
 

Least Squares Polynomial Fitting – Second Example 

 
So far we haven’t done much.  We just fit polynomials to points (1st and 2nd order) and re-
derived the moving average by trying to fit a straight line to three points.  For the moment, 
we note that the impulse response of the length-3 moving average [1/3 1/3 1/3] is an 
example of S-G, but not one which in itself tells us what we need to do in a general case.  
The actual more general filters will be done in a bit, but let’s be sure we understand the 
fitting of “too many” points first.  Consider as a second example that we might have nine 
samples  
 
               y = [ 1  2  -1  0  2  -3  -1  2  1 ]                                                                             (1) 
 
positioned at integers along the horizontal axis for x = 1 to 9, and we decide to fit a fifth-
order polynomial to them.   This is three too many points of course, so we will take our fit 
to just minimize the squared error on all nine points  The most direct way to do this in 
Matlab is with the build-in polyfit function 
  
              polyfit([1 2 3 4 5 6 7 8 9],[1 2 -1 0 2 -3 -1 2 1],5)                                                  (2)                  
 
This is the right answer.  But it is not difficult to just write your own code and this helps 
your understanding of course.  Program 2 show the code developed for this.  The 
procedure is as follows.  We start with the form of the polynomial: 
 
             y = ax5 + bx4 +cx3 + dx2 + ex + f                                                                            (3) 
 
where we don’t know a, b, c, d, e, or f.   Since this is true for all y, it is true for each of the 
nine values of y at the values of x specified.  This we have nine possible equations in 6 
unknowns, which is “too many”.   These we can write in matrix form: 
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This 9x6 matrix can not be exactly inverted (it must be square), Instead we use the 
“pseudo-inverse” with Matlab’s pinv function.  This finds the minimum squared error 
solution.   If your math language does not have a pseudo inverse, you can use the 
ordinary inverse by the method outlined at the beginning of the program code section at 
the end of this note.  Inverting equation (4) gives: 

 
which solves for, with the y values of equation (1): 

         a =   -0.0087 
         b =    0.2091 
         c =  -1.8172                                                                                                               (6) 
         d  =    6.9553 
         e = -11.7598 
         f =    7.7500 
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     The Matlab command of equation (2) gives these exact same values for a, b, c, d, e, 
and f.   We now know the polynomial of equation (3) and can compute its value on any 
range we want.  Fig. 3 shows many interesting results.  The blue dots are the original nine 
data points of equation (1).   The red curve is the result of computing equation (3) from 0 
to 10 (at intervals of 0.01 for plotting purposes).  The nine red stars simply overplot this red 
curve at the integer positions.   Note that this red 5th-order polynomial does not go through 
any of the blue data points (as we expected it would not) and like any polynomial, it runs 
off to ±∞ as we move out of range of the constraining points [8].  The red star at x=5 has 
value -0.6923, and would be the output of the S-G smoother at this particular shift.  Note 
that it is quite different from the blue star at x=5 which is at +2.   This makes the point that 
the values of the blue dots at x=3, 4, 6, and 7 are zero or negative and are pulling down 
the original value of two.  In contrast here, we have also plotted the 8th-order polynomial in 
light blue.  This one does go through all the nine original data points. This polynomial too 
runs off to ±∞ (+∞ in this case) outside the range constrained by the original blue samples.   
At this point, we can begin to understand how the least square polynomial is starting to 
smooth the data – the red has visibly less “ripple” than the blue..   
 
     So how do we get the filter – the impulse response?  Well we just extend the “trick” 
suggested in the two lines above Fig. 2.  We use the smoother on an impulse.  We replace 
equation (1) with: 
 
               y = [ 0  0  0  0  1  0  0  0  0]                                                                                (7) 
 
and the result is shown in Fig. 4. 
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In this case, we get the response to the impulse, the red curve, and the red stars in this 
case are exactly the impulse response of the S-G smoother we want.  We note here that 
this agrees with Matlab’s sgolay(5,9) as well as our own program sg(5,9) using our own 
code that will be presented below. 
 
     Here we can verify one case of an FIR filter performing this smoothing.  We just take 
the original 9 blue dot samples (Fig. 3) and multiply them point-by-point with the nine 
impulse response (red star) values of Fig. 4, and sum the results.  It is indeed the value of 
-0.6923 we said we should get. 
 
      

Getting to the Filters Faster – and Going from There 
 
All of the above is not difficult, nor does it involve much computation time, particularly s we 
may be designing only a couple of filters.  Right now we want to consider a more general 
approach where we can extract the S-G impulse response directly as the lowest row of the 
inverse matrix.    
 
     The general form for the equations is (corresponding Matlab code in red): 
 

         y = M a                          [  y = M*a ]                                                                        (8) 

 
analogous to equation (4), which is inverted as: 
 

         a = M
-1

 y                      [ a = pinv(M)*y ]                                                                 (9) 

 
analogous to equation (5).  Here a is the vector of polynomial coefficients such as we have 
previously called abcdef, and here we are also considering y to be symmetrical about 0, 
and more specifically, being an impulse at zero (such as y=[0 0 0 0 1 0 0 0 0] for a length 
nine result).  
 
     Once a is computed, we can “back compute” the actual impulse response at integer 
values about zero.  Thus, with MI = pinv(M) in Matlab: 
 

     yi = M M
-1

 y
t                     [ yi = M * MI * y’ ]                                                          (10) 

 

        = M
-t
 M

t
 yt                              [ yi = MI’ * M’ * y’ ]                                                         (11) 

 

But M
t
yt is here a column vector of zeros, except for the bottom element that is a 1.  [Note 

that the superscript t is a transpose, -t is the inverse transposed.  In Matlab, the ‘ indicates 

the conjugate transpose, but this is just the ordinary transpose since everything is real 

here.]   Thus . M
t
yt selects the bottom row of the inverse matrix.  A nice shortcut – but 

perhaps hard to explain!  As I recall, this was based first on just an observation.  
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     Once the impulse response is found, our usual practice is to look at the frequency 
response, the phase response, and the pole/zero plot.  In this case, the impulse responses 
are all symmetric (hence linear phase) and are FIR (hence we have only zeros).  The 
program sg (Program 3 at the end) computes the S-G impulse response and the follow-up 
frequency domain calculations.  These appear to be very nicely behaved filters. 
 
 

 
Examples Looked at as Filters 
 
     Using the sg program, we first consider again  the previous result of a 5th-Order,  
9-Point S-G smoother (red in Fig. 5a, 5b, and 5c), and will compare this to the 
conventional length-9 moving average (green in Fig. 5b and Fig. 5c – the moving average 
impulse response would just be 9 values of height 1/9).  From Fig. 5b we see the major 
difference between the moving average and the S-G of the same length.  In a sort of 
standard trade-off, the bandwidth of the S-G starting at zero is wider while it does not drop 
so low in the upper half.  In as much as we often think of smoothing as the removal of 
higher frequencies without changing the lower ones too much, we see an advantage to the 
S-G with regard to the passband.  We notice from the zeros in the z-plane (Fig. 5c) that 
the left side zeros of both filters are somewhat the same, while the right side zeros of the 
moving average are ON the unit circle (causing notches) , while those of the S-G back 
away.  The flatness of the S-G about zero should be noted. 
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     As a second example, we will (just as another example) consider a 12th –order 
polynomial fit to 29 points.  Again we use the sg program which still plots the 
corresponding length-29 moving average for comparison.   This example, shown in Fig. 
6a, 6b, and 6c, is even better for showing the flat, wide passband, along with a somewhat 
less impressive stopband, relative to the moving average.   Again we see in Fig. 6c the 
unit-circle zeros moving away to accommodate a flat passband. 
 
     Readers will likely at this point be inclined to just suppose we have introduced yet 
another design method for digital filters.    Indeed the sinc-like impulse response and 
various frequency-domain ripples are familiar enough.   The response of Fig. 6b looks a lot 
like the IIR design method using “Inverse Chebyshev” with no attempt to make the 
stopband exactly equiripple.   But plenty of other FIR design procedures (such as  
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frequency-domain least squares, particularly as they are used with increased weighting on 
the passband, can be expected to give similar results [9].  While this is likely true, we have 
not examined it here.   What we have found is a rational time-domain-based procedure 
that makes sense.  So on to time-domain.   
 
 
 

Time-Domain View of Smoothing 
 
 
     Here we are particularly anxious to see what happens with a time domain test. We 
have noted that the S-G procedure gives us a symmetric impulse response with certain 
frequency-domain properties.   Since this is an FIR filter, the usual means of actually doing 
the filtering is a convolution process in the time domain.  In fact, it is probably possible to 
understand most of what you need to know by considering what happens in the time 
domain.  That is, we take our impulse response and position it relative to one end of the 
sequence to be filtered.   Then we move the impulse one step at a time, and for each step 
we multiply the impulse response values by their overlapped sample value, and sum all 
the products.  This is the output (smoothed) sequence, usually positioned with respect to 
the center of the impulse response.   We then move the impulse response one step to the 
right and repeat.   Of course, there can be significant end effects at the beginning and end 
of the sequence [10]. 
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     For this note, we will limit our study of test signals to two cases.   The first is an 
artificially generated signal perhaps best understood from Fig. 7a.  Here we have a 
sinewave of frequency 1/100, so there are 4 cycles in the 400 points shown.  To this we 
have added a second sinewave of frequency 1/9 from samples 100 to 200, and a third 
sinewave of frequency 1/6 for samples 200 through 300.  To the entire signal we then 
added Gaussians noise (Matlab’s randn) of amplitude 0.4.  We will assume that the three 
sinewave components are of interest, but we would like to reduce the noise.  Our filter is 
the 5th-order 9-Point S-G of Fig. 5.  From Fig. 5b we see that the frequency 0.01 is low 
enough that the S-G filter (and the corresponding length 9 moving average) will pass it 
quite well.  The other two sinewaves (1/9 and 1/6) which have higher frequency are  
 
                                                              AN-404 (11) 
 



 
 

                                                          
                                                             AN-404 (12) 
 



treated differently by the two filters.  The S-G passes both well enough.  The moving  
average attenuates both.  In particular, the moving average, being length 9, completely 
blocks the frequency of 1/9 (that’s why we put it in the test illustration).   Looking at Fig. 7b 
(green) we may well be pleased to see much of the noise gone, and note that there was 
indeed a second component from time 200 to 300.  The component from 100 to 200 is 
lost.  And we do have a good feel for the sinewave at frequency 1/100 being there.  But it 
could be a serious error if we did want that sinewave at 1/9 to show,   
 
     The S-G filter (Fig. 7c, red) quite happily passes both sinewaves, and the 1/100 low 
frequency, but achieves a less successful effort at removing the noise.  So it is a trade-off 
like many other cases.    
 
     Note that it both cases of filtering there is a slight time shift (to the right) due to the 
linear phase delay.   Correcting for delay is easy enough,   This and the end effects noted 
above are refinements secondary to the more major concerns of frequency shaping that 
we have just illustrated here. 
 
     The second of our cases here uses actual data, a famous data series considered to 
present some measure of global temperature of the Earth over many years (going back to 
1850 here – about the end of the “Little Ice Age”), as in Fig. 8.  . This is the HadCRUT3 
series we looked at a few note back [12, link to data there].   Traditionally, the data has a 
lot of “noise” and is smoothed over a period of several years or longer.   This makes 
sense. 
 
     Although quite arbitrarily chosen, many folks choose a length of 17 years as being 
significant, so we have chosen here smoothing with a length 17 moving average (Fig. 8b) 
and with a 5th-Order, 17-Point S-G.   The moving average is quite successful in showing 
the temperature increases over the approximately 30 year spans following 1850, 1910, 
and 1970, with the flatter (or slight declines) starting at 1910, 1940, and 2000, along with 
the overall increase since 1850.   More detail remains with the S-G filtering, which may or 
may not be significant, or of interest to us. 
 
     The lesson from these time studies seems to suggest that hard-and-fast rules aren’t 
going to be too useful.  We try something, and see if it helps or hurts, 
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PROGRAMS 
 
PSEUDO-INVERSE FROM INVERSE 
 
In many cases (like here) we can obtain the pseudo-inverse from just the inverse as: 
 

      MI = (M
t
M)

-1
M

t
 

 
where Mt is the usual transpose operation.  So if your math package has an inverse, you 
can do the pseudo-inverse in this way.  In Matlab, this would be MI =inv(M’*M)*M’.  You 
can practice on the examples of equations (4) and (5) 
 
 

Program 1- Produces Figs 1 and 2, Etc. 
 

% AN404Fig1-2.m 

x1=1  

x2=3 

x3=2 

 

figure(1) 

plot([1 2 3],[x1 x2 x3],'ko') 

hold on 

% 

% fit line to first 2 

plot([1 2],[x1 x2],'r') 

plot([0 1],[-1 1],'r:') 

plot([2 3],[3 5],'r:') 

plot([0 0],[-1 5],'k:') 

plot([-1 4],[0 0],'k:') 

% 

% 

% Fit quad to first 3 

abc=inv([1 1 1;4 2 1;9 3 1])*[1 3 2]'; 

x=0:.01:4; 

y=abc(1)*x.^2 + abc(2)*x +abc(3); 

plot(x(1:100),y(1:100),'g:') 

plot(x(301:400),y(301:400),'g:') 

plot([1:.01:3],y(100:300),'g') 

% 

% 

% Fit line to three points 

ab=pinv([1 1;2 1;3 1])*[1 3 2]'; 

ysl=ab(1)*x + ab(2); 

plot(x(1:100),ysl(1:100),'b:') 

plot(x(301:400),ysl(301:400),'b:') 

plot([1:.01:3],ysl(100:300),'b') 

% 

ysl(201)  % center point 

% 
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% code below monkeys with y-intercept to verify square error min 

% can do similar for slope 

% error increases from 1.5 to 1.5003 in both cases 

e1=ysl(101)-1 

e2=ysl(201)-3 

e3=ysl(301)-2 

e1sq=e1^2+e2^2+e3^2 

e1=ysl(101)-.01-1 

e2=ysl(201)-.01-3 

e3=ysl(301)-.01-2 

e11sq=e1^2+e2^2+e3^2 

e1=ysl(101)+.01-1 

e2=ysl(201)+.01-3 

e3=ysl(301)+.01-2 

e12sq=e1^2+e2^2+e3^2 

% 

plot(2,2,'ob') 

hold off 

axis([-.5 4.0 -1 4]) 

figure(1) 

% 

% Now do Impulse Response 

% 

x1=0  

x2=1 

x3=0 

figure(2) 

plot([-1 0 1],[x1 x2 x3],'ko') 

hold on 

% 

% fit line to first 2 

plot([-1 0],[x1 x2],'r') 

plot([0 0],[-1 5],'k:') 

plot([-4 4],[0 0],'k:') 

% 

% Fit quad to first 3 

abc=inv([1 -1 1;0 0 1;1 1 1])*[x1 x2 x3]'; 

x=-2:.01:2; 

y=abc(1)*x.^2 + abc(2)*x +abc(3); 

plot(x(1:100),y(1:100),'g:') 

plot(x(300:400),y(300:400),'g:') 

plot([-1:.01:1],y(100:300),'g') 

% 

% Fit line to three points 

ab=pinv([1 1;2 1;3 1])*[x1 x2 x3]'; 

ysl=ab(1)*x+ab(2); 

plot(x,ysl,'b:') 

plot([-1:.01:1],ysl(100:300),'b') 

% 

% plot impulse response  

plot(-1,1/3,'bo') 

plot( 0,1/3,'bo') 

plot( 1,1/3,'bo') 

hold off 

axis([-1.5 1.5 -.3 1.3]) 

figure(2) 
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Program 2 – for Fig. 3 (and 4) 
 
% AN404Fig3.m 

clear 

for x=1:9   

   for m=5:-1:0 

      M(x,m+1)=x^(5-m); 

   end 

end 

M 

 

x=1:9 

y=[1 2 -1 0 2 -3 -1 2 1] 

%y=[0 0 0 0 1 0 0 0 0]   % for impulse Fig. 4 

xx=0:.01:10; 

abcdef=pinv(M)*y' 

a=abcdef(1); 

b=abcdef(2); 

c=abcdef(3); 

d=abcdef(4); 

e=abcdef(5); 

f=abcdef(6); 

yy=a*xx.^5 + b*xx.^4 + c*xx.^3 + d*xx.^2 + e*xx + f; 

 

figure(1) 

plot([1:9],y,'o') 

hold on 

plot(xx,yy,'r') 

 

plot([0 0],[-10 10],'k:') 

plot([-5 15],[0 0],'k:') 

 

yi=yy(101:100:901) 

plot([1:9],yi,'*r') 

 

%Matlab for complete fit, 8th order - could also do as above 

abcdefghi=polyfit([1 2 3 4 5 6 7 8 9],y,8); 

a=abcdefghi(1); 

b=abcdefghi(2); 

c=abcdefghi(3); 

d=abcdefghi(4); 

e=abcdefghi(5); 

f=abcdefghi(6); 

g=abcdefghi(7); 

h=abcdefghi(8); 

i=abcdefghi(9); 

yy8=a*xx.^8 + b*xx.^7 + c*xx.^6 + d*xx.^5 + e*xx.^4 + f*xx.^3+ g*xx.^2 + h*xx + 

i; 

plot(xx,yy8,'c') 

% end comparison plot for 8th order 

hold off 

axis([-1 11 -0.5 1.1]) 

figure(1) 
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Program 3 – for Fig. 5 and 6, etc. 
 
 
function [h,M,MI]=sg(order,points)          % Nov. 16, 2002 (Revised Feb. 2014) 

clf 

pt=points; 

or=order; 

M=zeros(pt,or+1); 

n=-(pt-1)/2:(pt-1)/2; 

for k=0:or 

     c=(n.^k)'; 

     for r=1:pt 

         M(r,or+1-k)=c(r); 

     end 

end 

M 

MI=pinv(M)  

% 

for k=1:pt 

   h(k)=MI(or+1,k); 

end 

h 

% Main computation done at this point -we have h 

% 

% Continue with Plots and Reference Plot (mov. avg.) 

figure(1) 

subplot(211) 

hmax=max(h); 

hmin=min(h); 

if hmin>0; hmin=0; end 

stem([0:pt-1],h) 

hold on 

plot([0 pt+1],[0,0],'b'); 

axis([-.8  pt-1+.8  -0.1*hmax-0.2 1.2*hmax]); 

hold off 

% 

href=(1/pt)*ones(1,pt); 

HREF=abs(freqz(href , 1, 500)); 

% 

subplot(212) 

H=abs(freqz(h,1,500)); 

Hmax=max(H); 

plot([0:.001:.499],H,'r'); 

hold on 

plot([0:.001:.499],HREF,'g') 

plot([0 .52],[0 0],'b') 

                                                                                     

                                       

plot([0,0],[-.1 1.1*Hmax],'b') 

axis([-.05 .55 -.2 1.2*Hmax]) 

hold off 

% continue for plot of zeros 

zer=roots(h) 

zerref=roots(href); 
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xmax=max(abs(real(zer))); 

ymax=max(abs(imag(zer))); 

plotmax=max([xmax ymax])   

c=exp(j*2*pi*[0:1000]/1000); 

figure(2) 

plot(c) 

hold on 

for k=1:length(h)-1; 

   plot(real(zer(k)),imag(zer(k)),'or') 

   plot(real(zerref(k)),imag(zerref(k)),'og') 

end 

axis('equal') 

pm=1.2*plotmax; 

axis([-pm pm -pm pm]) 

hold off 

figure(2) 

% end plotting 

% 

% code below for verification only 

abcdef=MI*[0 0 0 0 1 0 0 0 0]' 

b=abcdef(2) 

d=abcdef(4) 

f=abcdef(6) 

for k=-4:4 

   yi(k+5)=b*k^4+d*k^2+f; 

end 

yi 

% yi same as h 

yiM = M*abcdef  

% yiM same as h 

MIy=MI*[0 0 0 0 1 0 0 0 0]'  

yii=M*MIy  

% yii same as h 

yiii=M*MI*[0 0 0 0 1 0 0 0 0]'  

% yiii same as h 

Mtx=M'*[0 0 0 0 1 0 0 0 0]' 

% column vector is transpose of [0 0 0 0 0 1] 

MIMtx=MI'*Mtx  

% selecting bottom row of MI 

yiiii=MI'*M'*[0 0 0 0 1 0 0 0 0]' 

% yiii same as h, equation (11) of text 
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Program 4 – for Fig. 7 and 8, etc. 
 
 
function sgt(h) 

% h is S-G impulse response of other test filter 

ln=length(h) 

% hma is moving average for reference 

hma=(1/ln)*ones(1,ln); 

% create test signal 

s=[zeros(1,100),sin(2*pi*[0:99]/9),sin(2*pi*[0:99]/6),zeros(1,100)

]+0.4*randn(1,400); 

 

s=s+sin(2*pi*[0:399]/100); 

y=0:399;  

% remove two comment markers (%) below to override 

%   load gt;    % see AN-379 for data  

%   s=A;  

%   

sma=filter(hma,1,s); 

ssg=filter(h,1,s); 

mas=1.3*max(abs(s)); 

% 

figure(3) 

ymin=min(y)-10; 

ymax=max(y)+10; 

subplot(311) 

plot(y,s) 

axis([ymin ymax -mas mas]) 

subplot(312) 

  

plot(y,sma) 

axis([ymin ymax -mas mas]) 

subplot(313) 

plot(y,ssg) 

axis([ymin ymax -mas mas]) 

figure(3) 

 

 

 

In the programs above, much is redundant.  We have included these programs for the 
usual reason of unambiguous documentation, and as a means of giving example code 
with a number of different approaches. 
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